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Chapter 1

Introduction

Nowadays computers are ubiquitous. They contribute to making our lives

more convenient and secure. They have the potential ability to save human

lives, which is well demonstrated in their deployment in modern vehicles.

In the context of advanced driver-assistance systems (ADAS), vehicles are

equipped with multiple sensors including lidar, radar, and camera all of

which record the vehicle’s environment in addition to intelligent algorithms

for analyzing and understanding the recorded data. For understanding the

vehicle’s environment, ADAS unite multiple modules such as forward colli-

sion detection [135], obstacle detection [182], lane guidance [179], traffic sign

recognition [114], and pedestrian detection [185]. Statistics show that over

90 percent of road accidents occur due to human errors1. A vehicle’s ADAS

can, in advance, alert the driver of hazardous conditions or actively inter-

vene in such situations to reduce the human error and potentially reduce

road accidents.

This study contributes to the research in modern ADAS on different aspects.

The two main contributions comprise both pedestrian detection, that is

recognizing and localizing pedestrians in images, and synthetic traffic sign

generation. In chapters 2 and 3, we outline relevant research on object

detection then discuss methodologies and data that are used to rank our

approaches and compare them to the state of the art.

Methods deployed in ADAS must be accurate and computationally effi-

cient in order to run fast. Ideally, they are required to execute in real

time on embedded platforms. In chapter 4 and [66, 62], we introduce a

novel approach for pedestrian detection that is specially designed for low-

consumption hardware. Concretely, we identify the proposal evaluation

phase as the computational bottleneck of two-stage cascades that involve a

1https://www.dekra-roadsafety.com/media/dekra-verkehrssicherheitsreport-2016-
de.pdf
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2 Chapter 1. Introduction

convolutional neural network (CNN) as the second component. As for the

first component, we employ a cascaded boosted forest (CBF) detector. In

order to economize on the computational cost of the arrangement, we share

the feature pyramid that the CBF detector constructs and forward only

features that belong to the promising locations in the image to the CNN

classifier. In this manner, the expensive feature computation is done once

and features are reused by the CNN. For evaluating the features, we design

a small-sized CNN that can rapidly process the small proposal dimensions

and has a sufficient depth to achieve an accurate classification quality. The

CNN is trained from scratch. In various evaluations its optimal operational

point, training routine, and location in the pipeline are determined. We

demonstrate that our approach can achieve a high performance while run-

ning in real time with 30 frames per second without being parallelized and

without the use of a GPU. Furthermore, we introduce multiple versions of

our approach. The results concluded that our three-stage cascade ranks

as the fourth best-performing method reported on one of the challenging

pedestrian datasets that are available online.

The other challenge we face with ADAS would be the issue of training

efficient detection methods which requires human effort. This would be

an extensive manual annotation for preparing training data. In chapter 5

and [65], we introduce a novel approach and insights to make CBF detectors

a more data efficient. We decompose a detector into its fundamental parts

in order to obtain a better understanding of how the different components

contribute to the detection quality. A crucial insight from our evaluations

is that the underlying AdaBoost algorithm in CBF frameworks not only

copes with highly imbalanced numbers of positive (pedestrians) and neg-

ative (backgrounds) training samples but it also benefits from a relatively

high number of negative samples. This insight is relevant for many multi-

scale object detection tasks since the number of available positive samples

in datasets usually is a fraction of the number of the negative samples. In

order to exploit the asymmetry in the datasets, however, it is essential to

optimize the training routine, especially the sample selection and gathering

process. We propose an approach for gathering a sufficient number of high-

quality samples without the need for any data augmentation technique. We

demonstrate that our approach effectively prevents overfitting and, there-

fore, allows increasing the model capacity without incurring the risk of per-

formance reduction or poor generalization. Our approach is orthogonal to

known researches and can, therefore, be employed in existing CBF detection

methods without decelerating the detector. We demonstrate comparisons

to the state of the art where we rank as second-best among CBF detectors

on two challenging pedestrian datasets. This is achieved while using a rel-

atively small number of simple aggregated channel features, which allows



3

our detector to run multiple times faster than competitors.

Acquiring labeled training data is costly and time-consuming, particularly

in the case of traffic sign recognition, since countries do not use unified

traffic signs plus different traffic signs do not occur equally often. Due to

these difficulties, it requires many hours of acquisition and preparation to

obtain a large number of well-balanced and labeled training samples. In

chapter 6 and [63, 64], we investigate the use of synthetic data and the

involvement of advanced learning approaches with the aspiration to reduce

the human efforts behind the data preparation and to make the training

of recognition models more data efficient. For these purposes, we employ

the approach of generative adversarial networks (GANs). Our study com-

prises two contributions. Primarily, we algorithmically and architecturally

adapt the adversarial modeling framework to the image data provided in

ADAS, the so-called red-clear-clear-clear images. We demonstrate that our

framework can process multiple channels that have different resolutions and

textures, and generate real-looking red-clear-clear-clear traffic sign samples.

Our framework allows adaptation of known approaches that we use to en-

able the generator to create specific samples and even to change incisive

attributes of the samples. We also demonstrate that a variation of our

framework can transfer visual properties. Secondarily, we study and dis-

cuss relevant researches that successfully employ synthetic data for training

traffic sign recognition models. Based on the studies and detailed analy-

ses and evaluations of our framework, we discuss future research directions

and conclude that GANs can contribute in multiple ways to the training of

traffic sign classifiers.

Chapter 7 concludes this work with a summary, discussion, and perspectives

for future research.



Chapter 2

Machine Learning for Object

Detection

2.1 Introduction

Object detection is one of the most important disciplines in image under-

standing. Detection methods are required for localizing an object of in-

terest within an image. With advancements in computer vision, numerous

detection frameworks have been developed. This chapter provides a brief

overview of recent methods for object detection with a special focus on

pedestrian detection under real-world conditions [23, 11].

Systematic overview. A majority of multiscale detection methods dis-

cussed in this study can be decomposed into fundamental subprocesses

as shown in figure 2.1. Some methods may further include pre- or post-

processing steps, employ the subprocesses in a different order, or omit some

subprocesses. In the following, we briefly describe the major tasks of each

subprocess and review them in greater detail in the coming sections:

• Proposal generation: Classification methods predict the class mem-

bership of a given patch, which usually has a predefined dimension.

Proposal generation methods define the search space for a classifier.

In other words, proposal generation methods present patches from dif-

ferent locations and scales in an image to the classifier and reformulate

the localization task as, for example, an iterative classification task.

• Feature creation: Classification methods use feature creation functions

to map the image/patch into a feature space where the most relevant

characteristics of the image/patch are emphasized. These character-
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6 Chapter 2. Machine Learning for Object Detection

istics have various levels of complexity and can include shapes, colors,

edges, abstract information, etc.

• Classification: Both processes mentioned above manage the input

stream to the classifier. In the case of pedestrian detection, the classi-

fier functions in a binary manner and discriminates the input patches

between pedestrians (positives) and backgrounds (negatives). The lo-

cations of the classified pedestrians are marked, for example, using

bounding boxes that surround the pedestrians.

• Bounding box clustering: The number of detections (bounding boxes)

is usually weakly correlated with the number of objects in an image.

To understand the contents of an image, a method is often employed

to cluster neighboring detections and remove redundant boxes.

• Bounding box regression: Similar to classification methods, a regres-

sion method receives an input patch but predicts its correct bounding

box location.

The remainder of this chapter is organized as follows. In section 2.2, we

outline some of the most important machine learning techniques used for

Input image 

Feature creation  

Proposal generation 

Classification 

Bounding box custering 

Bounding box regression 

… 

… 

Figure 2.1: Decomposition of a pedestrian detection method in its funda-
mental subprocesses.
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object detection and regression in images. In section 2.3, we review relevant

state-of-the-art mechanisms for proposal generation. Section 2.4 describes

feature representations with a special focus on those used in our study and

finally, in section 2.5, post-processing algorithms used for bounding box

clustering are discussed.

2.2 Machine learning

For solving some real-world problems, it is required to find a complex func-

tion that maps an input x into some desired output y. Machine learning

approaches train a model that approximates such a function, as closely as

possible, without being explicitly programmed or guided by rules but only

implicitly through a set of samples [147]. This set is referred to as train-

ing set and is composed of N corresponding pairs X = {x(1), . . . , x(N)}
and Y = {y(1), . . . , y(N)}. Here, x(i) may represent an image patch, i.e.,

x(i) ∈ RHp×W p×Cp , where Hp,W p, and Cp refer to the height, width, and

depth of the patch, respectively. The task is termed classification if y(i) ∈ Nn

with n ≥ 1 (for n > 1, y(i) is usually one-hot encoded) and if y(i) ∈ Rn, the

task is termed regression. The capability of the trained model to generalize,

i.e., the ability to perform accurately on a set of new, unseen samples/tasks

is an important property of these approaches and is sought to be maximized.

The set of the new, unseen samples is referred to as the test set.

Usually, one distinguishes between three types of learning approaches [25]:

• Supervised learning: The training set comprises both X and the corre-

sponding desired outputs Y . During training, X and Y are presented

to the model and the model parameters are adapted according to the

distance between the produced and the desired outputs.

• Unsupervised learning: X is available but Y is not. X can be used,

for example, to discover groups of similar samples within the training

data, this is known as clustering.

• Reinforcement learning: The exact output of the function to be

learned is unknown, and training relies on parameter adjustments

based on two concepts: reward and penalty. In other words, if the

model does not perform well enough, it is penalized and its parameters

are adapted accordingly. Otherwise, it is rewarded, i.e., reinforcement

occurs. The difference between reinforcement learning and supervised

learning is that in reinforcement learning, optimal outputs must be

discovered by a process of trial and error. Reinforcement learning


