Inhaltsverzeichnis

Abkürzungsverzeichnis .. VI
Symbolverzeichnis ... VIII
Zusammenfassung .. X
Summary ... XII

1 Einleitung .. 1

2 Konzeptentwicklung für eine grüne Bioraffinerie ... 7

 2.1 Theorie .. 7
 2.1.1 Die Grüne Bioraffinerie ... 7
 2.1.2 Bedeutung von Gräsern als nachwachsende Rohstoffe .. 10
 2.1.3 Herstellung von Grassilage ... 15
 2.1.4 Herstellung von Silagepresssaft .. 17
 2.1.5 Fermentative Nutzung von Silagepresssaft .. 17
 2.1.6 Aufarbeitung organischer Säuren aus Silagepresssaft ... 18
 2.1.7 Prinzipien der Chromatographie ... 20
 2.1.8 Modellierung der chromatographischen Trennung .. 22
 2.1.9 Prinzipien der Flüssig-flüssig-Extraktion .. 23
 2.1.10 Aufbau der Zellwand von Gräsern ... 13
 2.1.11 Vorbehandlung von Gras-Lignocellulosen ... 24
 2.1.12 Enzymatische Hydrolyse von Lignocellulose ... 28
 2.1.13 Modellierung der Hydrolyse ... 30
 2.1.14 Detoxifizierung von Hydrolysaten .. 34
 2.1.15 Ethanolherstellung .. 35

2.2 Material und Methoden .. 40

 2.2.1 Grassilage .. 40
 2.2.2 Herstellung des Silagepresssafts ... 40
 2.2.3 Aufarbeitung organischer Säuren ... 41
2.2.3.1	Chromatographiematerialien und Extraktionsmittel	41
2.2.3.2	Statische Adsorptions- und Elutionsversuche	41
2.2.3.3	Chromatographiesäulen und -Anlagen	42
2.2.3.4	Flüssig-Flüssig-Extraktion der organischen Säuren	44
2.2.4	Vorbehandlung und Hydrolyse von Gras-Lignocellulose	44
2.2.4.1	Verwendete Enzyme	44
2.2.4.2	Vorbehandlungsmethoden	46
2.2.4.3	Enzymatische Hydrolyse	46
2.2.5	Ethanolherstellung	47
2.2.5.1	Verwendete Mikroorganismen	47
2.2.5.2	Medien	47
2.2.5.3	Stammhaltung	47
2.2.5.4	Erstellen der Vorkulturen	48
2.2.5.5	Anaerobe Kultivierung im 10 und 50 mL-Maßstab	48
2.2.5.6	Adsorption und Elution von Phenolcarbonsäuren	49
2.2.6	Vergärung von Reststoffen zu Biogas	50
2.2.7	Analytik	51
2.2.7.1	Zucker-Analytik	51
2.2.7.2	Analyse der organischen Säuren	51
2.2.7.3	Phenolsäure-Analytik	52
2.2.7.4	Ethanol-Analytik	53
2.2.7.5	Biogasanalytik	53
2.3	Ergebnisse und Diskussion	54
2.3.1	Durchführung und Optimierung des Pressschrittes	54
2.3.2	Analytik des Presssaftes	56
2.3.3	Chromatographische Gewinnung organischer Säuren aus Silagepresssaft	61
2.3.3.1	Auswahl eines geeigneten Adsorbermaterials	61
2.3.3.2	Elution organischer Säuren vom Amberlite IRA 400 OH'	62
2.3.3.3	Abtrennung organischer Säuren aus Silagepresssaft im dynamischen System	63
2.3.3.4	Auftrennung der Säurefraktion durch Größenausschluss-Chromatographie	67
2.3.3.5	Kombination von chromatographischer Abtrennung und Auftrennung der organischen Säuren	76
2.3.4 Aufarbeitung der Milchsäure durch Flüssig-Flüssig-Extraktion 79
2.3.5 Vorbehandlung und Hydrolyse von Gras-Lignocellulose 84
 2.3.5.1 Vorbehandlung der Silage .. 84
 2.3.5.2 Hydrolyse von Silagepresskuchen .. 89
 2.3.5.3 Maßstabsvergrößerung der Hydrolyse ... 99
 2.3.5.4 Modellierung der Hydrolyse .. 107
2.3.6 Herstellung von Ethanol aus Grassilage ... 114
 2.3.6.1 Nutzung von Silagepresssaft als Fermentationsmedium 114
 2.3.6.2 Nutzung von Silagepresssaft zur Supplementierung von Hydrolysaten 117
 2.3.6.3 Nutzung von Silagehydrolysaten zur Ethanolherstellung 119
2.3.7 Vergärung von Fermentationsreststoffen zu Biogas 125
2.3.8 Erstellung eines Gesamtkonzeptes "Silage-basierte grüne Bioraffinerie" 126
3 Gewinnung von Dicarbonsäuren aus Buchenholzhydrolysaten 137
 3.1 Theorie ... 137
 3.1.1 Buchenholz als nachwachsender Rohstoff ... 137
 3.1.2 Die deutsche Lignocellulose Bioraffinerie ... 138
 3.1.3 Itaconsäure .. 140
 3.1.4 Bernsteinsäure .. 145
 3.2 Material und Methoden .. 149
 3.2.1 Verwendete Mikroorganismen ... 149
 3.2.2 Fermentationsmedien ... 149
 3.2.3 Stammhaltung .. 150
 3.2.4 Fermentationsbedingungen .. 150
 3.2.5 Detoxifizierung ... 151
 3.2.6 Aufarbeitung der Itaconsäure .. 152
 3.2.7 Analytik .. 152
 3.3 Ergebnisse und Diskussion ... 153
 3.3.1 Itaconsäureherstellung ... 153
3.3.1.1 Detoxifizierung von Buchenholzhydrolysaten ... 153
3.3.1.2 Fermentation detoxifizierter Hydrolysate .. 160
3.3.1.3 Aufarbeitung der Itaconsäure .. 162
3.3.1.4 Stoffstrom-Simulation der Itaconsäure-Herstellung ... 165
3.3.2 Herstellung von Bernsteinsäure aus Buchenholzhydrolysaten 172
3.3.3 Vergärung von Hydrolyseresten zu Biogas .. 174

4 Zusammenfassung .. 175
Literaturverzeichnis ... 180
Abbildungsverzeichnis ... 213
Tabellenverzeichnis ... 225
Anhang A .. 228
Liste der verwendeten Geräte ... 228
Liste der verwendeten Chemikalien .. 229
Anhang B .. 230
Vereinfachte Nährwertanalysen der verwendeten Silagen 230
Anhang C .. 231
Presssaft-Analytik .. 232
Anhang D .. 237
Aufarbeitung organischer Säuren .. 237
Modellierung der Chromatographie an Sephadex G-10 241
Flüssig-Flüssig-Extraktion .. 244
Anhang E .. 245
Vorbehandlung und Hydrolyse .. 245
Modellierung der Hydrolyse ... 249
Anhang F .. 255
Fermentation .. 255
Anhang G .. 257
Gesamtkonzept grüne Bioraffinerie .. 257
Anhang H.. 259
Itaconsäureherstellung.. 259
Charakterisierung der verwendeten Schüttelkolben.. 259
Anhang I... 262
Bernsteinsäureherstellung .. 262
Vorab veröffentlichte Publikationen .. 263
Betreute Studien- und Diplomarbeiten... 266
Lebenslauf.. 267