Abstract (English)

Based on the success of artificial intelligence (Al), especially in its application for classification of digital
images in the world wide web, its utilisation for automated diagnostics of medical image data has bec-
ome a major focus. Despite great results with prediction tasks involving big data, a naive application of
deep learning, i.e., use without any prior knowledge about the respective domain, may not be the opti-
mal solution when there are only small amounts of data for the prediction task at hand, which is usually
the case in medical studies and biological experiments. Therefore, it may be beneficial to integrate prior
information, abbreviated prior, in deep learning or use a more traditional prior-based learning approach.

In this work, novel macroscopic and microscopic imaging biomarkers for computed tomography (CT)
and multiphoton microscopy (MPM) are identified by developing image processing and learning
techniques for biomarker research in pneumonology, oncology, and muscle research. From a biological
point of view, we were able to improve fracture discrimination in CT by detailed analysis of muscle and
lipid mixing in the thigh compared to using known bone imaging biomarkers alone. Also, our approach
of combining the assessment of macroscopic tumour spread and distribution with machine learning al-
lowed better survival prediction for cancer patients than using known biomarkers or naive applications.
We present a calibration method for CT that helped to preserve the predictive performance of known
imaging biomarkers even when large technical variation and bias induced by the image acquisition
process are prevalent. Lastly, we present an Al system that was able to predict various single muscle
fibre properties from MPM images with better performance than previously known biomarkers.

From a technological point of view, a continuum of learning methods between the old world, i.e., statis-
tics or traditional machine learning with handcrafted features, and the new, i.e., deep learning and meta-
learning, is utilised. Our motivation to use prior information leads to novel hybrid learning-based
biomarker systems combining prior knowledge with Al. We show that prior information about a task
can effectively be integrated to improve predictive performance of learning algorithms compared to
naive approaches. Within this work, a prior can be the engineering and integration of suitable features
based on biological knowledge about a task, the choice of a suitable data representation for an Al system,
or physics knowledge about the nature of noise and artifacts. Our results further indicate that the
representation of the data input to a learning algorithm can be more important than the learning
algorithm itself, and that a suitable data representation for an Al can be different from that for the
human observer, e.g., a radiologist. In the final chapter, an Al is presented that simultaneously deter-
mines the required complexity of its neural network architecture, the data representation, and the
degree of prior knowledge integration using meta-learning. It is shown that the integration of priors
into deep learning with simultaneous optimisation of the data representation provides the best results,
better than naive deep learning models without priors but also better than models that solely rely on
priors.

Altogether, this work presents novel biomarker models for different medical disciplines by combining Al
with priors, effectively refining the prior knowledge by Al and regularising complex Al models by priors.



Zusammenfassung (Deutsch)

Aufgrund des Erfolgs der kinstlichen Intelligenz (KI), insbesondere bei der Klassifizierung digitaler Bilder
im World Wide Web, ist ihre Nutzung fiir die automatisierte Diagnostik medizinischer Bilddaten in den
Fokus gertickt. Trotz groRRartiger Ergebnisse bei Vorhersagen mit groBen Datenmengen, ist eine uninfor-
mierte Anwendung von Deep Learning, d. h. dessen Verwendung ohne jegliches Vorwissen Uber den
jeweiligen Bereich, moglicherweise nicht die optimale Lésung, wenn nur wenige Daten fiir die jeweilige
Vorhersageaufgabe vorliegen. Dies ist bei medizinischen Studien und biologischen Experimenten in der
Regel der Fall. Daher kann es von Vorteil sein, Vorinformationen, auch bekannt als Priors, in Deep Lear-
ning zu integrieren oder einen klassischeren, auf Vorwissen basierenden Lernansatz zu verwenden.

In dieser Arbeit werden neue makroskopische und mikroskopische Bildgebungs-Biomarker fiir die
Computertomographie (CT) und Multiphotonenmikroskopie (MPM) identifiziert, indem Bildverarbei-
tungs- und Lerntechniken fiir die Biomarkerforschung in der Pneumologie, Onkologie und Muskelfor-
schung entwickelt werden. Aus biologischer Sicht konnten wir die Frakturdiskriminierung mittels CT
durch eine detaillierte Analyse der Muskel- und Lipidmischung im Oberschenkel im Vergleich zur alleini-
gen Verwendung bekannter Knochenbiomarker verbessern. Auch unser Ansatz, die Quantifizierung der
makroskopischen Ausbreitung und Verteilung von Tumoren mit maschinellem Lernen zu kombinieren,
ermoglichte eine bessere Uberlebensvorhersage fiir Krebspatienten als bekannte Biomarker oder unin-
formierte Anwendungen. Des Weiteren wird eine Kalibrierungsmethode fiir die CT vorgestellt, die dazu
beitragt, die Vorhersagekraft bekannter Biomarker zu erhalten, selbst wenn eine technisch-bedingte
Variation und Verzerrung durch den Bildaufnahmeprozess existiert. SchlieRlich prasentieren wir ein Kl-
System, das in der Lage war, verschiedene Eigenschaften einzelner Muskelfasern auf MPM-Bildern mit
besserer Leistung als bisher bekannte Biomarker vorherzusagen. Aus technologischer Sicht wird ein
Kontinuum von Lernmethoden zwischen der alten Welt, d.h. Statistik oder dem traditionellen maschi-
nellen Lernen mit , handgefertigten” Features, und der neuen Welt, dem Deep Learning und Meta-Lear-
ning, genutzt. Unsere Motivation, Vorinformationen zu nutzen, fiihrt zu neuartigen hybriden lernbasier-
ten Biomarker-Systemen, die Vorwissen mit KI kombinieren. Wir zeigen, dass Priors liber eine Aufgabe
effektiv integriert werden kénnen, um die Vorhersageleistung von Lernalgorithmen im Vergleich zu
uninformierten Ansatzen zu verbessern. Im Rahmen dieser Arbeit kann ein Prior die Entwicklung und
Integration geeigneter Features sein, die auf biologischem Wissen liber ein Problem basieren, die Wahl
einer geeigneten Datendarstellung fiir ein KI-System, oder physikalisches Wissen (iber die Natur von
Rauschen und Artefakten. Unsere Ergebnisse deuten auRerdem darauf hin, dass die Reprasentation der
Daten, die in einen Lernalgorithmus eingegeben werden, wichtiger sein kann als der Lernalgorithmus
selbst, und dass eine geeignete Datenreprdsentation fur eine Kl eine andere sein kann als fiir den
menschlichen Betrachter, z.B. einen Radiologen. Im letzten Kapitel wird eine Kl vorgestellt, die die er-
forderliche Komplexitat ihrer neuronalen Netzwerkarchitektur, die Datenreprasentation und den Grad
der Integration von Priors mit Hilfe von Meta-Learning selbst bestimmt. Es wird gezeigt, dass die In-
tegration von Priors in Deep Learning bei gleichzeitiger Optimierung der Datenreprasentation die besten
Ergebnisse liefert, besser als uninformierte Deep Learning-Modelle, aber auch besser als Modelle, die
ausschlieBlich auf Priors basieren.

Diese Arbeit prasentiert innovative Biomarker-Modelle fiir verschiedene medizinische Fachbereiche, die
Kl und Vorwissen miteinander kombinieren. Einerseits wird hierbei das Vorwissen durch Einsatz von Kl
verbessert, andererseits werden komplexe KI-Modelle durch das Vorwissen regularisiert.



1. Introduction and State-of-the-Art
1.1. Macro- and Microscopic Imaging Technologies for Biomarker Identifi-

cation
1.1.1. Computed Tomography (CT) for Macroscopic Imaging
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Figure 1. Schematic drawings of CT image acquisition. Information about the attenuation of photons by the object is collected
in the detectors (left) and used to reconstruct the object f(x,y) (centre, top) slice-wise from its sinograms (centre, bottom), i.e.,
the attenuation profile with offset t from the detector origin for all rotation angles 8. For simplification, parallel beams were
assumed in the central image. An exemplary axial CT image of the abdomen is shown on the right. Bar: 10cm. Modified from
U.S. Food & Drug Administration! and Van Aarle et al.2.

Computed tomography (CT) is an x-ray-based diagnostic imaging modality. CT utilises that the radioden-
sity of biological tissue, i.e., the relative inability of electromagnetic radiation to pass through it, is de-
pendent on the material’s physical density and its mass attenuation coefficient®. The latter is a function
of the atomic number of the material and the photon energy. The attenuation of x-ray photons can thus
be used to determine the radiodensity and, accordingly, also tissue distribution and tissue properties
within objects. As shown in (Fig. 1., left), a CT gantry, consisting of a photon emitter and a detector,
rotates around an object, and the attenuation of x-ray photons after passing the object is measured in
the detector. By rotating the gantry, attenuation profiles (projections) for different gantry angles can be
obtained. The projection information over all angles is termed sinogram (Fig. 1, centre bottom). The
operation that enables the generation of a sinogram from a 2D image is known as Radon transform?, and
the inverse Radon transform, accordingly, is the required operation to solve the CT image reconstruction
problem. Applying image reconstruction on a sinogram yields an axial 2D image (Fig. 1, right), and by
movement of the motorised table, a 3D image, i.e., volume, of the object can be generated. The radio-
density shown in CT images is usually provided in the Hounsfield scale, in which distilled water at
standard pressure has a Hounsfield unit (HU) of 0 and air of -1000 HU.

A common reconstruction algorithm is the filtered back projection (FBP) which is a practical and fast
solution for the ill-posed inverse Radon transform problem®. FBP can be derived by the central slice the-
orem that links 1D projections and the corresponding axial 2D image by Fourier and inverse Fourier
transforms, thereby enabling reconstruction of 2D images from the sinogram in a simple and fast pro-
cess®: the projection for each angle (of the sinogram) is convolved with a reconstruction kernel, and the
results are integrated over all angles in 2D. The reconstruction kernel is selected specifically for the



radiological examination at hand as a trade-off between noise- and detail-level, with the hard kernels
providing sharper images with more details, and soft kernels providing images with less noise and arti-
facts®. More advanced algorithms for image reconstruction in CT are based on iterative reconstruction
(IR) which involves iteratively solving an optimisation problem to estimate the image from the projection
data. This method results in improved image quality, but it also requires a longer reconstruction time
compared to FBP. IR minimises the difference between the measured projection data and the estimated
projections based on the current estimate of the image, improving the image estimate with each itera-
tion®’. IR can incorporate prior information, such as model-based knowledge of anatomy or structure,
to improve the image estimate, reduce noise and artifacts, and speed up convergence. Besides the
reconstruction algorithm, further important influencing factors for the image formation are the tube
voltage which determines the energy spectrum of the photons, and the tube current which determines
the photon quantity. Higher tube current results in lower statistical noise as more photons arrive at the
detector, but it also leads to higher radiation exposure. Higher tube voltage is needed if the object would
otherwise attenuate the photons too much, but this also results in lower image contrast.

CT is by far the most widely used tomographic imaging modality with approximately 300 million scans
per year worldwide compared to 95 million magnetic resonance imaging (MRI) scans®. It is commonly
the imaging method of choice in oncology, pneumonology, in the emergency department, and for the
assessment of bone structures or calcium deposits. Compared to MRI, its more frequent application in
oncology is based on the lower cost and wider availability of CT while yielding sufficient diagnostic infor-
mation for most cancer types. In pneumonology, it is based on the better imaging capabilities to assess
slight density differences of air-filled organs, like the lungs. In the emergency room, especially the signif-
icantly faster image acquisition compared to MRl is the deciding factor for CT. Finally, CT is superior for
the assessment of bone structures or calcium deposits, e.g., in the coronaries, as a result of its imaging
mechanism based on attenuation.

Variants of CT are used in different clinical and research scenarios. Contrast medium is injected in around
40% of all CT examinations® to increase the contrast of structures of interest thus enabling, e.g., the

910 or the diagnosis of cardiovascular diseases!!. Dual-energy

indirect assessment of tumour metabolism
CT*? uses photons from two energy spectra to exploit the high energy dependence of the mass attenua-
tion coefficient of materials with high atomic numbers. It, thereby, allows material decomposition to
assess kidney stones, gout, or iodine content and even enables the generation of synthetic images like
virtual non-contrast, i.e., the contrast medium is virtually removed from the images. Current research
and also an emerging clinical application field is photon-counting CT in which the detector measures
single photons and their energy (energy-resolving) instead of the sum of all energies of the photons
reaching the detector (energy-integrating)®. In photon-counting CT, commonly four energy bins are
used for the incoming photons, and the number of photons in each of these bins is counted. This allows
material decomposition, in analogy to dual-energy, in each scan and yields even more multi-spectral
information. Furthermore, this technique provides increased contrast-to-noise ratio (CNR) and spatial
resolution. It can reduce noise and various artifacts, like beam hardening, and enables to discriminate
photons with energies below the lowest energy bin, resulting in an elimination of electronic noise. To
enable photon-counting CT, a novel detector was constructed which replaces the common scintillation
detector by a semi-conductor detector that directly transforms photons into electric pulses according to
their energy. Lastly, for preclinical research, micro-CT can be employed, which offers higher resolution
and is often used for in vitro and in vivo small animal imaging®*.



1.1.2. Label-free Multiphoton Microscopy (MPM) for Microscopic Imaging
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Figure 2. Schematic drawings of label-free MPM image acquisition. A colorectal tissue sample is examined by MPM (left) for
oncological diagnostics. The sample is covered by a coverslip (arrow) and a water drop (arrowhead) is used as immersion. (cen-
tre) Two photons are absorbed to excite a fluorophore. When the electron falls back to the ground state, fluorophore-specific
light Is emitted. The excitation volume for two-photon microscopy is smaller than for single-photon applications due to excita-
tion based on the simultaneous absorption. (right) MPM enables to differentiate normal colon tissue from cancer. Arrows and
arrowheads indicate the epithelial cells of normal and cancer tissue, respectively. Images were acquired at 780nm excitation
and using bandpass filters of 417/60nm (blue: epithelial cells and fibrous tissue), 480/40nm (green: immune cells and epithelial
cells), and 629/56nm (red: immune cells). Bar: 100um. Modified from Matsui et al.1> and Kreiss et al.16,

Multiphoton microscopy (MPM) is an advanced optical microscopy technology that utilises a pulsed laser
as excitation source?’. In this approach, two laser photons of lower energy are simultaneously absorbed
for the excitation of a single fluorophore. This fluorophore can either be an exogeneous marker that is
added to the sample by fluorescent staining®® or a native molecule in the sample. When the excited
electron falls back to its ground state, light is emitted from the fluorophore, which can then be recorded.
One main advantage of this technique over conventional fluorescence microscopy is that the excitation
is naturally confocal and without simultaneous light emission from out-of-focus planes. This is due to the
constraint of spatially-confined simultaneous photon absorption. In addition, since the probability of
scattering increases for photons of higher energy, MPM manages to produce images deeper in the tissue
by using photons of lower energy (Fig. 2).

MPM also allows second-harmonic generation (SHG) imaging by using short laser pulses!®. Samples with
second order susceptibility properties are polarised by the electric field component of the incident light.
This polarisation can be described in a Taylor series. If the electrical field is strong enough, the otherwise
negligible second term of this series induces a secondary wave at exactly twice the frequency. In com-
parison to two photon-induced fluorescence, SHG photons have twice the energy as incident pho-
tons!¥2°, Therefore, the SHG signal can not only be separated from light of the source but also from
fluorescence by using appropriate dichroic mirrors and filters. The application of SHG, however, is re-
stricted to biomolecules without inversion symmetry such as tubulin, collagen-I, and myosin-1I%%. As a
main advantage, SHG is sensitive to the orientation of the examined probes. This can, for example, be
used to analyse muscle fibres, more specifically the structural state of myofibrillar myosin polymers??,

Most optical microscopy methods use exogenous markers for the examined samples. However, these
can interfere with the probe's biology or its intrinsic binding homeostasis. Label-free approaches utilise
the non-linear excitation of native fluorophores, e.g., FAD or NADH, in combination with the SHG of
native biomolecules. These label-free variants are particularly interesting as they enable the use of MPM
for endoscopic examinations, i.e., a so-called multiphoton endomicroscopy?3.



