
1 Introduction

1.1 Motivation

With respect to the future urban mobility, modern electrical bicycles, advanced motorcy-
cles and innovative two-wheeled vehicles are arresting enormous amount of attention. The
dynamic behaviour of two-wheeled vehicles, especially their self-stability, has been matter
of scientific studies for many decades. In fact, as stated in [MP11], the self-stability of bi-
cycles as dynamical systems have been studied as early as in 1910. The necessity of serious
investigations of two-wheeled vehicles from a control engineering perspective, however, has
increased in the last several years. Comparing to four-wheeled vehicles, an autonomous
driving bicycle for passenger transportations may today sound like science-fiction or even
unnecessary. Yet, current evolution of the technology towards intelligent, automated and
highly connected mobility of the future requires the machine intelligence to be able to handle
two-wheeled vehicles as well.

The advantages of two-wheeled vehicles with respect to energy consumption, parking space
and environmental friendliness are self-evident. An autonomous two-wheeled vehicle is
for instance, among many other conceivable application fields, a noticeable candidate for
future automated delivery systems in urban environments. Therefore, model-based control
and optimal trajectory planning for such vehicles will remain inevitable matter of research
and development in the future. The results are currently, and will in short term be further
used for developing safety-increasing assistant systems for existing vehicles, e.g. [KMT09].
In long term, developing innovative autonomous two-wheeled vehicles1 is likely to require
even more intensive research, as it is the case for autonomous driving cars today.

While a large portion of the available know-how on sensor data processing, localisation
methods and similar technologies are transferable from cars, due to the special dynamical
behaviour of two-wheeled vehicles, methods for trajectory planning and tracking control
are not trivially reusable. Therefore, a reliable and yet usable vehicle model as well as a
systematic approach to motion control for two-wheeled vehicles are essential, to which the
present work makes a contribution.

1For instance C1 from Lit Motors: www.litmotors.com/product
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1.2 Objective and contribution of this work

The available literature contains, on the one hand, extensive studies of the dynamics of
bicycles based on quantitative considerations and numeric calculations, which lead to so-
phisticated models that are not trivially usable for systematic control synthesis. On the
other hand, simpler bicycle models are used for purposes of trajectory planing and motion
control synthesis. These models however, have either a constrained range of validity, such
as models for constant velocities, or, ignore parts of bicycle’s physics to keep the resulting
equations simple. The main objective of this thesis is to fill this gap and to present a unify-
ing approach to modelling and control for autonomous two-wheeled vehicles. The resulting
model shall be generally valid and physically detailed enough to represent the characteristic
dynamical behaviour, and at the same time, be proper for a systematic control synthesis.
Furthermore, an extension of the model by a rider or further actuators is required to be
possible in a systematic way.

To this end, the Hamiltonian framework is chosen. The main contribution of this work
is to propose a vehicle model as a port-Hamiltonian system, which is derived using an
automatable scheme. The model represents the bicycle’s physics such as the self-stability
and is, at the same time, directly usable for model-based trajectory planing as well as for
passivity-based trajectory tracking controller design. The proposed methodic approach to
model derivation is a general procedure that can be extended in a systematic way.

Furthermore, a trajectory tracking controller is designed that is physically interpretable,
is valid for the sophisticated vehicle model, and, also robust against parameter uncertain-
ties. To this end, existing approaches of passivity-based controller design are extended and
adjusted for two-wheeled vehicles.

The outline of this thesis and particular contributions in every chapter are given below.

Chapter 3
In this chapter, the physics of bicycles is summarised and facts about their dynamics are
explained, which are recalled throughout the entire work. Furthermore, the so-called linear
benchmark model is presented which is taken as a basis to validate dynamical behaviour of
the vehicle model proposed in this thesis.

Chapter 4
In this chapter, the main contribution of this work is presented. That is proposing an
approach to derive a physically realistic, yet usable model for two-wheeled vehicles for
control synthesis, as well as for trajectory planning. Some geometric considerations at
the beginning of the model derivation make sure that physical phenomenon such as self-
stability is represented by the resulting model, that is validated later in the chapter. The
model is validated by comparison to the benchmark model from the literature, as well as
by a series of simulation scenarios, which are designed to demonstrate different aspects of
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the dynamical behaviour of the vehicle. Further, a methodical approach is proposed for
structure preserving simplification of the equations of motion as well as extension by a new
rigid body, for instance an active rider. A part of the content of this chapter is published
in [TL18b] and [TL18a].

Chapter 5
In this chapter, optimal trajectory planning methods are used to demonstrate the usability
of the proposed model as well as the introduced simplification. It is shown that using the
systematic model simplification, trajectories can be planned for the vehicle with a lower
computation effort without significant loss of model accuracy. A part of the content of this
chapter is published in [TL19].

Chapter 6
In this chapter, a passivity-based trajectory tracking controller is developed using the pro-
posed vehicle model. To this end, existing approaches are extended and various simulations
are run to demonstrate the performance of the closed loop under different conditions. Some
initial ideas used in this chapter were published in [TO17]. A part of the content of this
chapter is, furthermore, published in [TSL18] and [TL18a].

Chapter 7
In this chapter, a prototype two-wheeled vehicle is briefly introduced, which was developed
related to this work.

Chapter 8
In this chapter experimental results are presented which demonstrate the functionality of the
prototype vehicle and the concept of motion control for two-wheeled vehicles. Furthermore,
experimental results are presented for the validation of the proposed model, as well as for
the demonstration of its advantage comparing to a widely used nonlinear model from the
literature. A part of the content of this chapter is published in [TL19].

1.3 Published content

Related to this work, following papers were published:

[TO17] A. Turnwald and T. Oehlschlägel. Passivity-based control of a cryogenic upper
stage to minimize fuel sloshing. Journal of Guidance, Control, and Dynamics,
2017.
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[TL18b] A. Turnwald and S. Liu. A nonlinear bike model for purposes of controller
and observer design. IFAC-PapersOnLine, 2018. 9th Vienna International
Conference on Mathematical Modelling.

[TL18a] A. Turnwald and S. Liu. Adaptive trajectory tracking for a planar two-wheeled
vehicle with positive trail. In 2018 IEEE Conference on Control Technology
and Applications (CCTA), 2018.

[TSL18] A. Turnwald, M. Schäfer, and S. Liu. Passivity-based trajectory tracking con-
trol for an autonomous bicycle. In IECON 2018 - 44th Annual Conference of
the IEEE Industrial Electronics Society, 2018.

[TL19] A. Turnwald and S. Liu. Motion planning and experimental validation for an
autonomous bicycle. In IECON 2019 - 45th Annual Conference of the IEEE
Industrial Electronics Society, 2019.

Furthermore, some of the supervised masters theses are listed as:

Adalbert, M. (2016) Control of port-Hamiltonian systems via generalised canon-
ical transformations

Matheis, N. (2016) Implementation of a passivity-based controller for an in-
verted rotational pendulum

Garcia, F. J. R. (2017) Development and implementation of pose estimation and
localization for an autonomous bicycle

Schäfer, M. (2018) Passivity-based trajectory tracking control for a two-
wheeled vehicle

Ahmed, R. (2019) Model validation for a two-wheeled vehicle using multibody
simulation and experimental data

Mouaffo, U. (2019) Optimal path and trajectory planning for a two-wheeled
vehicle using nonlinear dynamics

Muniappan, K. (2019) Implementation and experimental validation of linear con-
trollers for an autonomous bicycle

Thirumurugan, D. (2019) Design and experimental investigation of a CMG-based sta-
bilisation of a two-wheeled vehicle



2 Preliminaries

This chapter summarises some of the required definitions and the notation used in this
work. Note that detailed explanations, derivations or proofs are omitted on purpose, since
those are found in the literature cited within the text of this chapter.

In Section 2.1, the tensor notation, that is mainly used in Chapter 4, is briefly described.
Further, some necessary preliminaries from the systems theory are mentioned, especially
for Chapters 4 and 6. Finally, some basic definitions are given in context of mechanical
systems. In Section 2.2, modelling of constrained mechanical systems is addressed and the
derivation of some essential equations from the literature is presented.

2.1 General notations and elementary definitions

2.1.1 Tensor notation

For sake of clarity and comprehension, the tensor notation used in this work, mainly in
Chapter 4, is outlined briefly. Tensor notation is a mathematical tool from tensor calculus
that is often used in different fields of physics, especially relativity theory, since it allows
generic handling of multi-dimensional entities. The following introduction to tensor notation
is mainly based on [Sus10] and [Bis16].

Within the present work, entities with more than one components, in other words non-
scalars, are denoted using matrix notation or tensor notation in an equivalent meaning. Note
that in this thesis, the definitions of vectors or tensors are not considered strictly, rather
only the notations and mathematical tools from the corresponding calculus are applied for
consistent calculations. Matrices and vectors are denoted by bold symbols, for instance the
vector

f ∈ R3 .

Using the the tensor notation, an entity is denoted by indexes as sub- and/or superscripts.
For example

fα with α = 1, 2, 3.

Note that it is only a matter of convention whether an index is a sub- or a superscript. This
means that the same vector can also be denoted as fα, as long as this choice is consistent
throughout the entire calculations.
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The number of indexes determines the dimension of the entity. For instance the matrix M
can be equivalently denoted by

Mαβ := M ∈ Rn×m

or Mβ
α := M ∈ Rn×m

or Mα
β := M ∈ Rn×m

or Mαβ := M ∈ Rn×m,

with α = 1, · · · , n and β = 1, · · · ,m. Note that for every combination (α, β), the above
symbols denote the αβ-component of the matrix M .

In tensor calculus, components corresponding to the subscripts are referred to as co-variants
and those corresponding to superscripts as contra-variant. This has to do with the way how
tensors are transformed with regard to their basis. In Cartesian coordinates, the co- and
contra-variants are identical. In this work, the sub- and superscripts are used to consistently
denote specific entities such as generalized coordinates and impulses in accordance to the
notation from the book [Blo16].

Once the convention is chosen, every denotation must be consistent and the order of the
indexes is substantial. For instance, if the notation Mαβ := M is chosen, the transposed
matrix is denoted in tensor form as Mβα := MT .

The most important advantage of the tensor notation, and the main reason for using them
in this work, is the fact that entities with a dimension > 2 can be denoted simply and
generically. An example is the three-dimensional tensor

Bb
αβ with α = β = 1− nr und b = 1− ns,

which will be defined in Section 2.2. Note that this entity cannot be denoted and calculated
with using matrix notation only.

Using the tensor notation, the so-called Einstein’s sum convention holds. That is, when
summing over a particular index, where the index is a subscript in one tensor and a su-
perscript in the other, the sum-symbol is omitted. For instance, the scalar product of two
vectors f and g

fT g = f1 g1 + f2 g2 + · · ·+ fn gn =
n∑
i=1

fi gi

is given using tensor notation as

fT g = fi g
i = f i gi = gi f

i = gi fi

depending on the chosen convention. Note that since the product gi fi is the product of two
scalars, namely the ith component of each vector, the order can be changed.
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When the sum convention is applied, the corresponding index vanishes in the product result.
For instance

pi = Mij q̇
j = Mik q̇

k .

Note that the index over which the summation is applied can be arbitrarily exchanged
(j → k) as long as it is the same index for both tensors. In accordance to the most
literature involving tensor notation, often indexes are in fact reused in this work, over
which the summation applies, to reduce the number of used letters.

Two tensors can only be added if they have the same indexes in the same order, for example

fβα + gβα = hβα or Mαβ +Nαβ = Pαβ.

If a tensor is in the denominator of a fraction is chosen to have its indexes as subscript, it
may be given in the nominator exchanging the subscript with the superscript, e.g.

fα =
1

fα
or fα =

1

fα
. (2.1)

Therefore,

fβα = gβα +
1

hαβ
+
mα

nβ
. (2.2)

is a valid equation since the indexes are consistent.

For more details on tensor calculus and the tensor notation, one may refer to the lectures
of Prof. Leonard Susskind ( [Sus10]) and also in [DP10].

2.1.2 System theory

A general nonlinear time-invariant system
∑

is given by∑
:

{
ẋ = f(x,u)
y = h(x,u)

,x ∈ X ,y ∈ Y ,U ∈ U (2.3)

where u(t) is the input vector, y(t) the output vector and the manifolds U and Y are the
corresponding domains. x = [x1, x2, ...xn]T is the state vector and the manifold X is the
corresponding domain.

Definition 2.1.1.
The system

∑
is called autonomous, if u(t) ≡ 0.

Definition 2.1.2. [Ada15]
A system is called input-affine, if it is defined as∑

aff
:

{
ẋ = f(x) + g(x)u
y = h(x)

. (2.4)
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Definition 2.1.3. [FS01a]

The system
∑

aff
is called distinguishable, if for a given trajectory xd(t) satisfying (2.4)

x(t0) = xd(t0) , y − yd ≡ 0 ∀t ∈ [t0, t1] ⇒ x(t) = xd(t) , ∀t ∈ [t0, t1] (2.5)

holds.

Definition 2.1.4.
The point x∗ is called an equilibrium for the system

∑
if

ẋ∗ = f (x∗) = 0 . (2.6)

Definition 2.1.5. [Ada15]
The equilibrium x∗ of the autonomous system

∑
is said to be locally attractive, if a

neighbourhood U(x∗) ⊆ X exists, such that every initial value

x0 ∈ U (x∗) (2.7)

leads to a trajectory x(t) converging to the equilibrium for t→∞. If the neighbourhood is
the entire space U(x∗) = X the equilibrium is said to be globally attractive.

Definition 2.1.6. [Lun16]
The equilibrium x∗ = 0 of the autonomous system

∑
is said to be stable according to

Lyapunov, if for every ε, a δ exists such that:

‖x0‖ < δ (ε) ⇒ ‖x (t) ‖ < ε ∀t > 0 . (2.8)

Definition 2.1.7. [Ada15] [Lun16]
The equilibrium x∗ is said to be locally (globally) asymptotically stable if it is stable
according to Lyapunov and, furthermore, locally (globally) attractive.
Or: if x∗ f it is stable according to Lyapunov and, furthermore

lim
t→∞
‖x (t) ‖ = x∗ (2.9)

holds.

Definition 2.1.8. [Ada15], [Lun16]
The function V (x) : U (x∗) → R is called a Lyapunov-function for the autonomous
system

∑
, if it fulfils the following conditions:

1. V (x) is continuous, V (x = x∗) = 0 and ∂V (x)
∂x

exists.

2. V (x) > 0 for x 6= x∗

3. V̇ (x) =
∂TV (x)

∂x
f (x) ≤ 0
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Definition 2.1.9. The function V (x) is called radially unbounded if

‖x‖ → ∞⇒ V (x)→∞ (2.10)

holds.

Following definitions are mainly based on [Sch00] and [Kot10].

Definition 2.1.10.
The inner product of two signals f(t) and g(t) is defined by

〈f , g〉 =

∫ ∞
0

fTg dt . (2.11)

Definition 2.1.11.
The L2-norm of a signal f(t) is defined by

‖f‖2 =
√
〈f ,f〉 . (2.12)

Definition 2.1.12.
A function v(u,y) : U × Y → R is called a supply rate.

Definition 2.1.13.
A function S(x) : X → R+ is called a storage function.

Definition 2.1.14.
A state space system

∑
is said to be dissipative with respect to the supply rate v, if there

exists a storage function, such that for all x0 ∈ X , all t1 ≥ t0, and all input functions u(t)

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

v(u(t),y(t))dt (2.13)

where x0 = x(t0).

Definition 2.1.14 states that the stored energy in the system at any future time t1, S(x(t1)),
is at most equal to the stored energy at the present t0 plus the externally supplied energy
during the time interval [t0, t1]. In other words, without an external energy supplement, the
stored energy in a system cannot increase, or the system can only dissipate energy and not
create some.

Assuming differentiability of the storage function S(x), the dissipation inequality (2.1.14)
can also be given in differential form as

Ṡ(x(t)) ≤ v(u(t),y(t)) . (2.14)
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Definition 2.1.15.
A system

∑
is called lossless, if in (2.13) or (2.14), equality holds.

Definition 2.1.16. Passivity
A system

∑
is called

� passive if it is dissipative according to Definition 2.1.14 with supply rate

v(u(t),y(t)) = 〈y(t),u(t)〉 = y(t)T · u(t) . (2.15)

� strictly input-passive if it is dissipative according to Definition 2.1.14 with supply
rate

v(u(t),y(t)) = 〈y(t),u(t)〉 − α‖u‖2, α > 0 . (2.16)

� strictly output-passive if it is dissipative according to Definition 2.1.14 with the
supply rate

v(u(t),y(t)) = 〈y(t),u(t)〉 − β‖y‖2, β > 0 . (2.17)

Definition 2.1.17.
A lossless passive system

∑
is called conservative.

The supply rate from (2.15) is the inner product of the input and the output which may
be interpreted as power. Two well-known examples are mechanical system with generalised
forces as input and generalised velocities as output, and, electrical systems with voltages
as input and the corresponding currents as output. In this sense, the differential passivity
inequality (2.14) states that the increase rate of the energy in a system is bounded by the
the power put into it.

Definition 2.1.18.
Suppose a function f (x) : X → R. A point x∗ ∈ X is called a

� local minimum if ∃ ε > 0 : f (x∗) ≤ f (x) , ∀x, ‖x‖ < ε.

� global minimum if f (x∗) ≤ f (x) , ∀x ∈ X .

� global (local) strict minimum if < holds instead of ≤.

Theorem 2.1.19. Stability of dissipative systems [Sch00]
Suppose a system

∑
with an equilibrium x∗ is dissipative with regard to the supply rate v

according to Definition 2.1.14. Suppose further u ≡ 0 and

v (0,y) ≤ 0, ∀y. (2.18)

x∗ is locally stable acceding to Lyapunov if it is a local strict minimum of the storage function
S(x). Furthermore,

V (x) = S (x) . (2.19)

is a Lyapunov-function.
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Sine passive systems are an special case of dissipative systems the stability of passive systems
is defined based on the stability of the general class, namely dissipative systems. For a
passive system, the supply rate is defined as the inner product of the input and the output
〈y(t),u(t)〉 and, thus, condition (2.18) is directly satisfied. Therefore, the following can be
stated:

Theorem 2.1.20. Stability of passive systems
An equilibrium x∗ of a passive system is stable according to Lyapunov with the Lyapunov-
function V (x) = S (x) if it is a strict minimum of S(x).

In other words, once a system is passive the strict minimum of its storage function is a
stable equilibrium.

Theorem 2.1.21. Asymptotic stability of passive system

Given an input-affine system
∑

aff
that is both fully reachable and stabilisable. Suppose

further that
∑

aff
is strictly output-passive with the storage function S (x) such that

S (x) > 0, ∀x 6= 0 , S (0) = 0 . (2.20)

Then x∗ = 0 is a local asymptotic stable equilibrium according to Lyapunov.

Definition 2.1.22. Generalised Hamiltonian systems [Sch00] [vdSJ14]
A generalised Hamiltonian system is given by

∑
GpH

:

{
ẋ = (J (x)−R (x)) ∂TH(x)

∂x
+GpH (x)u, x ∈ X , u ∈ U

y = GT
pH (x) ∂TH(x)

∂x
y ∈ Y.

(2.21)

H(x) : X → R is called the Hamiltonian or the Hamiltonian function and the skew-
symmetric matrix J (x) ∈ Rn×n

J (x) = −JT (x) (2.22)

the structure matrix. The symmetric and positive semi-definite matrix R (x) ∈ Rn×n

R (x) = RT (x) ≥ 0. (2.23)

is called the damping matrix.

∑
GpH

is often called a port-Hamiltonian system since energy can be inserted into the sys-

tem by the port containing the input and output (u,y). The structure matrix corresponds
to the energy exchange in the system and the damping matrix corresponds to the energy
dissipation. A Hamiltonian system with R(x) = 0 is a lossless system.


