Contents

List	of A	bbreviat	ionsI	X			
List	t of Sy	mbols	Х	Π			
1	Introduction						
2	Physical vapour deposition technology						
	2.1 Magnetr		on sputtering				
	2.2	wer impulse magnetron sputtering	5				
	2.3	3 Cathodic arc evaporation					
3	Ti-Al-N coatings11						
	3.1	The Ti-A	Al-N system				
	3.2	Review of	of Ti-Al-N coatings deposited by CAE1	13			
	3.2.1 Influence of the Al co coatings deposited by		ience of the Al content on the microstructure and properties of Ti-Al-N ings deposited by CAE	13			
	3.2.2 Influ coat		ience of the bias voltage on the microstructure and properties of Ti-Al-N ings deposited by CAE	16			
		3.2.2.1	Influence of U_B on the Al content in the Ti-Al-N coatings deposited by CAE.	16			
		3.2.2.2	Influence of U_B on the residual stress in Ti-Al-N coatings deposited by CAE.	18			
		3.2.2.3	Influence of U _B on lattice parameter of fcc-(Ti,Al)N in CAE coatings	21			
		3.2.2.4	Influence of U_B on the hardness of Ti-Al-N coatings deposited by CAE 2	21			
	3.3	Thermal	stability of Ti-Al-N coatings	22			
4	Ti-Al-Ru-N coatings24						
	4.1	Properties of Ti-Al-Ru-N coatings deposited by CAE					
	4.2	Thermal	stability of Ti-Al-Ru-N coatings deposited by CAE	26			
5	Cr-A	Al-Si-N c	oatings2	7			
	5.1	The Cr-Al-(Si)-N system					
	5.2	Magneti	c ordering in CrN	28			

6	Characterisation techniques31					
	6.1	Chemical Analysis				
	6.1	.1 Ele	Electron probe microanalysis			
	6.1	.2 Glo	ow discharge optical emission spectroscopy	31		
	6.2 X-ray di		iffraction	32		
	6.2	.1 Gla	incing angle X-ray diffraction	32		
		6.2.1.1	Determination of stress-free lattice parameter and residual stress	33		
		6.2.1.2	Crystal anisotropy of the lattice deformation	37		
	6.2	2.2 In s	situ synchrotron HT-GAXRD	40		
	6.2	2.3 Pol	e figure measurements	41		
	6.2	2.4 Red	Reciprocal space maps and XRD rocking curves			
	6.3	Transm	iission electron microscopy	44		
	6.3	.1 Ima	aging using TEM	44		
	6.3	.2 Det	termination of the local orientation	45		
	6.3	.3 An	alytical TEM	48		
		6.3.3.1	Energy dispersive spectroscopy	48		
		6.3.3.2	Electron energy loss spectroscopy	50		
	6.4 Therma		l treatment	58		
	6.5	Calotes	otest			
	6.6 Nanoind		dentation	59		
7	Resu	lts and	discussion	63		
	7.1	Ti-Al-N	coatings deposited by CAE	63		
	7.1	.1 Dej	position of CAE Ti-Al-N monolayer coatings	63		
	7.1	.2 Ch	emical and phase composition of as-deposited Ti _{1-x} Al _x N coatings	64		
	7.1	.3 Ma	Macroscopic lattice strain and residual stress of as-deposited Ti _{1-x} Al _x coatings			
	7.1	.4 Cry	/stallite size of as-deposited Ti _{1-x} Al _x N coatings	71		
	7.1	.5 Inte	Interfaces between fcc-(Ti,Al)N and w-AlN Hardness of as-deposited Ti _{1-x} Al _x N coatings			
	7.1	.6 Ha				
	7.1	.7 The	ermal stability of Ti _{1-x} Al _x N coatings	79		
		7.1.7.1	Thermally activated microstructure changes in the Ti _{0.62} Al _{0.38} N coating	gs 80		
		7.1.7.2	Effect of the bias voltage and chemical composition on the phaeomposition of annealed $Ti_{1-x}Al_xN$ coatings	ase 87		

	7	.1.7.3	Apparent microstrain as an indicator of local concentration fluctuations fcc-(Ti,Al)N	in 89		
	7.2 Ti	-Al-N /	Al-Ti-(Ru)-N multilayers deposited by CAE	93		
	7.2.1	Depo	osition of CAE Ti-Al-N / Al-Ti-(Ru)-N multilayer coatings	93		
	7.2.2	Cher mult	Chemical and phase composition of as-deposited Ti-Al-N/Al-Ti-(Ru)-N multilayers			
	7.2.3	Mult	ilayer architecture of the Ti-Al-N / Al-Ti-(Ru)-N multilayer coatings	98		
	7.2.4	Resid coati	Residual stress in the as-deposited Ti-Al-N / Al-Ti-(Ru)-N multilayer oatings			
	7.2.5	Hard	ness of the as-deposited Ti-Al-N / Al-Ti-(Ru)-N multilayer coatings	106		
	7.2.6	Prefe	erred orientation of the fcc-(Ti,Al)N crystallites	107		
	7.2.7	Ther	mal stability of Ti-Al-N / Al-Ti-(Ru)-N multilayers	113		
	7	.2.7.1	Thermally activated microstructure changes in the Ti-Al-N / Al-Ti-(Ru N multilayer coatings	ı)- 113		
	7	.2.7.2	Thermally activated microstructure changes in the Ru-rich Ti-Al-N / A Ti-Ru-N multilayer coating deposited at $U_B = -80$ V as seen by analytic TEM	.l- ∶al 120		
	7	.2.7.3	Interfaces between fcc and wurtzite phase after thermal treatment	126		
	7.3 He	eteroep	itaxial TiN / AlN / TiN layers deposited by MS	130		
	7.3.1	Prepa	aration of TiN / AlN / TiN layer stacks	131		
	7.3.2	Internal interfaces studied by heteroepitaxial growth		133		
	7	.3.2.1	Wurtzite AlN grown on $(1\overline{1}0)_{fcc}$ oriented fcc-TiN	135		
	7	.3.2.2	Wurtzite AlN grown on $(00\overline{1})_{fcc}$ oriented fcc-TiN	150		
	7.4 Cı	r-Al-Si-	N coatings deposited by UBM and HIPIMS	167		
	7.4.1	Depo	osition of Cr-Al-Si-N coatings using UBM, HIPIMS and CAE	167		
	7.4.2	Ionized species in the UBM and HIPIMS plasma				
	7.4.3	Phase composition of the Cr-Al-Si-N coatings deposited by UBM HIPIMS and crystal anisotropy of the lattice deformation				
	7.4.4	Stres	Stress-free lattice parameter of the fcc-(Cr,Al,Si)N phase			
	7.4.5	Influence of the deposition mode on the microstructure of Cr-Al-Si-N coatings				
8	Conclus	sions .		185		
An	nendiv			. 189		
P	P ~1141/2 ****					
Bib	oliography	y		201		