
1 Introduction

Localization is a very important technology to promote the quality of human life. The
awareness of one’s own location is essential when we are in a totally new environment.
Outdoor localization can be realized with the Global Positioning System (GPS). How-
ever, GPS does not work well indoors due to the blockage of buildings. Nowadays
more and more automated robots are used in industrial indoor environments and the
accurate position estimation for these robots is essential for the robots collaboration.
The precondition for human-robot collaboration is that the distance between human
and robot can be accurate detected. Thus the position of the workers also need to be
accurate tracked. In the above mentioned and lots of other indoor applications, the
indoor position estimation plays a crucial role. Many technologies have been devel-
oped for indoor localization, such as ultra wideband (UWB), infrared (IR) and light
detection and ranging (Lidar). The indoor localization system can be used in many
areas, for instance, in healthcare to track patients’ position so that their safety can be
improved, in the retail industry to improve the supply chain, or in logistics to optimize
the overall workflow, etc. For different applications, a suitable localization system
can be determined according to cost of the system, the required accuracy, the system
capacity, and so forth.

In a conventional production line, industry robots need to be isolated by safeguards
(e.g. safety fence, light curtain.) to guarantee the safety of the workers. The main
disadvantage of using the fixed installation of safeguards is the reduction of produc-
tivity and flexibility. The fast free movement of industrial robots can dramatically im-
prove flexibility, and various tasks can be finished by different combinations of these
robots, so that the production line can have a faster response to rapid market-demanded
change. Thus, the CR department in Bosch (China) Investment Ltd. has built a project
called "Real-time Safety Virtual Positioning" (RSVP) to enable agile production sys-
tems by removing the fixed safeguard installation with the help of an safety indoor
localization system. Instead of isolating the robots with safeguards, the safety of the
workers is guaranteed based on the continuously measured distance between the robots
and the workers. Two different circle zones are defined: the warning zone and the dan-
ger zone. The radius of the danger zone is the short safety distance (SSD), while the
radius of the warning zone is the long safety distance (LSD), as shown in Fig. 1.1. If a
human is in the warning zone, the robot moves more slowly. Once the human steps into
the danger zone, the robot stops immediately. With the help of this function, the safe-
guards can be replaced with the indoor localization based safety system [WZD+19].

1



2 1 Introduction

One of the most important parts of this system is the accurate position estimation of the
robots and humans. Other factors, such as update rate, system capacity, system com-
plexity and coverage., also need to be considered. Thus, a survey for the most widely
used indoor localization system is conducted. This section presents an overview and
comparison of these systems. It also shortly introduces the RSVP project and explains
why UWB is the most suitable localization system for this project. Finally, it presents
the main contributions and the structure of this thesis.

Figure 1.1: Concept of the safety function system in RSVP

1.1 Indoor Localization Systems

GPS is used to realize outdoor localizations. However it does not work well indoors,
since the signals can be blocked by buildings. Thus, different systems have been de-
veloped for accurate indoor position estimation, such as UWB, IR and Lidar. Based on
the utilized technologies and the position estimation algorithms, the most widely used
localization systems can be roughly divided into four different groups: wireless based
systems, IMU based infrastructure-free indoor localization, SLAM and visible light or
acoustic based systems. This is shown in Fig. 1.2 [ZWL19].
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Figure 1.2: Overview of the most widely used indoor localization systems [ZWL19]

1.1.1 Wireless Based Indoor localization

In wireless systems, the information or power is transferred without wires or cables.
The basic architecture for a wireless based position estimation system contains three
parts: base stations (BSs), mobile stations (MSs) and the software to calculate the
position of the MSs based on the measurements. The MSs are used to send the wireless
signal to the BSs. Given the received signals in the BSs, different measurements can be
obtained, such as the range between a BS and MS, the range difference, the received
signal strength or the angle of arrival. Depending on the type of the measurements,
different algorithms can be used for position estimation in wireless systems, such as the
time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA) and
received signal strength (RSS) [LJXG18], [CLL18], [SMS12], [ZYC+13], [GZT08a].
These algorithms are realized in the software so that the real-time position estimation
of the MS can be achieved.
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Wireless Systems for Indoor Localization

Wi-Fi, UWB, IR, Bluetooth, ZigBee and radio-frequency identification (RFID) are all
wireless technologies.

UWB: UWB is one of the most widely used wireless indoor localization systems due
to its low-power consumption, high accuracy, robust operation in harsh indoor envi-
ronments and low complexity for indoor applications. BSs and MSs are the basic
components in UWB systems. The MSs send short signal pulses over a broad spec-
trum, and the BSs receive the signals. Based on the arrival time, the range or range
difference measurements can be calculated.

Wi-Fi: Wi-Fi follows the standards in IEEE 802.11. Since Wi-Fi infrastructures al-
ready exist, the low cost is one of the main advantages of the Wi-Fi based localization
system.

Zigbee: Zigbee technology is based on the standards in IEEE 802.15.4. Three bands
can be used in Zigbee: the 2.4 GHz ISM band, 915 MHz band, and 868MHz band.
The transmission rate for Zigbee is between 20 kbps and 250 kbps [OCC+17].

Bluetooth: As a short-range wireless technology, Bluetooth is widely used in mobile
phones and computers, etc. to transmit information in short ranges. The main ad-
vantages of Bluetooth are its lower power consumption, lower costs, and smaller size
[HAG17].

RFID: The readers, tags, and servers are the basic components of RFID. The tags are
identified and tacked based on the electromagnetic fields in RFID. There are three types
of tags: passive , active and semi-passive tags. There are no batteries in the passive tag.
The energy used in this tag is obtained from a nearby RFID reader. Active tags have
an internal power supply (e.g. battery). Thus, information can be actively sent from
the active tag to the reader. Compared to passive tags, active tags are larger and more
expensive, but they have more functionalities [Bd08]. Semi-passive tags have internal
power supply to power the circuitry, but the way of communication between tags and
readers is the same as passive tags.

Infrared: infrared wavelengths are longer than those of visible light. Thus, infrared is
invisible to humans. However, humans can feel it as heat. Infrared can be used for
localization.

Position Estimation Algorithms for Wireless Systems

The output measurements of these wireless systems can be range, range difference,
angle of arrival or received signal strength. Depending on the type of measurement,
four different localization algorithms can be used for position estimation of the MS:
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TOA, TDOA, AOA and RSS.

1) TOA: The range, which is defined as the distance between the MS and the BS, is
used in TOA for position estimation. The position of the tag must lie on the circle that
is centered at the BS. In the ideal case, the MS position is the unique intersection point
of at least three different circles, with the ranges as the radii. In Fig. 1.3(a), the black
intersection point is the position of the MS. The centers of the circles are the positions
of the BSs. However, due to the existence of system noise error, the intersection of
these circles is not a point but an area. The real MS position can be anywhere in
the area. The larger the noise error, the greater is the intersection area and the more
inaccurate the obtained position estimation for the MS might be. In Fig. 1.3(b), the real
position of the MS can be anywhere in the green intersection area. Many algorithms
have been developed to reduce the noise error, such as the least squares method (LS),
the Taylor series method (TS), the approximate maximum likelihood method (AML)
[GZT08a], and the Kalman filter (KF) [YDH16].

Figure 1.3: (a) TOA localization in an ideal case; (b) TOA localization in a real case
with system noise error

2) TDOA: The difference between two ranges can also be used for position estimation.
As shown in Fig. 1.4(a), if the difference between the distance from MS to BS1 and
the distance from MS to BS2 is constant, then the trajectory of the MS is a hyperbo-
las. Thus, the intersection of the hyperbola, which are generated based on the range
differences with foci at the BSs, is the position of the MS, as shown in Fig. 1.4(a).

3) AOA: Localization can also be achieved with the measured angles. As shown in
Fig. 1.4(b), the angles α1 and α2 are the measurements. The position of the MS is the
black intersection point of two straight lines.
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Figure 1.4: (a) TDOA localization; (b) AOA localization

4) RSS: Two different methods can be used to realize the localization based on RSS.
The first one is based on the pathloss model, and the second on the fingerprint algo-
rithm.

4.a) Pathloss model based algorithm: In this method, the pathloss model is built and
used to determine the range. For example, the pathloss model for UWB can be written
as follows [GJD+07]:

Pr = P0 − 10nlog10
d

d0
+ S (1.1)

where d0 is the reference distance, and P0 is the received signal strength with distance
d0. The pathloss exponent is represented by n and S is a zero-mean log-normal random
variable. Based on this model, the UWB ranges can be calculated and the position
estimation can then be realized with the obtained ranges.

4.b) Fingerprint based algorithm: This method comprises two different phases, an
off-line and an on-line phase. In the off-line phase, the RSSs at different reference lo-
cations are collected to build the database. During the on-line phase, the new measured
RSS is compared with the collected RSSs in the database. Based on the comparison,
the position estimation can be realized [YXW17].

1.1.2 IMU Based Infrastructure-free Indoor Localization

A 9-axis IMU system contains a 3-axis gyroscope, 3-axis accelerometer and 3-axis
magnetometer. Pedestrian position estimation can be achieved based on IMU. The-
oretically, by integrating the measured accelerations twice, the moving distance can
be calculated. The orientation information can be obtained based on the measure-
ments from the magnetometer and gyroscope. However, the calculated distance drifts
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away in a short period of time due to the biases in the acceleration measurements.
Because of the drift errors, the IMU localization accuracy is not so promising. To im-
prove this performance, Pedestrian Dead-Reckoning (PDR) is developed and used as
an infrastructure-free methodology for pedestrian localization based on IMU.

The IMU is mounted on the foot of a human. The basic steps of the PDR algorithm
are step counting; orientation information computation; step length calculation; fi-
nally, position estimation. The step counting can be realized by detecting the stance
and swing phase of the foot based on the variance of the accelerations or the angular
velocities, etc. [ZLWW17].

The calculation of the orientation (e.g. Euler angles or quaternion) is achieved based
on the measurements from magnetometers and gyroscopes. By integrating the accel-
eration, the step length can be obtained. During the stance phase of each step, the
foot velocities should be zero after the integration of the acceleration. However, since
biases exist in the accelerations, the foot velocities are not zero. Theoretically, the cal-
culated velocities in the stance phase are equal to the integration of the biases. Thus,
the biases can be calculated using these velocities. Based on this principle, the drift
error can be reduced. The position estimation can be achieved with the calculated step
numbers, step lengths and orientation information.

1.1.3 Simultaneous Localization and Mapping (SLAM)

In general, simultaneous localization and mapping (SLAM) is a technique for building
a map of an unknown environment and estimating positions. This technology has been
used in many areas, such as in robots, autonomous cars, unmanned aerial vehicles,
and augmented reality (AR). Lidar and cameras are the most widely used sensors for
SLAM.

Compared to camera based SLAM, localization based on light detection and ranging
(Lidar) is more accurate. The distance between the target and the Lidar can be mea-
sured with the help of a laser.

On the other hand, using a camera is cheaper and can provide more visual information
compared to Lidar. There are three different kinds of cameras for SLAM application:
monocular, stereo and RGB-D cameras. A monocular camera contains only a single
camera, while a stereo camera has two cameras. Besides an RGB image, the distance
between the camera and the object is also provided by the RGB-D camera. Camera
based SLAM can be realized with four steps: visual odometry, back end, loop closing
and mapping.

1) Visual odometry (VO): The translation and rotation between adjacent frames are
determined and used as initialization values for the back end. There are three different
methods to calculate the camera motion: the feature based method [MMT15], optical
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flow [WCD+16] and direct method [FPS14].

2) Back end: The camera motions are optimized with frames taken at different times
based on the extended Kalman filter, bundle adjustment, pose graph, and so forth
[SP12].

3) Loop closing: The main task of loop closing is to identify whether the camera has
returned to the previous area.

4) Mapping: Based on the estimated camera motions, the map can be built.

1.1.4 Visible Light or Ultrasound Based Indoor Localization

Position estimation can also be realized based on visible light. The most widely used
element in the visible light system is the light-emitting diode (LED). The TOA, TDOA,
RSS and AOA position estimation algorithms can also be used in an LED localization
system. A method is proposed in [MSM08] to determine the position and the direction
of the receiver based on visible LED lights and image sensors.

Sound waves with frequencies higher than 20 kHz (upper limit frequency of human
hearing) are defined as ultrasound. Like wireless systems, the TOA and TDOA algo-
rithms are also applied in ultrasound systems for localization purposes.

1.2 Comparison of Localization Systems

Each of the presented localization systems has its own advantages and disadvantages.
Several factors can be considered to select the most suitable system for different indoor
applications, such as cost, position estimation accuracy, update rate, system capacity,
coverage area, system complexity and power consumption. The position estimation
frequency of the system per second is defined as the update rate. The costs for indoor
localization systems can differ widely. Normally, the more accurate the system is, the
more expensive it is. The system capacity determines how many devices can be used
at the same time. For the RSVP project application, the following factors are the most
important in selecting the localization system.

1) Accuracy: The position estimation accuracy is the most important factor to guar-
antee human safety. The system should be able to continuously provide the precise
location of humans and robots so that the distances between them can be monitored
with a relatively high frequency. Furthermore, the more accurate the system is, the
smaller the SSD and LSD zones are and the more space can be saved for further appli-
cations.
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2) Update rate: When humans move fast, if the update rate is too low, the human could
already be in the danger zone, and the real-time distance may not be updated yet or the
robot may move too fast and not be stopped in time. This could be very dangerous for
the workers.

3) System capacity: In the production line, the number of workers and robots could be
more than 100. Thus, the system must be able to provide enough devices, that can be
used for localization at the same time.

4) System complexity: To maintain the flexibility of the system, its complexity should
be low. The easy installation and easy adding or removing localization devices after
the installation are required.

5) Coverage: The system should be able to cover the whole working area. In the RSVP
project, the coverage should be at least 25 m.

6) Cost: The cost of the system needs to be kept in an acceptable range.

The comparison of the localization accuracy, coverage area, complexity and cost of
different systems can be found in Table 1.1. As shown in the table, compared to Wi-
Fi, Bluetooth, ZigBee and RFID, UWB has better accuracy and its coverage meets
the requirements. The SLAM based solutions are even more accurate than UWB, but
the cost of hundreds of Lidar SLAM devices is much higher. Due to the confiden-
tial environments in the production line, cameras are not a good option. Furthermore,
once the direct signal propagation path is blocked, many localization systems become
inaccurate. However, UWB can still provide accurate measurements if the blockage
only comes from, for instance, thin tables, counters or glass. The update rate of UWB
can exceed 90 Hz, which is more than enough for the RSVP project. With the devel-
oped UWB system in the project, 100 localization MSs with an update rate of 20 Hz
can be used at the same time. The cost of the system is acceptable. Thus, the UWB
localization system is the best option for the RSVP project application.

1.3 General Information on UWB

Despite the advantages of UWB, some challenging problems remain for UWB based
indoor localization, such as the inaccurate position estimation caused by NLOS errors.
First, this section presents a short introduction to the UWB system. Due to the fine
time resolution of the UWB signals, the time based TDOA and TOA stands in the
focus in this thesis, since they offer very good accuracy. The basic principle of time
based UWB localization can be explained as follows. The MS sends the UWB pulse
to the BSs. The BSs receive the signals from direct paths, reflected paths, etc. and
then provide the channel impulse response(CIR). Given the CIR, the arrival time can
be obtained. With the help of the sending time from the MS, the signal propagation
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Table 1.1: Comparison of different localization systems [Liu14], [XZYN16], [Mau12],
[MPS14], [LDBL07] , [ZGL17]

Accuracy Coverage (m) Complexity Cost
Wi-Fi m 20-50 low low

UWB cm-m 1-50 low low/medium

Infrared (IR) cm-m 1-5 low medium

Bluetooth m 10 low low

ZigBee m 30-60 low low/medium

RFID dm-m 1-50 low low

IMU 1% 10-100 low low

Vison 0.1mm-dm 1-10 high high

Ultrasound cm 2-10 low low

time from the MS to the BSs can be calculated. Based on these time measurements,
the range (for TOA) or the range difference (for TDOA) can be obtained and used for
position estimation. However, these data suffers from noise errors and NLOS errors.
Inaccurate localization is mainly caused by NLOS errors. Different methods have been
developed for NLOS mitigation, such as the Kalman filter (KF) and particle filter (PF),
which are combined with CIR based NLOS identification, IMU sensor based NLOS
mitigation and so forth. In summary, UWB based localization can be divided into the
following parts, as show in Figure 1.5:

Figure 1.5: UWB based localization process

1. Signal propagation: The MS sends the signals and the BSs obtain the signals. The
final results in this phase are the CIRs provided by the BSs.

2. Measurements calculation: Based on the CIRs, the signal arrival time can be ob-
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tained. With the help of the arrival time and signal sending time, the range (for TOA)
or the range difference (for TDOA) can be calculated.

3. Position estimation: Based on TOA or TDOA, the final position can be computed.

Additional methods to improve the localization accuracy are the following:

4. NLOS identification: NLOS identification can be realized using CIRs or a second
sensor source, such as IMU, etc.

5. Filter algorithms: KF and PF.

UWB signal propagation and channel estimation have been discussed in many papers
[LDM02], [CLLW16], [CSW02], [WRSB97], [WS02]. However, these propagation
models are mostly for communications. Few papers include a detailed discussion
about the relationships between CIRs and accurate/inaccurate measurements. Mea-
surement calculation with one-way range or two-way range is described in [Utt15],
[Decb]. Based on the different types of measurements (range, range difference, etc.),
different methods have been developed for position estimation, such as TOA, TDOA,
AOA and RSS, as discussed in Section 1.1.1. The main factor that causes inaccurate
localization is the NLOS error. NLOS identification is the most powerful approach to
reduce this error. The overview of NLOS identification and mitigation is provided in
chapter 4. Although UWB localization systems have been discussed in many papers,
there are still some unanswered or not fully answered questions. From the influence
of the signal propagation path for the CIR to the final error mitigation algorithms, this
thesis aims to provide a detailed overview of UWB based localization. As shown in
Figure 1.6, the answers to the following questions in different phases for the UWB
based localization process are given in this thesis:

During signal propagation:

1. How do the channel paths affect the CIRs?

2. Do all blockages cause inaccurate measurement?

During measurement calculation:

1. What does the LOS/NLOS noise distribution look like?

2. What is the relationship between the CIRs and NLOS/LOS measurements?

During position estimation:

1. What is the difference between TDOA and TOA?

2. Under which conditions is TDOA more suitable than TOA?

During NLOS identification:

1. What are the different NLOS identification methods?
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Figure 1.6: Overview for the UWB based localization process

2. What are the advantages and disadvantages of CIR based and second sensor based
methods?

3. In machine learning CIR based methods, which features need to be selected, and
which feature combination is the best?

4. What is the difference in the NLOS identification for TOA and TDOA?

During filter algorithms:

1. What are the advantages and disadvantages of KF and PF for UWB based indoor
localization applications?

Based on the answers to these questions, this thesis shows that NLOS identification
is the most effective method to improve UWB localization accuracy. Thus, NLOS
identification stays in the focus in this thesis.

1.4 NLOS Identification for UWB

As described above, UWB based localization is not new. The range based TOA, range
difference based TODA, angle based AOA and received signal strength based RSS po-
sition estimation algorithms for UWB have been discussed in many papers. Different
filters, such as the Kalman- and particle filter, can be used to reduce the system ran-
dom error. Under line of sight condition, where no blockage exists between the MS
and BS, accurate UWB based localization can be achieved. The challenge arises if the
signal propagation path is blocked, which is defined as NLOS. A non-negligible bias is
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added to the measurement under NLOS conditions, which leads to inaccurate position
estimation if the NLOS measurement is used for localization calculation. The accu-
rate NLOS identification is the key factor to guarantee UWB based accurate position
estimation. Most of the current approaches can be summarized as follows.

Without a detailed investigation of the LOS/NLOS error, many approaches assume that
the errors model can be treated as a Gaussian distribution, and they use the Kalman
filter to identify and mitigate the NLOS errors. However, NLOS errors differ with
different blockage materials. These errors can be any random values. Thus, a Gaussian
distribution is not a good description of the NLOS error model.

Some papers assume that the variance of the NLOS measurements is theoretically
larger than that of the LOS measurements. By using a suitable threshold to com-
pare with the variances, NLOS detection can be achieved. However, if the blockage
is the same and the distance between the BS and MS does not change dramatically,
the variance of the NLOS errors can be smaller than the variance of the LOS errors.
Thus, NLOS detection accuracy is not very promising. Besides, the proper thresh-
old is highly difficult to be determined, and the latency can not be avoided due to the
collection of the ranges for the variance calculation.

Other methods utilize additional information for the NLOS detection, such as RSS or
a map of the floor. However, RSS is highly dependent on the indoor environments.
With humans coming in or going out, the RSS could change dramatically. Besides, the
threshold used to compare with the RSS is highly difficult to be determined. With an
improper threshold, the accuracy can be very poor. The main disadvantage of the map
based method is that the maps are not always available. Except for the fixed furniture,
there are many of moving objects or humans. The NLOS detection accuracy based on
these methods is not sufficient.

One of the most effective methods of NLOS identification is based on CIR. The cur-
rent CIR based NLOS detection works only for TOA. Furthermore, the reasons for
selecting the useful features have not been explained, and the optimization of the fea-
ture combination and the parameters in machine learning algorithms has not been dis-
cussed.

In summary, the current NLOS identification and mitigation methods have the follow-
ing drawbacks:

1) The error model of the UWB measurements has not been discussed in detail. Thus,
improper models are assumed and used for identification.

2) The relationship between the CIRs and the accurate/inaccurate range measurements
has not been fully described. Not all blockages lead to inaccurate measurements. A
detailed description of the conditions that cause the NLOS is still missing.

3) An overview and comparison of the current NLOS identification methods are miss-
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ing.

4) Although TOA and TDOA are discussed in many papers, they are barely compared
based on the localization environment perspective. The range measurements are used
for localization in the TOA method. Under the condition that the NLOS condition
can be properly identified, this method works very well in the environments where
NLOS does not occur very frequently, such as offices. However, in harsh industrial
environments where NLOS happens frequently, even with the help of the NLOS iden-
tification approach, this method might not provide accurate position estimation since
it can happen that not enough accurate ranges can be obtained. In these environments,
TDOA which used the range difference for position estimation can be more accurate
than TOA, since the biases of two different NLOS ranges can be compensated and an
accurate range difference can be obtained even under NLOS condition. If the accurate
range difference can be selected, accurate localization can be guaranteed. However,
most current approaches only discuss NLOS detection for the selection of the accurate
ranges, and do not work well for the accurate range difference selection in TDOA.

5) The fusion of IMU and UWB is one of the most widely used methods to improve lo-
calization accuracy. Most current fusion approaches are based on the extended Kalman
filter with the assumption that the errors are Gaussian distributed. The NLOS outliers
are detected based on predicted Gaussian distribution error models. However, in real-
ity, NLOS errors are not Gaussian distributed.

To further improve the NLOS identification and UWB based localization accuracy, in
this thesis, the UWB measurement errors are investigated. LOS and NLOS errors are
discussed separately. LOS errors are evaluated in office and industrial environments
with different distances. For NLOS errors, different blockage materials and blockage
conditions are considered. The LOS and NLOS error models can only be built based
on the experimental investigation since the theoretical modeling can not be achieved
in different test environments. Systematic experimental investigation on NLOS effects
have been done in office and industrial environments. The relationship between CIRs
and accurate/inaccurate range measurements is described in detail. Furthermore, the
thesis presents an overview of the current NLOS identification methods. Four different
NLOS identification and mitigation approaches are developed in this project. The first
one works for the TOA approach in an office environment with a stand-alone UWB
system, while the second one works in harsh industrial environments. The third and
fourth one are UWB/IMU fusion approaches, and they work for TOA/TDOA methods.

1.5 Outline and Contributions

To further improve NLOS identification and localization accuracy, the following in-
vestigations are conducted.
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First, the UWB system is systematically analyzed, and the possibility to build general
error models based on collected UWB measurements is evaluated. It is found that
although the noise distribution under LOS can be modeled as a Gaussian distribution,
a general error distribution model under NLOS is difficult to build due to the unstable
NLOS error. The error model is different depending on the environment. Specifically,
for the Bosch Shanghai office, an approximate stable distribution model can be used
to describe the error distribution based on our investigation. Although the localization
performance can be improved with properly built error distribution models, NLOS
measurements still have an influence on the position estimation accuracy in the field
test.

Next, the thesis describes UWB signal propagation in detail. The relationship be-
tween the CIRs and the accurate/inaccurate range measurements is theoretically dis-
cussed in three different situations: ideal LOS path, small-scale fading: multipath,
and NLOS path. The theoretical relationship is validated with real measured CIRs in
Bosch Shanghai office environment. It is found that not all blockages lead to inaccu-
rate measurements. The thesis explains when and why the blockages cause inaccurate
measurements.

Next, the thesis presents an overview of NLOS identification for the TOA method. It
shows that CIR based- and second sensor based NLOS detection are two of the best
approaches from the perspective of the NLOS detection accuracy and engineering fea-
sibility. For the current CIR based NLOS detection, a summary of the features and the
optimization of the feature combination as well as the parameters in machine learning
are missing. In this thesis, an overview of the possible useful features are given. Based
on the difference in CIRs of the accurate and inaccurate range measurements, five dif-
ferent feature groups are created according to distance, CIR shape, time, multipath
richness and power related features. In each group, several features can be extracted.
With these features, NLOS identification is realized based on the SVM method. The
optimal feature combination is theoretically determined and validated with real mea-
surements. The parameters in SVM are optimized. The localization accuracy shows
highly promising improvements based on the particle filter with the NLOS identifica-
tion compared to the traditional methods in the Bosch Shanghai office environment.

The thesis then presents the difference between the TOA and TDOA. It shows that in
harsh industrial environments, where NLOS conditions frequently occur, the localiza-
tion accuracy improvement based on particle filter with the NLOS identification TOA
are limited. A novel approach is proposed which combines TOA and TDOA method
with accurate range and range difference selection. The position estimation accuracy
is improved with this approach compared to the other approaches during a field test in
the Bosch Changsha plant.

Different to the current UWB/IMU fusion approaches, which detect inaccurate UWB
measurements based on the assumption that the errors are Gaussian distributed, in this
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paper, the triangle inequality theorem is used to select the accurate ranges for TOA
or the accurate range differences for TDOA based on the IMU measurements. The
Gaussian distributed error models are not needed for the proposed approaches. The
position estimation accuracy is improved with the proposed approach compared to the
traditional methods in the Bosch Shanghai office.

1.5.1 Contributions

In summary, the main contributions of this thesis are follows:

1) This thesis investigates LOS/NLOS errors in different environments under different
situations. Based on the investigation, an approximate stable distribution model is built
to describe the error distribution in the Bosch Shanghai office.

2) The relationship between the CIRs and the accurate/inaccurate range measurements
is theoretically discussed and validated with the real measured CIRs in the Bosch
Shanghai office environment. The thesis explains when and why the blockages cause
inaccurate measurements.

3) The extracted features from CIR for NLOS detection are divided into five different
groups. The optimal feature combination is theoretically determined and validated
with real measurements. Furthermore, the parameters in SVM are optimized.

4) The difference between TOA and TDOA is discussed from the localization envi-
ronment perspective. Based on this discussion, a novel approach is proposed, which
combines TOA and TDOA methods with accurate range and range difference selec-
tion.

5) The thesis proposes two UWB/IMU fusion approaches that utilize the triangle in-
equality theorem to select accurate ranges for TOA or accurate range differences for
TDOA based on IMU measurements. Gaussian distributed error models are not needed
for the proposed approaches.

1.5.2 Outline

This thesis is organized as follows.

Chapter 1 briefly introduces the "Real-time Safety Virtual Positioning" (RSVP) project
and provides an overview of the existing indoor localization systems. After the com-
parison of these position estimation systems, the UWB system is determined to be
suitable for the project. A short overview of UWB is provided. Finally, the outline
and main contributions of this thesis are described. This chapter is partly based on the
following papers:
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W. Wang, Z. Zeng, W. Ding, H. Yu and H. Rose, "Concept and Validation of a Large-
scale Human-machine Safety System Based on Real-time UWB Indoor Localization*,"
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 2019
Z. Zeng, L. Wang and S. Liu, "An introduction for the indoor localization systems and
the position estimation algorithms," 2019 Third World Conference on Smart Trends in
Systems Security and Sustainablity (WorldS4), London, United Kingdom, 2019

Chapter 2 describes the UWB system in detail. It provides an overview of the factors
that influence UWB localization accuracy. These factors are the antenna, installation
of the BSs, time synchronization, localization algorithms, NLOS/LOS identification,
and filter algorithms. The signal propagation path is introduced. The measurement
error is investigated. The relationship between CIRs and accurate/inaccurate measure-
ments is theoretically explained for three different cases: ideal LOS path; small-scale
fading: multipath; NLOS path. Furthermore, the chapter investigates the UWB range
measurements error under clear LOS/multipath LOS, ignorable NLOS blockage and
non-ignorable NLOS blockage.

Chapter 3 focuses on the localization filter problem. The Kalman filter principle is
presented. It shows that Kalman filter can provide estimated state vectors with mini-
mized variances for linear problems with Gaussian noise. Extended Kalman filter at
the same time can be used for non-linear problems with Gaussian noise. However,
based on the experiment results, it might suffer from a divergent problem with the
frequently changing measurement noise. IEKF is more stable compared to EKF. The
particle filter can be used to solve non-linear problems with non-Gaussian noise. PF is
more stable compared to IEKF based on the experiment results. However, PF has the
highest computation load.

Chapter 4 provides an overview of the NLOS identification methods: these methods
are based on range variance estimation, combination of RSS, map, CIR, CIR state
change and IMU. The chapter compares these methods’ identification accuracy, engi-
neering feasibility, and so forth. After the comparison, it can be determined that CIR
based- and IMU based NLOS identification are two of the best approaches.

Chapter 5 focuses on the UWB localization in office environments. First, the local-
ization with three BSs is discussed. The error distribution is found to be stable distri-
bution. Since the system is non-linear and the error distribution is not Gaussian, the
PF is used for position estimation. Although it can be observed that the localization
accuracy is improved with a properly defined error distribution, the NLOS error is still
severe. A better solution to further improve the accuracy is to add redundant BSs and
use only the selected accurate ranges based on NLOS identification for further calcula-
tion. The SVM algorithm is used for NLOS detection. Five different feature groups are
divided based on the distance, CIR shape, time, multipath richness and power related
features. The reasons why these features can be used for classification are explained.
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The feature combination, the used CIR length and the parameters in SVM are opti-
mized to improve the identification accuracy. It can be observed in the field test that,
the localization accuracy with NLOS identification is dramatically improved.

Chapter 6 presents UWB localization in harsh industrial environments. NLOS con-
ditions occur more frequently in harsh industrial environment than in office environ-
ments. In the Bosch Changsha plant, it often happens that less than two ranges are
measured under LOS. The position estimation with the NLOS identification based
TOA approach does not have very good accuracy. Hence, an accurate ranges and
range differences identification based TOA/TDOA combination approach is proposed
to improve position estimation accuracy. Two SVM models are trained. The first one
is used to select the accurate ranges, which is the same as the one presented in Chap-
ter 5. If at least three ranges are detected as accurate, then the localization can be
realized with these ranges. Otherwise, the range differences need to be calculated with
the inaccurate ranges. The second SVM model is used to select the accurate range
differences. These accurate ranges and range differences are used for position estima-
tion. The particle filter is used to realize the localization together with the accurate
ranges and range differences identification based TOA/TDOA combination approach.
The position estimation with the proposed TOA/TDOA combination approach shows
better accuracy than the NLOS identification based TOA approach and the standard
TOA approach in the Bosch Changsha plant.

Chapter 7 focuses on UWB/IMU fusion localization. The IMU measurements are used
to identify and mitigate UWB NLOS errors. The fusion system can be used for both
TOA and TDOA based on UWB localization. With the help of IMU measurements,
the accurate ranges for TOA or the accurate range differences for TDOA can be deter-
mined based on the triangle inequality theorem. The localization performance with the
UWB/IMU fusion system is evaluated in the Bosch Shanghai office. The localization
accuracy is improved with the proposed methods compared to the methods without the
fusion with IMU. This chapter is based on the following papers:
Z. Zeng, S. Liu, and L. Wang. Uwb/imu integration approach with nlos identifica-
tion and mitigation. In 2018 52nd Annual Conference on Information Sciences and
Systems (CISS), pages 1-6, March 2018.
Z. Zeng, S. Liu, and L.Wang. A novel nlos mitigation approach for tdoa based on imu
measurements. In 2018 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1-6, April 2018.

Chapter 8 summarizes this thesis and provides the conclusions.
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