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Abstract

Spray Drying is a widely applied industrial process, in which granular material
is obtained from a liquid feed. The idea of performing polymerisation reactions
within a spray in order to integrate several process steps (polymerisation, dry-
ing of a solvent, generation of a spherical product) into one apparatus has been
discussed for a long time and has frequently been subject to experimental in-
vestigations. A mathematical model of droplet polymerisation, which accounts
for transport processes inside the drop and predicts polymer properties, has not
been published so far. A second matter in spray drying is the evolution of a
product’s morphology. Established quasi-homogeneous, spherically symmet-
ric single droplet models presuppose a certain morphology and do not allow
for structure simulation on a detailed scale. Both questions are addressed by
new numerical models, in the first part by an enhancement of established one-
dimensional droplet models for reactive drying, in the second part by a novel
approach for the simulation of structure generation using a meshfree method.

Single Droplet Modelling of Spray Polymerisation
Free radical polymerisation within a droplet is considered by both lumped and
one-dimensionally resolved models of solution drying with additional chemical
reactions. Drying leads to an inhomogeneous distribution of the reactants’ mix-
ture and affects chemical reactions. Polymer properties are calculated using the
method of moments. Its molecular weight depends on reaction conditions and
varies through time and space. A sound mathematical desciption of the reaction-
diffusion system is derived and accounts for density changing reactions and the
varying specific volume of the polymer component. Moreover, a new approach
of polymer moments’ diffusion is introduced, which - in contrast to the literature
approach - preserves spatial inhomogeneities of polymer properties.
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Numerical simulations reveal that drying and chemical reactions are not
simultaneous, but mostly sequential mechanisms. After solvent vaporisation,
polymerisation is performed at a high monomer content, practically as bulk
polymerisation. Evaporation of a volatile monomer will decrease the polymer
yield tremendously. Further investigations are conducted on various process
and model parameters. Several process variants are discussed by means of nu-
merical DoEs. Polymerisation in solvent is scarcely applicable under most rea-
sonable parameter settings. Bulk polymerisation can provide a feasible yield at
elevated monomer saturations of the gas phase. Depending on non-ideal thermo-
dynamics, reactive absorption appears as the main driver for increased polymer
production. Slight pre-polymerisation before atomisation may provide an ad-
ditional, yet limited gain in yield. Comparison between the lumped and the
one-dimensional model shows that a simple 0D approximation is only feasible
in the simple case of a non-volatile monomer.

Simulation of Structure Development within a Droplet by the Meshfree
SPH Method
Structure evolution is a complicated process involving interactions of different
phases, various physical effects and different time-scales. The meshfree SPH ap-
proach represents the continuum by irregularly distributed interpolation points,
which move according to a Lagrangian point of view. When such points be-
long to different physical phases, the method can describe evolving interfaces
and structure evolution efficiently. A novel approach for drying of a slurry is
introduced. As SPH has not been applied to droplet drying yet, fundamental
effects need to be derived. This involves free surface heat and mass transfer ac-
cording to linear driving forces and an efficient, implicit solution of the energy
equation and various approaches for crust formation in the second drying period.
Moreover, a new approach for modelling surface tension by pairwise forces is
introduced. By adjustment of model parameters, formation of dense, compact
structures as well as hollow granules of different crust porosity can be simulated.
These parameters can be interpreted in the sense of the binder content. Finally,
a new SPH-grid coupled model is presented, which directly computes diffusion
in the gas via an underlying mesh. Through this, the receding of water within a
porous structure by drying is calculated.
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Zusammenfassung

Die Sprühtrocknung ist ein verbreiteter industrieller Prozess, um granuläres Pul-
ver aus einer flüssigen Vorlage zu erzeugen. Die Grundidee der Polymerisation
in einem Spray, um mehrere Prozessschritte in einem Apparat zu vereinen (Poly-
merisation, Abtrennung des Lösungsmittels, Herstellung sphärischer Partikel
aus dem Polymer), wird seit langer Zeit diskutiert und immer wieder experi-
mentell untersucht. Ein mathematisches Modell, welches Transportprozesse in-
nerhalb der Tropfen berücksichtigt und Polymereigenschaften vorhersagt, wurde
jedoch bisher nicht veröffentlicht. Eine zweite Fragestellung der Sprühtrock-
nung betrifft die Ausbildung der Morphologie des finalen Produkts. Etablierte
quasi-homogene, auf Kugelsymmetrie basierende Einzeltropfenmodelle setzen
eine spezifische Struktur des Produkts voraus und ermöglichen nicht die Simula-
tion der Morphogenese auf einer Detailskala. Beide Fragestellungen werden mit
Hilfe neuer numerischer Modell adressiert, im ersten Teil über die Erweiterung
etablierter eindimensionaler Tropfenmodelle für reaktive Trocknungsprozesse,
im zweiten Teil mit Hilfe eines neuartigen Ansatzes zur Simulation der Struk-
turausbildung basierend auf einer gitterfreien Methode.

Einzeltropfenmodellierung der Sprühpolymerisation
Freie radikalische Polymerisation innerhalb eines Tropfens wird als konzen-
triertes und als ortsverteiltes Modell der Lösungstrocknung mit chemischen
Reaktionen berücksichtigt. Trocknung beeinflusst die Verteilung der Edukte und
die Polymerisationsreaktionen. Polymereigenschaften werden mit Hilfe der Mo-
mentenmethode berechnet. Das Molekulargewicht des Polymers hängt von den
Reaktionsbedingungen ab und variiert örtlich und zeitlich. Eine konsistente Be-
schreibung des Reaktions-Diffusions-Systems wird hergeleitet und berücksich-
tigt dichteverändernde Reaktionen und veränderliche spezifische Volumina des
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Polymers. Ein neuer Ansatz zur Diffusion statistischer Momente erhält - anders
als der Literaturansatz - örtliche Inhomogenitäten von Polymereigenschaften.

Trocknung und chemische Reaktionen erfolgen nicht gleichzeitig. Nach Ver-
dampfung des Lösungsmittel findet die Polymerisation bei hohen Monomerge-
halten statt, die praktisch einer Massepolymerisation entsprechen. Durch Ver-
dampfung flüchtiger Monomere nimmt die Ausbeute drastisch ab. Prozess- und
Modellparameter der Tropfenpolymerisation werden eingehender untersucht und
verschiedene Prozessvarianten mit Hilfe numerischer DoEs diskutiert. Das Pro-
zessfenster zur Lösungspolymerisation ist sehr begrenzt. Massepolymerisation
ermöglicht bei erhöhtem Monomergehalt im Gas eine hinreichende Ausbeute,
die infolge reaktiver Absorption in Abhängigkeit von der nicht-idealen Ther-
modynamik auftritt. Eine vorgeschaltete Teil-Polymerisation vor Zerstäubung
der Vorlage kann in Grenzen die Ausbeute erhöhen. Ein konzentriertes Modell
beschreibt nur den einfachen Fall eines nichtflüchtigen Monomers korrekt.

Simulation der Strukturentwicklung über die gitterfreie SPH-Methode
Strukturausbildung ist ein komplexer Vorgang, der die Interaktion verschieden-
er Phasen, diverse physikalische Effekte und unterschiedliche Zeitskalen be-
trifft. Der gitterfreie SPH-Ansatz beschreibt das Kontinuum durch unregelmäßig
verteilte Interpolationspunkte, die sich gemäß einer Lagrange-Betrachungsweise
bewegen. Werden derartige Punkte verschiedenen physikalische Phasen zuge-
ordnet, lassen sich verändernde Grenzflächen und strukturbildende Prozesse ef-
fizient beschreiben. Da SPH bisher nicht in Bezug auf Tropfentrocknung einge-
setzt wurde, werden grundlegende Ansätze hergeleitet. Dies betrifft Wärme-
und Stofftransport über die Tropfenoberfläche mit Hilfe linearer Triebkraftan-
sätze, die effiziente, implizite Lösung der Energiebilanz und diverse Konzepte
zur Krustenbildung im zweiten Trocknungsabschnitt. Zudem wird ein neuer
Ansatz zur Berechnung von Oberflächenspannungskräften auf Basis paarweiser
Kräfte vorgestellt. Durch Anpassung von Modellparametern lassen sich sowohl
die Ausbildung dichter, kompakter Strukturen als auch von Hohlgranalien mit
unterschiedlicher Mikroporosität simulieren. Diese Parameter können in physi-
kalischer Weise als Bindergehalt interpretiert werden. Abschließend wird ein
neuer Ansatz von SPH-Gitter-Kopplung vorgestelt, der Diffusion in der Gas-
phase direkt über ein unterlegtes Gitter abbildet. Berechnungen zeigen das Zu-
rückweichen von Wasser innerhalb einer porösen Struktur infolge von Trock-
nung.
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Dlim

log10
parameter in artificial diffusion coefficient
equation

−

D mass diffusivity / Fickian diff. coefficient m2/s
Ð jk binary diffusion coefficient between species

j and k in mixture
m2/s

DPinst degree of polymerisation of polymer pro-
duced at current instant of time

−

~ei unit vector in spatial direction i m
~F force N
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Symbol Description Unit
f bulk continuous function evaluating whether a

particle belongs to the particle bulk
−

f sur f continuous function evaluating whether a
particle belongs to the surface

−

fd initiator efficiency −
gE Gibbs free energy J/mol
h mass specific enthalpy J/kg
∆hv, j heat of evaporation of species j J/kg
h height m
h SPH kernel function’s smoothing length m
~j diffusive mass flux kg/(m2 s)
~J diffusive molar flux mol/(m2 s)
ki interaction strength of particle i in pairwise

surface lateral forces
−

l0 particle spacing m
L characteristic length m
m mass kg
mevap evaporation related mass of SPH particle kg
MW molar weight kg/mol
N amount of substance mol
~n surface/interface normal m
n particle number density 1/md

p pressure Pa
pv vapour pressure Pa
Pn number average of polymer chain length dis-

tribution
−

Pw mass average of polymer chain length distri-
bution

−

~q heat flux density J/(m2 s)
r reaction rate mol/(m3 s)
rF

j rate of formation of component j mol/(m3 s)
r radial coordinate m
R droplet radius m
si j interaction parameter for pairwise forces be-

tween particles i and j
N/md
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Symbol Description Unit
t time s
T temperature K or °C
u inner energy J/kg
~v velocity m/s
V volume m3

w mass fraction −
wcrit

P parameter in artificial diffusion coefficient
equation

−

W kernel function m−d

x mole fraction −
~x position in space m
X j conversion of species j −
Yj yield of species j −

Superscripts

Symbol Description
∗ intermediate value
α,β spatial dimension
0 reference point or pure substance
∞ at the surrounding
0D,1D lumped or one-dimensional model
Γ phase boundary
att attractive
D diffusion related
G gas
inst at current instant of time
L liquid
merge concerning rigid body merging
N molar averaged
prepoly partial polymerisation before atomisation
R reaction related
rep repulsive
sur f surface
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Subscripts

Symbol Description
h∗ at certain height
i, j,k component/species in mixture
i ID of particle of interest
j ID of neighbouring particle
lim limiting/threshold value
s, t chain length / number of units in polymer chain

Species and Reactions in Spray Polymerisation

Symbol Description
I initiator
I∗ initiator radical
IC consumed initiator
M monomer
Ps dead / terminated polymer chain of length s
Rs chain radical / living polymer chain of length s
S solvent
d decomposition of initiator
i initiation of polymer chains
p propagation reaction
t, tc, td termination reaction, in general, by recombina-

tion, by disproportionation
tr, trm, trs transfer reaction, in general, to monomer, to sol-

vent
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Acronyms

Acronym Description
BDF backward differentiation formula
CLD chain length distribution
CSF continuum surface force
DAE differential-algebraic equation
DEM discrete element method
DoE design of experiment
EOS equation of state
FDM finite differences method
FRP free radical polymerisation
FVM finite volume method
GP Gaussian process
ISPH incompressible SPH
IVP initial value problem
LDF linear driving force
MLS moving least squares
MoM method of moments
ODE ordinary differential equation
PPE pressure Poisson equation
QSSA quasi-steady-state assumption
SPH smoothed particle hydrodynamics
TVD total variations diminishing
UNIFAC universal quasichemical functional group activ-

ity coefficients
WCSPH weakly compressible SPH
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1. INTRODUCTION: SPRAY

DRYING AND REACTIVE

DRYING PROCESSES

Spray drying is a basic, common operation in the process industry in order to
obtain powder from a liquid feed. It is applied in food and pharmaceutical
processes as well as in the chemical industry. The feed - a solution, a slurry or an
emulsion - is atomised into hot gas. Due to the intensive heat and mass transfer,
drying takes place within seconds. The final product properties depend on many
parameters like process conditions, operation mode and properties of the feed
material. Production of tailored products demands extensive experiments. The
question of predictively modelling the product properties has been addressed
in different ways. Current state of the art are single droplet models, which
typically assume spherical symmetry of the droplet and - at least in sections
- a quasi-homogeneous material. Detailed simulation of structure generating
processes is however not possible with these approaches. Whereas sole drying
is widely applied, reactive spray drying processes are rare. Spray polymerisation
has been discussed to some extend in the literature, but can still be considered
as a "promising process", which offers desired properties in theory, but lacks
practical applications and a theoretical model.

Both questions, the matter of structure evolution within a droplet and mod-
elling and process evaluation of spray polymerisation will be adressed within
this work by single droplet models. In the first part, droplet polymerisation
will be evaluated by an extension of established, one-dimensional single drop-
let models of solution drying to a reactive drying model. The second part will
consider structure evolution within the drop by a novel approach based on the
meshfree SPH method. Focus of this work lies in the derivation and applica-
tion of these new models. Especially the development of the SPH drying model
concerns many implementational aspects in order to achieve the desired applica-
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bility. Drying applications will therefore not be treated in detail and the reader
is referred to the respective literature (e.g. Mujumdar 2007).

1.1 Spray Polymerisation

The basic idea of spray polymerisation utilises the combination of several pro-
cess steps within one apparatus. This appears attractive for several reasons. Con-
cerning process intensification and an efficient use of resources, the reduction
of process steps is favourable, especially, when small spherical polymer parti-
cles need to be obtained. Assuming that chemical reactions take place during
evaporation of the solvent (Biedasek 2009, p. 15), the combination of an en-
ergy demanding (drying) process with the heat release of chemical reactions
is appealing. Moreover, batch processes demand a high solvent content in or-
der to reduce the viscosity. Heat release due to chemical reactions needs to
be dissipated efficiently, whereas a small droplet provides very intensive heat
and mass transfer with the surrounding gas. Despite these attractive features
and a series of patents on this process (for an extensive study see Krüger 2004),
these considerations have mostly been theoretical. Only very fast reactions can
be carried out within the gas because of the little residence time. Especially
acrylic acid and its salts appear attractive as possible applications, which has
been considered experimentally on a lab scale by Franke, Moritz, and Pauer
(2017). The process control within a droplet is limited to the adaption of feed
composition and adjustment of drying gas properties, which may, however vary
significantly throughout a dryer. A model, which takes all relevant chemical re-
actions into acount and predicts product properties, is therefore highly desirable.
So far, Walag (2011) provides the only mathematical model of this process. By
assuming the droplet as ideally mixed, he derives equations for emulsion poly-
merisation within a drop. A spatially resolved description, which takes inho-
mogeneities and transport processes within the droplet into account, is lacking
yet.
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1.2 Single Droplet Models for Spray Drying

Mezhericher, Levy, and Borde (2010) distinguish between three basic concepts
of droplet drying models. Semi-empirical approaches are based on a character-
istic drying curve, with process prediction being largely based on experimental
experience. The reaction engineering approach does not take the complete pro-
cesses within a droplet into account, but only solves the equations for the droplet
as a whole. Its efficiency makes it interesting for the incorporation in large scale
simulations of a complete spray dryer, in which more resolved models would
be too costly. If the model is assumed in a lumped approximation, the model
must be fitted well to experiments or previously been tuned by the third class
of single droplet models, deterministic drying models. These models take all
relevant processes within the drop into account and typically solve the underly-
ing equations on a one-dimensional scale in radial direction. Azimuthal or polar
effects are typically neglected under the assumption of spherical symmetry. The
reactive drying model, which is derived throughout this work, falls into the last
category.

Nesic and Vodnik (1991) provide a principle model of the different process
periods during drying, from initial heating, to a quasi-steady-state in which heat
transfer is directly converted into evaporation up to the formation of a crust,
which hinders further evaporation and provokes heat up, followed by boiling
and final drying. The process of crust formation has been addressed in several
ways like treatment of the solid phase by population balance models (Seydel
2005; Handscomb, Kraft, and Bayly 2009) or by representation of a crust with
approximate, regular (pore)geometries (Mezhericher, Levy, and Borde 2009).
If solution drying is involved, the transport of a solute in radial direction is
modelled (Sloth et al. 2006; Czaputa and Brenn 2012).

Concerning reactive drying processes, in particular spray polymerisation,
a lumped approximation of the droplet may fall short, as spatially inhomoge-
neous educt concentrations change the local reaction conditions and hence poly-
mer properties. The spray polymerisation model will therefore follow the one-
dimensional models of solution drying and enhance this approach with special
regard to polymerisation reactions. A different approach will be laid out con-
cerning structure evolution. With the long term aim of predictively modelling
how a structure is formed on a detailed scale, a two-dimensional model will be
employed, which accounts for all underlying physical effects.
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1.3 Meshfree Methods and Simulation of Structure
Evolution

Meshfree methods discretise the continuum by interpolation points, so-called
particles, which are moving according to a Lagrangian point of view. The term
particle is not to be mistaken as a solid granular mass, aside from special ap-
proaches like the Discrete Element Method (Cundall 1971). Particles mean truly
interpolation points, which are employed in order to discretise continuum equa-
tions. In this sense, implementation of physical effects can be undertaken based
on first principles. Particles may bear additional properties or variables. There-
fore, these methods are not bound to the equations of motion, but can be used for
the solution of additional physical effects by using the meshfree discretisation
operators.

The Lagrangian nature of meshfree approaches offers natural advantages
over grid-based methods. When evolving interfaces are modelled by grid-based
methods, the mesh has to adapted continuously and interfaces need to be tracked
by approaches like Level Set (Sethian 1999) or Volume of Fluid (Hirt and Nichols
1981). This may become very costly, especially when a large number of inter-
faces is to be tracked and strong deformations occur. Due to particle motion,
meshfree methods are self-adapting. Particle classes of various kind can be em-
ployed in order to represent different physical phases. Phase boundaries are
therefore intrinsically represented by co-occurence of particles of different na-
ture. Interface tracking is in the best case done automatically due to particle
motion. The evolution of material bridges, break-up and merging can also be
treated in a natural way. On the downside, there is little standard simulation soft-
ware for meshfree methods, which also involves a lack of standard workflows
and an increased user effort for pre- and post-processing. Furthermore, the ad-
vantage of a flexible particle distribution needs to be paid by a high computa-
tional load, as discretisation operators typically involve a much larger number
of neighbouring points than in grid-based methods. Besides, meshfree methods
partly lack a mathematical foundation, when an analysis can only be conducted
for regular particle alignment, whereas particles are allowed to be distributed
irregularly throughout a simulation. Hence, such approaches can be considerd
as special methods suitable for special problems, which cannot compete with
highly developed mesh-based methods in their typical applications. For non-
standard cases, in which established methods are challenged, meshfree methods
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provide an alternative. Structure evolution can be considered as one of these
particular problems.

Throughout this work, the Smoothed Particle Hydrodynamcs method (SPH)
will be used, which can be considered as the first completely meshfree method
in computational fluid dynamics. SPH was developed at the same time indepen-
dently by Lucy (1977) and Gingold and Monaghan (1977) for the simulation of
astrophyical problems. In this field it became one of the standard approaches
within the next decades. In the 1990s, SPH was extended to problems con-
cerning incompressible liquids (Monaghan 1994; Cummins and Rudman 1999),
which made it interesting for engineering problems as well. Reviews of the
method have been provided by Monaghan (1992, 2005, 2012), one of its origi-
nal inventors. SPH applications are often found in problems involving sloshing
or violent flows, which for instance concerns coastal engineering. The method
proved to be suitable to calculation of large material deformations like the im-
pact of projectiles (Stellingwerf and Wingate 1994) and for calculating the evo-
lution of cracks (Das and Cleary 2013). Its capability of treating problems of
structure evolution was shown by Keller (2015), who modelled the generation of
a porous structure, determined by a considerable number of interacting physical
effects.

1.3.1 Previous Applications of SPH to Drying

Drying models employing SPH are very rare, but the little number of contribu-
tions is indeed concerned with the matter of structure evolution, which under-
lines the special ability of SPH in this respect. Ito and Yukawa (2012) modelled
the evolution of cracks within a flat drying paste by SPH. Due to the drying
process, the mechanical stress inside the paste increases. If, locally, the stress
exceeds the yield stress, the material will be damaged there, resulting in the
initiation of a crack. Subsequently, this fracture grows further and takes up the
mechanical stress within its surrounding. The process of drying itself has not
been taken into account directly. Ito and Yukawa rather considered a constant
increase of mechanical stress over time as a result of drying without accounting
for heat and mass transfer. The model therefore provides an insight into the
fracturing of a drying material, but crack initiation and growth in this approach
could be linked to any phyiscal effect with continuously increasing mechanical
stress and not just drying in particular.
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Karunasena, Senadeera, Gu, et al. (2014) and Karunasena, Senadeera, Brown,
et al. (2014a,b) examined the drying of plant cells and studied the impact of the
drying process on the deformation of single cells as well as on cell clusters. The
morphological behaviour was captured by an SPH-DEM hybrid model, in which
the cell walls are respresented as linked DEM particles and the cell interior is
modelled as a highly viscous Newtonian liquid using SPH. The drying kinetics
rely on the differences in osmotic pressure over the cell walls with the mass loss
due to drying being dedicated to all SPH particles within a cell in equal measure.
With the mass of the particles being diminished, their volume is reduced as well,
resulting in cell shrinkage. The structural behaviour is determined by the param-
eterisation of several attractive and repulsive forces between DEM particles and
according to their interactions with SPH particles.

Detailed, spatially resolved simulations of drying kinetics have not been con-
ducted in SPH so far.
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2. THEORETICAL

PRINCIPLES

In the following, the underlying principles being fundamental for the derivation
of drying models will be laid out. Typically, one would be short on this topic
when presenting a classic single droplet drying model. However, this work
is also concerned with an appropriate and sound representation of the poly-
mer phase and a consistent derivation of balance equations. Indeed, there are
still drying models being published, in which transport equations are not mass-
conservative. Such approaches are neither sufficient for more complicated ap-
plications like spray polymerisation nor are the underlying simplifications rea-
sonable in general. Therefore, the principles of diffusion and reaction driven
convection and their consideration in transport equations will be discussed to a
longer extend.

2.1 Transport Equations

Transport of an entity can be modelled mathematically via a partial differential
equation in differential or integral form. In the following only differential for-
mulations will be used. In general, transport of an arbitrary entity ψ can be
expressed as

∂ψ

∂ t
+∇

(
ψ~v∗

)
+∇φψ = σψ . (2.1)

The temporal change of the respective entity, ∂ψ

∂ t , is called the accumulation
term. The second term denotes convective transport with the continuum velocity
v∗, whereas φψ indicates the molecular flux of the property ψ (Bird, Stewart, and
Lightfoot 2002, p. 588). Sources and sinks are denoted as σψ . Table 2.1 gives
an overview of the most common properties with their respective fluxes and
sinks/sources. ~v∗ is an average fluid velocity, where the base for averaging can in
general be arbitrarily chosen (Taylor and Krishna 1993, p. 3ff). Most commonly
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Table 2.1: Transport properties.

equation property velocity flux sources
ψ v∗ φψ σψ

continuity eq. ρ ~v
momentum eq. ρ~v ~v −Π ρ~f
mass bal. species j ρ j ~v ~j j rF

j MWj

energy balance ρu ~v ~̇q+∑ j~j jh j + p~v −τ : ∇~v+~v ·∇p
continuity eq. molar c ~vN

∑ j rF
j

molar bal. species j c j ~vN ~JN
j rF

j

the mass average velocity~v and the molar average velocity~vN are employed for
modelling transport of mass based properties such as (partial) densities and mass
fractions or molar values as concentrations and mole fractions, respectively.

Figure 2.1: Transport across a
phase boundary Γ.

Equation 2.1 is the conservation equation
of a property in a continuum, where a smooth
distribution of the respective values can be as-
sumed. In contrast, a property may change
discontiniously at a phase transition, with an
abrupt change in physical behaviour. Math-
ematically the interface between two phases
− and + is assumed to be infinitesimally thin
without storage capacity, at which the respec-
tive properties may change jumpwise between
both phases (see Figure 2.1). In- and outgoing

fluxes and sinks/sources need to add up to zero. A general balance equation at
an interface Γ is (comp. Taylor and Krishna 1993, p. 9f)

(
ψ

+~v++φ
+
ψ −ψ

+~vΓ−ψ
−~v−−φ

−
ψ +ψ

−~vΓ
)
·~n−σ

Γ
ψ = 0. (2.2)

Superscripts− and + denote the phases on both sides of the interface, where
the interface normal ~n is directing from − to +. Additionally to convective
and diffusive transport the motion of the phase boundary Γ itself with the inter-
face velocity ~vΓ needs to be taken into account. Equation 2.2 is the basis for
the derivation of boundary conditions in mathematical models. These will be
considered in detail, when the equations for reactive drying models of single
droplets are derived in chapter 3.
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2.1. TRANSPORT EQUATIONS

2.1.1 Transport in a Mass Averaged System

Mass and Momentum Balance Equations

Due to the basic principles of mass conservation and the connection of momen-
tum with the mass or density of a fluid element, it is straightforward to model the
laws of hydrodynamics in a mass averaged notation with the velocity~v. ψ = ρ

yields the mass balance or continuity equation

∂ρ

∂ t
=−∇(ρ~v) . (2.3)

With ψ = ρ~v the momentum balance (Navier-Stokes equations) in conservative
form can be obtained to

∂ρ~v
∂ t

=−∇(ρ~v~v−Π)+ρ~f , (2.4)

in which Π denotes the Cauchy stress tensor and ~f is a vector of external forces
(as force per unit mass - in unit of an acceleration) such as gravity and surface
tension. Applying the product rule on equation 2.4 and subtracting the continu-
ity equation the non-conservative momentum balance can be obtained (Ferziger
and Peric 2007, p. 10)

ρ
∂~v
∂ t

=−ρ~v∇~v+∇Π+ρ~f . (2.5)

Whereas in simulations both formulations yield similar results on very fine
meshes, for coarse discretisations the non-conservative form is prone to addi-
tional errors (Ferziger and Peric 2007, p. 10). The Cauchy stress tensor is
usually split into a diagonal tensor corresponding to the fluid pressure p and the
deviatoric stress tensor τ

Π =−pI + τ (2.6)

∂~v
∂ t

=−~v∇~v− ∇p
ρ

+
∇τ

ρ
+~f . (2.7)

The Navier-Stokes equations and the mass balance provide a set of d +1 equa-
tions (d being the spatial dimensionality of the problem), but contain d + 2 un-
knowns - the density, d components of the velocity vector and the pressure. In
compressible flows the pressure is dependent on the density and can be evalu-
ated by an equation of state (EOS). Fluid density and pressure are not coupled in

9



2. THEORETICAL PRINCIPLES

case of incompressible liquids (p 6= f (ρ)) and, without further considerations,
the system is underdetermined. The most common assumption for incompress-
ible flows is that the density does not change at all. With ρ = const., the velocity
field has to be divergence-free, as the continuity equation reduces to

∇~v = 0. (2.8)

Applying this constraint to the Navier-Stokes equations, the divergence of the
velocity change over time has to be zero as well. Taking the divergence of the
momentum balance 2.7 provides a Poisson equation for the unknown pressure

∇

(
∇p
ρ

)
=

1
ρ

∇
2 p = ∇

(
−~v∇~v+

∇τ

ρ
+~f
)
. (2.9)

The detailed formulation of this pressure Poisson equation (PPE) and its im-
plementation is depending on the underlying numerical algorithm. An alter-
native to this procedure is the assumption of a slight compressibility, so that
p = f (ρ). In this case the relation between pressure and density typically is
established by a stiff, artificial equation of state. Both approaches will be dis-
cussed more explicitly for the Smoothed Particle Hydrodynamics method in
sections 5.3 and 5.4.

The stress tensor is formulated according the underlying rheology. In case
of Newtonian liquids, τ is expressed as (Ferziger and Peric 2007, p. 6)

τ = η

(
∇⊗~v+(∇⊗~v)T +

2
3

∇~v
)

ρ=const.
= η

(
∇⊗~v+(∇⊗~v)T

)
. (2.10)

Mass Balance Equations of Single Components

Transport equations for single components j can be derived by ψ = ρ j to

∂ρ j

∂ t
=−∇

(
ρ j~v+~j j

)
+ rF

j MWj. (2.11)

~j j indicates the diffusive flux. The source term accounts for production or con-
sumption of the respective component by chemical reactions with MWj being
its molar weight. The rate of formation rF

j denotes the molar conversion of j
with respect to time and is determined by the reaction rates ri of all chemical
reactions i and the corresponding stoichiometric coefficients νi j

rF
j = ∑

i
νi jri. (2.12)

10



2.1. TRANSPORT EQUATIONS

The continuity equation 2.3 evolves from the addition of all component transport
equations as well. In mass based notation, the sum of all source terms is zero,
as mass is neither produced nor destroyed by chemical reactions (whereas the
number of moles may change). Additionally, the sum of all diffusive fluxes
adds up to zero. Using the product rule on equation 2.11 and subtracting the
continuity equation, transport of a component with respect to its mass fraction
w j = ρ j/ρ can be expressed as follows:

∂w j

∂ t
=−~v∇w j +

−∇~j j

ρ
+ rF

j
MWj

ρ
. (2.13)

The total fluid density ρ can be calculated from the mass fractions using the
respective densities of the pure substances ρ0

j

ρ =
m

∑Vj
=

m

∑
m j

ρ0
j

=
1

∑
w j

ρ0
j

. (2.14)

However, this relation requires the premise, that the volumes of the single com-
ponents Vj can be calculated independently and add up to the total volume with-
out any excess volumes. The total mass flux ~̇m j of a component j is

~̇m j = ρ j~v+~j j. (2.15)

Transport of Energy

The balance of inner energy (ψ = ρu)

∂ (ρu)
∂ t

=−∇

(
ρu~v++p~v+~̇q+∑~j jh j

)
− τ : ∇~v+~v∇p. (2.16)

can be converted into enthalpy notation using ρu = ρh− p

∂ (ρh)
∂ t

=−∇

(
ρh~v+~̇q+∑~j jh j

)
− τ : ∇~v+~v∇p+

∂ p
∂ t

. (2.17)

h and h j are the specific enthalpies of the mixture and the single components,
respectively. The molecular flux of enthalpy h involves both heat conduction
with the heat flux ~̇q as well as enthalpy transport due to molecular fluxes of
the single components j. The source terms consist of an irreversible part in
consequence of viscous dissipation and a reversible contribution due to changes

11



2. THEORETICAL PRINCIPLES

in fluid pressure. In case of moderately viscous media the sources can usually
be neglected. In most physically relevant cases the heat flux ~̇q is calculated by
Fourier’s first law

~̇q =−λ∇T. (2.18)

λ is the thermal conductivity and T the temperature. The average enthalpy h is

h = ∑w jh j (2.19)

h j = h0
j +
∫ T

T 0
cp, jdT, (2.20)

in which the enthalpy of a component j is defined with respect to a standard
enthalpy h0

j at a reference temperature T 0. In the general case of non-constant
heat capacities, evalutation of the enthalpy according to equation 2.17 and solu-
tion of the algebraic constraints 2.19 and 2.20 provide the temperature. When
heat capacities cp j are practically constant and neglecting the mechanical source
terms, a temperature balance can directly be obtained:

h j = h0
j + cp, j

(
T −T 0) (2.21)

cp = c̄p = w jcp, j (2.22)

h = ∑w jh0
j + cp

(
T −T 0) (2.23)

∂T
∂ t

=−~v∇T −
∑cp j

~j j

∑ρ jcp j
∇T − ∇~̇q

∑ρ jcp j
− ∑rF

j MWjh j

∑ρ jcp j
. (2.24)

The reaction term respective the rates of formation of all components can be
expressed by the heat of reaction ∆hR,i of all chemical reactions i, as well,
using equation 2.12 and the definition of the molar based specific enthalpy
hN

j = MWjh j

∆hR,i = ∑
j

νi jhN
j (2.25)

∑
j

rF
j MWjh j = ∑

i
ri∆hR,i. (2.26)

The Lewis number denotes the ratio between mass diffusivity D and thermal
diffusivity

Le =
ρDcp

λ
. (2.27)

In case of a small Lewis number, heat transport due to mass diffusion (second
term in equation 2.24) is therefore subordinate compared to thermal conduction
(third term).

12



2.1. TRANSPORT EQUATIONS

2.1.2 Transport in a Molar Averaged System

According to Bird, Stewart, and Lightfoot (2002, p. 584) the continuity equation
and transport of the single components in a molar system

∂c
∂ t

=−∇
(
c~vN)+∑

j
rF

j (2.28)

∂c j

∂ t
=−∇

(
c j~vN + ~JN

j

)
+ rF

j , (2.29)

are an equivalent expression to equations 2.3 and 2.11. ~JN
j is the molecular

molar flux of the component j with respect to the molar average velocity vN .
Again, the continuity equation is the combination of the single component trans-
port equations. However, whereas in a mass averaged system the reaction term
vanishes in the continuity equation 2.3, it is still present in a molar based no-
tation, as chemical reactions preserve mass but are not cardinally conservative
concerning the number of moles. The component balance equation with respect
to the mole fraction x j is

∂x j

∂ t
=−~vN

∇x j +
−∇~JN

j

c
+

rF
j

c
. (2.30)

2.1.3 Reference Velocities and Conversion between Systems

The velocity of a component ~v j denotes the motion of this component with re-
spect to a fixed coordinate reference frame (Bird, Stewart, and Lightfoot 2002,
535f; Taylor and Krishna 1993, p. 3), independently from an average velocity
~va. An arbitrarily chosen averaging can be undertaken by

~va = ∑a j~v j, (2.31)

where the weighting factors a j satisfy ∑a j = 1. The mass and molar average
velocities are calculated according to

~v = ∑
j

w j~v j (2.32)

~vN = ∑
j

x j~v j. (2.33)

13



2. THEORETICAL PRINCIPLES

A component’s velocity~v j can be calculated from mass or molar fluxes by (Bird,
Stewart, and Lightfoot 2002, p. 537)

~v j =~v+
~j j

ρ j
=~vN +

~JN
j

c j
. (2.34)

Inserting this equation into the definitions of mass and molar average velocities
the following conversion formulae can be derived

~v =~vN +
1
ρ

∑
k

~JN
k MWk (2.35)

~vN =~v+
1
c ∑

k

~jk
MWk

. (2.36)

Conversion of Diffusive Fluxes

Diffusive fluxes are defined as the difference between the velocity of a compo-
nent and the average velocity

~j j = ρ j (~v j−~v) (2.37)
~JN

j = c j
(
~v j−~vN) . (2.38)

In any system the sum of all molecular fluxes adds up to zero

∑
j

~j j = 0, ∑
j

~JN
j = 0. (2.39)

By reason of this rule a direct conversion between molar and mass averaged
fluxes via multiplication/division with the molar mass is not generally valid. In
fact, by doing this one obtains diffusive mass fluxes relative to the molar average
velocity and vice versa. These fluxes do not necessarily add up to zero and are
of minor relevance in mathematical models. Rather, with (Bird, Stewart, and
Lightfoot 2002, p. 537)

∑
j

~j j

MWj
= c
(
~vN−~v

)
(2.40)

∑
j

~JN
j MWj = ρ

(
~v−~vN) (2.41)
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2.1. TRANSPORT EQUATIONS

and by inserting equation 2.34 the conversion laws

~j j = ~JN
j MWj−w j ∑

k

~JN
k MWk (2.42)

~JN
j =

~j j

MWj
− x j ∑

k

~jk
MWk

(2.43)

can be derived. Hence, a conversion of a flux between both systems by simple
multiplication with the molar mass is only applicable in case of (nearly) identi-
cal molar weights of all species in the mixture or when the respective component
is highly diluted. Somewhat more complicated conversion laws based on matrix
multiplications can be found at Taylor and Krishna (1993, 6f). The conversion
of diffusive fluxes from molar notation to a mass based one is more relevant
in practice, as diffusion is a molecular phenomenon depending on the chemical
potential, which is naturally described using molar values.

Conversion of Component Balance Equations

With the velocity of a component ~v j and equation 2.34 the components’ trans-
port equations can be formulated independently from an averaged velocity

∂ρ j

∂ t
=−∇(ρ j~v j)+ rF

j MWj (2.44)

∂c j

∂ t
=−∇(c j~v j)+ rF

j . (2.45)

Inserting equation 2.34 yields component balance equations for partial densities
in a molar averaged frame of reference and for concentrations related to mass
averaged transport values, respectively

∂ρ j

∂ t
=−∇

(
ρ j~vN +MWj~JN

j

)
+ rF

j MWj (2.46)

∂c j

∂ t
=−∇

(
c j~v+

1
MWj

~j j

)
+ rF

j . (2.47)

This interrelation can be convenient, when both the concentration as well as the
partial density of a species need to be modelled, for instance in order to obtain
the molar mass of a polymer. In this case both values can be evaluated using
only one frame of reference and not a combination of molar and mass based
transport.
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2. THEORETICAL PRINCIPLES

2.1.4 Eulerian and Lagrangian Frames of Reference

The transport equations stated out above have been derived for a fixed system
of coordinates. This refers to a Eulerian point of view, which means that an ob-
server, keeping track of the fluid movement, is spatially fixed. In computational
fluid dynamics, Eulerian methods therefore employ a grid, which can be spa-
tially fixed or experience alterations, which are not necessarily connected to the
fluid movement. In contrast, a Lagrangian observer is attached to a fluid element
and moves along the lines of flow. The motion of discretisation points in a La-
grangian method is therefore directly bound to fluid movement. Because these
approaches keep track of small mass elements in the fluid, often the term "‘par-
ticle methods"’ is used, considering these mass elements as fluid particles. Still,
this expression cannot be interpreted as particles in the sense of granular masses
(like billiard balls or the DEM method as a numerical approach), but rather as
interpolation points without a definite shape, representing a finite fluid mass el-
ement. An Eulerian transport equation of an entity Ψ may be transformed into
a Lagrangian frame of reference by the material derivative

DΨ

Dt
=

∂Ψ

∂ t
+~v∇Ψ. (2.48)

The left hand side gives the change of the respective quantity with respect to
an infinitesimally small mass element (hence the terminus material derivative)
according to a Lagrangian point of view. The first term on the right hand side
contains the Eulerian continuum equation, whereas the second term refers to the
change of a quantity induced by the moving observer.

The most important equations in Lagrangian methods are the mass and mo-
mentum balances. Applying 2.48 on equations 2.3 and 2.7 one obtains

Dρ

Dt
=−ρ∇~v (2.49)

Dv
Dt

=−∇p
ρ
− ∇τ

ρ
+~f (2.50)

for the continuity and Navier-Stokes equations in a Lagrangian frame of refer-
ence.
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2.2. DIFFUSION

2.2 Diffusion

A mixture of different components as a whole only experiences convective trans-
port with the averaged velocity~v∗. The motion of single components can be dif-
ferent due to several reasons such as concentration gradients, electric fields etc.
Diffusive fluxes describe the transport of the single components in relation to
the averaged velocity in the chosen frame of reference as indicated in equations
2.37 and 2.38. The most common approach for diffusion in mathematical mod-
els is Fickian diffusion, either as (pseudo) binary diffusion or as a generalised
Ficks law for a multi-component mixture (Taylor and Krishna 1993, pp. 19, 52).
However, a general description of diffusive behaviour in a mixture is given by
the Maxwell-Stefan equations, which can be derived from thermodynamics in a
consistent manner. Fick’s diffusion, correctly expressed, is a special case of the
Maxwell-Stefan approach for ideal thermodynamics.

2.2.1 Fickian Diffusion

Fick (1855) conducted experiments on diffusion of salt in a binary solution. He
proposed an analogy of diffusive mass to diffusive heat transfer so that Fourier’s
second law could be transferred to problems of matter diffusion due to concen-
tration gradients. Fick’s first law for molecular mass and molar fluxes in a binary
mixture is (Bird, Stewart, and Lightfoot 2002, pp. 515, 535; Taylor and Krishna
1993, pp. 50, 52)

~j j = ρ j (~v j−~v) =−ρD∇w j (2.51)
~JN

j = c j
(
~v j−~vN)=−cD∇x j, (2.52)

where the diffusive fluxes have been defined with respect to the mass and molar
average velocity, respectively. Alternatively, one can express molecular fluxes
in the volume average velocity frame (Taylor and Krishna 1993, p. 51)

~jVj = ρ j
(
~v j−~vV )=−D∇ρ j (2.53)

~JV
j = c j

(
~v j−~vV )=−D∇c j. (2.54)

Misleadingly, these laws are sometimes applied as Fickian diffusion in mass or
molar average systems (e.g. in Baehr and Stephan 2010, p. 79), taking up the
analogy of diffusive mass transport with heat conduction and Fourier’s first law.
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2. THEORETICAL PRINCIPLES

However, as the sum of all diffusive fluxes has to be zero, this is only permis-
sible for constant mixture densities or concentrations (then, the volume average
velocity is equal to the mass or molar averaged one). Using the conversion laws
between mass and molar diffusive fluxes 2.42 and 2.43, it can easily be shown
that Fickian fluxes according to equations 2.51 and 2.52 can be transformed con-
sistently into one another, which only applies to expressions 2.53 and 2.54 when
the mixture density or concentration is constant.

In multicomponent mixtures, Fick’s first law can be generalised in a matrix
notation (Taylor and Krishna 1993, 53f)(

~j
)
=−ρ

[
D0](∇w) (2.55)(

~JN
)
=−c [D] (∇x) , (2.56)

in which
(
~j
)

or
(
~JN
)

and (∇w) or (∇x) denote column matrices of diffusive
fluxes and gradients of mass or mole fractions, respectively. The entry Di j in the
diffusion coefficient matrix denotes the impact on the diffusive flux of compo-
nent i when species j exhibits a gradient in mass or molar fraction, respectively.
Matrices of diffusion coefficients with different velocity reference - [D] in molar
avereraged and [Do] in mass averaged notation - are generally not identically.

A special case of multicomponent Fickian diffusion evolves assuming that
the diffusive flux of each component only depends on the mass or mole fraction
gradient of the respective component itself. Consequently, when ~ji is indepen-
dent of all w j 6=i, the matrix of diffusion coefficients becomes diagonal with all
Di j being zero for j 6= i. As the sum of all diffusive fluxes is to be zero and addi-
tionally ∑∇w j = ∑∇x j = 0, all coefficients Dii must be identical. In this simple
case, there is only one single, scalar diffusion coefficient D for all components(

~j
)
=−ρD(∇w) (2.57)(

~JN
)
=−cD(∇x) . (2.58)

Considering the single components these expressions are equal to equations 2.51
and 2.52 in binary diffusion. Hence, this case can be considered as a pseudo-
binary Fickian diffusion. Despite this simplification to the real behaviour of
mixtures, this approach can be a convenient expression to study the principle
influence of diffusion with only one parameter D in a mathematical model in
comparison to other physical and chemical effects, especially, when it is difficult
to obtain the various Di j values.
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2.2. DIFFUSION

2.2.2 Maxwell-Stefan Diffusion

Whereas Fick’s work was concerned with binary diffusion, in the 19th century
Maxwell and Stefan independently considered the diffusion in multi-component
mixtures. Diffusive transport of a species j in a mixture of n different compo-
nents is aroused by a driving force ~d j (Taylor and Krishna 1993, p. 19)

~d j =−
n

∑
k=1

x jxk (~v j−~vk)

Ð jk
. (2.59)

Maxwell-Stefan and Fickian diffusion coefficients are identical for an ideal bi-
nary mixture. Generally, this is not the case.

With~v j =
~JN

j
x jc

+~vN (equation 2.34) a relationship between driving force and
diffusive fluxes can be derived

~d j =
n

∑
k=1

x j~JN
k − xk~JN

j

cÐ jk
. (2.60)

The generalised driving force ~d j (Taylor and Krishna 1993, S. 29)

cℜT ~d j = c j∇T,pµ j +(ϕ j−w j)∇p−ρ j

(
~f j−∑

k

~fk

)
(2.61)

is affected by deviations from chemical and mechanical equilibrium as well as
by external forces ~f (for instance concerning ions in an electric field, provided
as force per unit mass). µ j and ϕ j are the chemical potential and the volume
fraction of component j, respectively. In droplet drying applications, diffusive
transport is dominated by gradients in the chemical potentials or, accordingly,
concentration differences of the single components in the mixture. Neglecting
the other contributions, equation 2.61 becomes with µ j = µ0

j +ℜT ln(γ jx j)

~d j =
x j

ℜT
∇T,pµ j =

x j

ℜT ∑
k

∂ µ j

∂xk

∣∣∣∣
T,p,µl 6=k

∇xk = x j ∑
k

∂ ln(γ jx j)

∂xk

∣∣∣∣
T,p,γl 6=k

∇xk

~d j = ∑
k

(
δ jk + x j

∂ lnγ j

∂xk

∣∣∣∣
T,p,γl 6=k

)
∇xk. (2.62)

Only n−1 driving forces are linearly independent, as ∑ j
~d j = 0 (Taylor and

Krishna 1993, p. 24). With the diffusive flux of component n being a linear
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combination of the fluxes of the other components (~JN
n = −∑

n−1
k=1

~JN
k ), the n-th

component commonly is eliminated from equation 2.60

c~d j =
n−1

∑
k=1;k 6= j

(
x j

Ð jk
− x j

Ð jn

)
~JN

k −
(

x j

Ð jn
+

n

∑
k=1;k 6= j

xk

Ð jk

)
~JN

j . (2.63)

Again, a matrix expression can be obtained, if all n−1 driving forces are merged
into a column matrix

(
~d
)

and, accordingly, the diffusive fluxes into the matrix(
~JN
)

c
(
~d
)
=−B

(
~JN
)
, (2.64)

in which the matrix B is

B j j =
n

∑
k=1;k 6= j

xk

Ð jk
+

x j

Ð jn

B jk =−x j

(
1

Ð jk
− 1

Ð jn

)
. (2.65)

With equation 2.62 the matrix of the driving forces can be expressed by(
~d
)
= Γ(∇x) . (2.66)

The matrix Γ accounts for the non-ideality of thermodynamics

Γ jk =
n−1

∑
k=1

δ jk + x j
∂ lnγ j

∂xk

∣∣∣∣
T,p,γl 6=k

. (2.67)

The diffusive fluxes are then obtained by(
~JN
)
=−cB−1

Γ(∇x) . (2.68)

This matrix notation applies to the diffusive fluxes of n− 1 components and
the n-th flux needs to be evaluated by the closing condition. In case of ideal
thermodynamics Γ becomes the identity matrix and the generalised Fick’s law
2.56 is obtained. Assuming additionally, that all binary diffusion coefficients
are identical Ð jk = D, it follows directly from equation 2.60 that(

~JN
)
=−cD(∇x) , (2.69)

which is the pseudo-binary Fickian diffusion from equation 2.58 or, in a binary
system, Fick’s law 2.52. If the logarithm of the activity coefficients is provided
- e.g. by gE -models - equation 2.68 can be expressed as(

~JN
)
=−cB−1 [(∇x)+(x∇ lnγ)] . (2.70)
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2.2.3 Determination of Diffusion Coefficients

Diffusion coefficients are the prefactors determining the rate of diffusive equi-
libration of spatial gradients in a mixture. Generally, they are not constant, but
depending on the mixture’s composition. Experiments are therefore needed in
order to obtain diffusion coefficients at varying concentrations. If at least the
values in infinite dilution of the different species are known, averaging between
these can be used for estimating the diffusion coefficient in between for concen-
trated mixtures. Typically arithmetic or geometric means, weighted by the mole
fractions of the involved components, are applied (Taylor and Krishna 1993,
p. 76).

If no measurements are available or an extrapolation to different tempera-
tures is needed, diffusion coefficients can be calculated based on theoretical (e.g.
the kinetic gas theory) or (semi-)empirical correlations. In this work, Fuller’s
equation (Taylor and Krishna 1993, p. 68)

D12 =
1.013×10−2

p

√
(MW1+MW2)

MW1MW2(
3
√

V1 +
3
√

V2
)T 1.75 (2.71)

is used in order to estimate diffusion coefficients of volatile components in the
drying gas. The molecular diffusion volumes V1 and V2 are summed up from
atomic contributions. Molar weights have to be provided in g/mol, pressure and
temperature in Pa and K, respectively, in order to obtain diffusion coefficients
in m2/s.

Diffusion in the liquid phase is calculated according to pseudo-binary Fick-
ian diffusion with an effective diffusion coefficient acting the same way on all
components in this work. Its value is set dependent on the polymer weight frac-
tion (see also section 4.1). For an overview on various approaches concerning
diffusion coeffient estimation in liquid mixtures, see e.g. Taylor and Krishna
(1993, 73f).

2.3 Modelling of Free Radical Polymerisation

Polymer molecules consist of linear or branched chains, in which a large number
of generic subunits (of only one or a few different kinds) are strung together to
macromolecules. The chain lengths or degree of polymerisation correspond
with the number of subunits within a single chain. For a polymer species as a
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whole this number is not constant but rather present as a chain length distribution
(CLD). Polymer properties strongly depend on the nature of this distribution,
which makes it necessary to model this value in reaction engineering. Typically,
characteristic values like the number and weight average and dispersity are of
major interest, as these can be easily obtained from experiments, rather than the
exact progression of the whole distribution.

The trivial approach of setting up respective equations for polymer molecules
of each possible chain length is neither applicable nor necessary in order to ob-
tain valid predictions for averaged properties of the chain length distribution.
As the reaction terms for polymer molecules of different length are very similar,
the mathematical redundancy can be employed in order to derive statistically
averaged reaction approaches with a manageable number of equations. A num-
ber of various methods can be found at Ray (1972). Very well-established are
the quasi-steady-state assumption (QSSA), which utilises algebraic equations in
order to compute statistical values solely based on the educt concentration, and
the method of moments (MoM), in which differential equations for the statisti-
cal moments of the chain length distribution are derived. As quasi industry stan-
dard, the commercial software Predici is widely used, which applies an adaptive
h-p-Galerkin method in order to calculate the complete chain length distribution
(Budde and Wulkow 1991). In the following, only free radical polymerisation
(FRP) shall be considered in detail. Other kinds of polymerisation reactions are
very similar from a mathematical point of view, so that model equations can be
derived in an analogous way. Furthermore, only homopolymerisation will be
considered. An extension to copolymerisation is, however, straightforward as
long as just additional statistical moments need to be calculated.

2.3.1 Reactions in Free Radical Polymerisation

A typical reaction scheme of free radical polymerisation is provided in Table 2.2.
The system contains an initiator I, which decomposes into primary radicals I•.
Chain initiation takes place, when these free radicals attack a monomer M and,
in doing so, generate a living chain / chain radical R1 of length one. The place-
holder IC denotes consumed initiator and is of no further interest concerning
polymer reactions. Continually, monomer molecules attach at the radical part
of the chain and increase the chain length, at which the radical moves to the
newly appended monomer unit. This chain propagation is the main reaction in
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2.3. MODELLING OF FREE RADICAL POLYMERISATION

Table 2.2: Basic chemical reactions in free radical polymerisation.

reaction mechanism

initiator decomposition I
kd−→ 2 fdI•

chain initiation 2M+2I•
ki−→ IC+2R1

one step initiation I +2 fdM
kd−→ IC+2 fdR1

propagation Rs +M
kp−→ Rs+1

termination by recombination Rs +Rt
ktc−→ Ps+t

termination by disproportionation Rs +Rt
ktd−→ Ps +Pt

transfer to monomer Rs +M ktrm−→ Ps +R1

transfer to polymer Rs +Pt
ktrp−→ Ps +Rt

free radical polymerisation. Termination of this process takes place, when two
living chains R react and their radicals are neutralised. In this case both chains
may remain as two dead chains P (disproportionation) or build one single, long
dead chain (recombination). Furthermore, radical transfer to monomer or a dif-
ferent transfer agent and transfer to polymer can occur. Transfer of a radical
to polymer reactivates a dead chain, whereas typically a side-chain is created.
Other reactions such as backbiting will not be taken into account in the follow-
ing. The consideration is also restricted to living chains in which the radical is
located at the chain’s end (primary radicals).

Most commonly in polymer reaction engineering, it is assumed that poly-
merisation reactions kinetics are independent from the chain lengths of the re-
actands. This is indeed a simplification, which is not true for very short chains,
where propagation rates may be considerably faster (Hutchinson 2005, p. 158;
Gridnev and Ittel 1996). Still, these variations diminish rapidly with growing
chain length and the amount of such short chains is rather low. In using this
assumption, mathematically uniform descriptions of the single reactions are ob-
tained, which can be reduced efficiently to convenient formulae. Polymer re-
action engineering methods relying on this assumption have proven to provide
accurate descriptions of polymerisation processes. The basic reactions provided
in Table 2.2 and their formation rates for the different species will be explained
shortly in the following.
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Initiation

Chain initiation in FRP can be induced by a variety of mechanisms such as ini-
tiator decomposition and photo initiation. One very common way is to provide
a starter, which thermally decomposes into primary radicals within a reaction of
first order. The rate of formation of the initiator therefore only depends on its
concentration [I]

rF
I
∣∣
d =−kd [I] =−rd . (2.72)

The rate coefficient is calculated by the Arrhenius equation. Kinetical data typ-
ically contains the activation energy Ea,d and - instead of the pre-exponential
factor - the temperatury T10h, at which the initiator has a half-life of ten hours

Ad =
ln2

36000s
e

Ea,d
ℜT10h . (2.73)

Whereas two primary radicals are formed from an initiator molecule, chain initi-
ation is only one kind of different possible reactions of theses radicals (Hutchin-
son 2005, p. 155; Lechner, Gehrke, and Nordmeier 1996, p. 54). The rather
complicated dependency of these processes on the reaction system is commonly
simplified by a fractional initiator efficiency fd , with 0 ≤ fd ≤ 1. A living
chain of length one is created by reaction of an initiator radical with a monomer
molecule. This step is typically so fast, that initiator radicals are, independently
from the monomer concentration, almost instantly consumed. In comparison,
initiator decomposition is much slower and therefore the time-determining step
considering both consecutive reactions. Hence, a quasi-steady state approxima-
tion can be adopted for the initiator radicals, as long as monomer is present in
the system in abundance. Then monomer consumption by chain initiation is
directly linked to the initiator concentration without the need of balancing the
initiator radical

rF
I∗
∣∣
d = 2 fdrd− kp [I∗] [M]≈ 0 (2.74)

rF
M
∣∣
i =−kp [I∗] [M]≈−2 fdrd (2.75)

rF
R1

∣∣
i = kp [I∗] [M]≈ 2 fdrd . (2.76)

Accordingly, the first two reactions in Table 2.2 are commonly condensed into
one single step.
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Chain Propagation

Chain propagation is the main reaction in free radical polymerisation. A mono-
mer molecule attaches at the radical site of the chain. The radical is transferred
to this monomer unit and the chain grows. If polymer of high molecular weight
is being produced, monomer will be virtually exclusively consumed by chain
propagation (Hutchinson 2005, p. 159). Commonly, this long-chain hypothesis
(LCH) is valid. Monomer consumption by initiation or transfer reactions is
practically negligible. Furthermore, the total heat of reaction is virtually solely
generated by chain propagation. The amount of living chains of length s shrinks
due to propagation reactions involving Rs molecules and grows by propagation
of Rs−1 chains. Rates of formation for living chains and monomer are

rF
Rs

∣∣
p = kp ([Rs−1]− [Rs]) (2.77)

rF
M
∣∣

p =−kp ∑
s
[Rs] =−kp [Rtot ] , (2.78)

with [Rtot ] being the total concentration of living chains.

Termination

If two living chains react with each other, their radicals will be deactivated
and chain propagation stopped. Both chains either remain seperately as two
dead chains (termination by disproportionation) or combine to one single dead
chain (termination by recombination). With respect to the consumption of liv-
ing chains, both possibilities are mathematically identical, whereas the rate of
formation of dead chains depends on the kind of termination

rF
Rs

∣∣
td+tc = (ktd + ktc) [Rs]∑

t
[Rt ] = (ktd + ktc) [Rs] [Rtot ] (2.79)

rF
Ps

∣∣
td = ktd [Rs]∑

t
[Rt ] = ktd [Rs] [Rtot ] (2.80)

rF
Ps

∣∣
tc = ktc

s−1

∑
t=1

[Rt ] [Rs−t ] . (2.81)

Transfer to Monomer or Solvent/Transfer Agent

Along propagation, a living chain may react with a monomer molecule and trans-
fer its radical to the monomer without addition of this monomer unit to the chain.
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In doing so, the living chain is terminated and the monomer becomes a living
chain of length one. Whereas this reaction is by far less probable than propaga-
tion, it affects the chain length distributions of living and dead chains. The re-
sulting living chain only contains one monomer unit, thus reducing the average
chain length of the living polymer species and thus the degree of polymerisation
of dead chains. Similarly, living chains can react with solvent or a special trans-
fer agent, which can be used in order to control/limit the polymer’s molecular
weight. In most cases, solvent or transfer agent radicals are short-lived, and it
can be assumed that the initiation of a new chain by these radicals has a similar
time scale as one propagation step (Hutchinson 2005, p. 167)

rF
Rs

∣∣
tr =−ktrm [M] [Rs]− ktrs [S] [Rs] (2.82)

rF
R1

∣∣
tr = ktrm [M]∑

s
[Rs]+ ktrs [S]∑

s
[Rs] (2.83)

rF
Ps

∣∣
tr = ktrm [M] [Rs]+ ktrs [S] [Rs] (2.84)

rF
M
∣∣
tr =−ktrm [M]∑

s
[Rs]− ktrs [S]∑

s
[Rs] . (2.85)

Transfer to Polymer

If a living chain reacts with an already terminated polymer chain, it can transfer
its radical to one of the monomer units of the dead chain. The radical is typically
not situated at the end of the reactivated chain and further propagation reactions
result in the formation of a side-chain. Accordingly, this transfer mechanism
is often reffered to as long-chain branching. Furthermore, as the number of
possible monomer units which may be attacked is proportional to the length of
the dead chain, the probability of this reaction is increased with a higher degree
of polymerisation. Unlike in most other polymerisation reactions, the reaction
rate is therefore depending on the chain length of the reacting dead chain

rF
Rs

∣∣
trp =−ktrp [Rs]∑

t
t [Pt ]+ ktrps [Ps]∑

t
[Rt ] (2.86)

rF
Ps

∣∣
trp = ktrp [Rs]∑

t
t [Pt ]− ktrps [Ps]∑

t
[Rt ] . (2.87)

The notation of branched polymers is simplified here. Often an additional
branching index is added to the polymer species, indicating for the number of
side-chains in the polymer molecule. A living or dead polymer Rs,t and Ps,t then
denotes a polymer molecule of length s with t branches.

26



2.3. MODELLING OF FREE RADICAL POLYMERISATION

2.3.2 Quasi-Steady-State Assumption (QSSA)

In free radical polymerisation, there is almost instantly an equilibrium between
the generation of new radicals and the termination of chains. Due to the fast
dynamics of the radical reactions in comparison to the polymerisation system at
all, a quasi-steady-state assumption for the total concentration of living chains
can be applied (Hutchinson 2005, p. 159)

ri = rtd + rtc (2.88)

[Rtot ] =

√
2 f kd [I]

(ktd + ktc)
. (2.89)

Furthermore, the kinetic chain-length ν (the average length of living chains)
can be obtained from the ratio of consumed monomer due to propagation to the
number of terminated or due to transfer reactions reactivated living chains. The
current degree of polymerisation DPinst of the chains generated at an instant
is calculated in an analogous way. However, the number of originating dead
chains by termination is dependent on the kind of termination (Hutchinson 2005,
p. 159)

ν =
rp

rt + rtr
=

kp [M]

(ktd + ktc) [Rtot ]+ ktrm [M]+ ktrs [S]
(2.90)

DPinst =
rp

rtd +0.5rtc + rtr
=

kp [M]

(ktd +0.5ktc) [Rtot ]+ ktrm [M]+ ktrs [S]
. (2.91)

Similar expressions can be derived for copolymerisation systems. Following the
QSSA, the radical concentration as well as the instant number averages of the
chain length distributions of living and dead chains can be obtained solely from
the educt concentrations, namely initiator and monomer, by means of algebraic
equations. Through this, it is a very efficient approach if only number averaged
values need to be obtained and the primary polymerisation reactions are propa-
gation, termination and transfer to monomer/solvent. The (cumulated) average
molar mass of the polymer can be evaluated, if both the concentration and the
partial density of dead chains are balanced as components, as well. More com-
plicated reactions, such as transfer to polymer, cannot be considered. Besides,
this approach does not provide any information on the weight averages of the
chain length distribution and, accordingly, on the dispersity of the generated
polymer. It is, however, possible to obtain these values, under the presumption
that there are only linear chains (Hutchinson 2005, p. 201).
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2.3.3 Method of Moments

Generally, statistical moments λ
f

k of a distribution of an entity f (s), depending
on a variable s, are defined as

λ
f

k =
∫ smax

smin

sk f (s)ds, (2.92)

where k is the index of the moment. Unlike other systems, such as droplet size
distributions in a spray, the chain length distributions of polymers are not based
upon a continuous variable, but on the discrete number of monomer units s in
the chains. Thus, the integral is changed to a summation over all possible chain-
length with step-size one. The k-th moments of the chain-length distributions of
dead (P, ζk) and living (R, λk) chains are then expressed as follows

ζk =
∞

∑
s=1

sk [Ps] (2.93)

λk =
∞

∑
s=1

sk [Rs] . (2.94)

The zeroth moment is just the summation of the concentrations of all chains and
therefore denotes the total concentration of polymer, whereas the first moment
yields the number of monomer units in all chains. Higher moments do not have
a distinct meaning with respect to the polymeric system. Number (Pn), mass
(Pm) and Z averages (Pz) of a chain length distribution are obtained by

Pn =
number of monomer units in chains

number of chains
=

∑s s [Ps]

∑s [Ps]
=

ζ1

ζ0
(2.95)

Pw =
∑s s2 [Ps]

∑s s [Ps]
=

ζ2

ζ1
(2.96)

Pz =
∑s s3 [Ps]

∑s s2 [Ps]
=

ζ3

ζ2
. (2.97)

The dispersity ÐX (formerly polydispersity index, PDI) is

ÐX =
Pw

Pn
=

ζ0ζ2

ζ 2
1

. (2.98)

The moments’ reaction rates are obtained from the rate of formation considering
a chain length s, subsequent multiplication with sk and summation over all s.
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As an example, the moments’ formation rates with respect to termination by
combination can be derived from the differential equations of living chains of
size s as follows:

d [Rs]

dt

∣∣∣∣
tc
=−ktc [Rs]∑

t
[Rt ] (2.99)

∞

∑
s=1

sk d [Rs]

dt

∣∣∣∣
tc
=−ktc

∞

∑
s=1

sk [Rs]∑
t

t0 [Rt ] (2.100)

rF
λk

∣∣∣
tc
=

dλk

dt

∣∣∣∣
tc
=−ktcλ0λk. (2.101)

If the k-th moment only depends on moments of order k or lower, moment equa-
tions are closed. If, however, the number of unknown moments exceeds the
number of equations, the system is not closed and additional assumptions have
to be met. An example is transfer to polymer, in which the reaction rate depends
on the chain length of the dead chain. In

∑sk d [Rs]

dt

∣∣∣∣
trp

=−ktrp ∑sk [Rs]∑
t

t [Pt ]+ ktrp ∑sks [Ps]∑
t
[Rt ]

dλk

dt

∣∣∣∣
trp

= ktrp (−λkζ1 +ζk+1λ0) (2.102)

dζk

dt

∣∣∣∣
trp

= ktrp (λkζ1−ζk+1λ0) (2.103)

the k+1-th moment of the distribution of dead chains is required for the calcu-
lation of the k-th moment of living and dead chains’ distributions. Commonly,
the moments of order zero to two are balanced in a mathematical model and
the third moment ζ3 needs to be obtained by a closing condition. Hulburt and
Katz (1964) expressed the moments of a distribution by a Laguerre polynomial.
Under the condition that this polynomial can be truncated after the first term
with sufficient accuracy, this term provides a closing condition based on the first
three moments ζ0, ζ1 und ζ2, which can be applied to all remaing moments of
the distribution. The third moment is then

ζ3 =
ζ2

ζ0ζ1

(
2ζ0ζ2−ζ

2
1
)
. (2.104)

The moment formation rates with respect to the distributions of living and dead
chains are summarised in Table 2.3.
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Table 2.3: Formation rates of statistical moments in free radical homopolymeri-
sation for initiation, propagation, termination by disproportionation or combina-
tion and transfer to monomer and polymer.

moment rate of formation

λ0 2 f kd [I]− (ktd + ktc)λ0
2

λ1 2 f kd [I]+ kp [M]λ0− (ktd + ktc)λ0λ1− ktrm [M] (λ1−λ0)

−ktrp (λ1ζ1−λ0ζ2)

λ2 2 f kd [I]+ kp [M] (2λ1 +λ0)− (ktd + ktc)λ0λ2− ktrm [M] (λ2−λ0)

−ktrp (λ2ζ1−λ0ζ3)

ζ0 (ktd +0.5ktc)λ0
2 + ktrm [M]λ0

ζ1 (ktd + ktc)λ0λ1 + ktrm [M]λ1 + ktrp (λ1ζ1−λ0ζ2)

ζ2 (ktd + ktc)λ0λ2 + ktcλ1
2 + ktrm [M]λ2 + ktrp (λ2ζ1−λ0ζ3)

A different approach in order to close the moments are bulk moments, which
have been introduced by Arriola (1989, p. 12) and refer to the combined distri-
bution of both living and dead chains

µk = λk +ζk ≈ ζk. (2.105)

Reaction rates of bulk moments (Table 2.4) can simply be obtained by addition
of corresponding expressions for λk and ζk. The terms of transfer to polymer
cancel each other out. After a negligible starting-up phase ζk � λk. The mo-
ments of the dead chains are virtually identical to the bulk moments and can be
replaced by those when calculating the reaction rates of living chains’ moments.
Furthermore the calculation of bulk moments only requires the moments of the
living chains up to first order. Hence, the moment equations are closed with five
equations providing full information about the statistical values of the obtained
polymer (Hutchinson 2005, p. 201). If the truncation of the Laguerre polyno-
mial does not significantly affect the accuracy of approximation of the moment’s
distribution, both approaches for closure will provide comparable results. This
has, for instance, been shown by Baltsas, Achilias, and Kiparissides (1996) for
the application of a copolymerisation with long-chain-branching in a CSTR.

The method of moments offers several advantages. The complicated sys-
tem of polymerisation reactions can be expressed by only six, in case of bulk
moments five, differential equations for the moments. Thereby the method is
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Table 2.4: Reaction rates of bulk moments in free radical homopolymerisation.

moment rate of formation

µ0 2 f kd [I]−0.5ktcλ0
2 + ktrm [M]λ0

µ1 2 f kd [I]+ kp [M]λ0 + ktrm [M]λ1

µ2 2 f kd [I]+ kp [M] (2λ1 +λ0)+ ktcλ1
2 + ktrm [M]λ0

very fast and comparably easy to implement. In comparison to the QSSA not
only the number average of a chain length distributions, but the mass average
and polydispersity can be obtained as well. Furthermore, it is very versatile and
a great variety of different polymerisation reaction mechanisms can be imple-
mented. Additional properties like the distribution of incorporated monomer of
different kind in copolymerisation or the number of branches or crosslinks can
be considered using additional moment indices. The computed values are math-
ematically exact, as long as the moment equations are closed. The complete
curve of the chain length distribution cannot be obtained from the statistical mo-
ments. Number and mass average values are often of main interest, though, and
provided by the method of moments in a consistent manner.

2.4 Mixture Thermodynamics

Thermodynamics affect the evaporation of volatile components and Maxwell-
Stefan diffusion. Mixed components may behave strongly different to pure
species. In ideal mixtures, physical values or effects are just "scaled" by the
mole fractions of the single species, e.g. one component’s vapour pressure at
the droplet’s surface behaves proportional to its mole fraction. This corresponds
with the lower surface coverage of this species in a mixture and is sensible if
molar volumes of different components are similar. Macromolecules, by con-
trast, occupy a much larger part of the droplet surface area than their fraction of
the total mole number suggests. In case of spray polymerisation, the assumption
of ideality is therefore not sufficient. Mixture thermodynamics need to be taken
into account and directly affect mass transfer at the droplet surface. Concerning
diffusion, thermodynamics are required in Maxwell-Stefan equations. If gener-
alised or pseudo-binary Fick’s laws are applied, the concentration dependency
of the diffusion coefficients implicitly includes thermodynamical effects.
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2.4.1 Vapour Liquid Equilibrium at the Droplet’s Surface

At the interface between liquid (superscript L) and gas (G), there is thermody-
namic equilibrium between both phases

µ
L
j = µ

G
j (2.106)

γ jx j f 0
j = ϕ j pG

j . (2.107)

γ j is the activity coefficient of compontent j with a j = γ jx j defining the thermo-
dynamic activity a j. f 0

j and ϕ j are the liquid phase reference fugacity and the
vapour phase fugacity coefficient, respectively. pG

j denotes the partial pressure
of species j in the gas phase, directly at the liquid surface. The vapour phase fu-
gacity coefficient accounts for the non-ideality of the gas phase and is typically
derived by a virial equation. The reference fugacity f 0

j of an incompressible
liquid (no pressure dependence of the molar volume v j) is defined as

f 0
j = ϕ

S pS (T )e
v j(p−pS)

ℜT (2.108)

pS is the saturation pressure. The exponential term is also known as the Poyn-
ting factor. At moderate pressures, it typically does not vary significantly from
one and can be neglected. ϕS is the vapour phase fugacity of component j at
saturation, again accounting for the non-ideality of the gas-phase. Assuming
ideal gas and neglecting the Poynting factor, the vapour liquid equilibrium at
the droplet surface

pG
j = γ jx j pS (T ) (2.109)

provides an equation for the partial pressure of species j, which can be further
applied in a linear driving force approach for mass transfer. The only value
accounting for non-ideality is the activity coefficient γ j. In case of ideal mixture
thermodynamics in the liquid, γ j = 1 and equation 2.109 further simplifies to
Raoult’s law

pG
j = x j pS (T ) . (2.110)

The saturation pressure can be derived by correlations like the ones of Clausius-
Clapeyron or the different kinds of Antoine’s equation. In this work, the three
parameter Antoine equation has been applied:

log10 pS = A− B
T +C

. (2.111)
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2.4.2 Calculation of Activity Coefficients

The activity coefficient γ j accounts for the non-ideal behaviour of component
j in a liquid mixture, whereas ideality corrsponds with γ j = 1. The literature
provides a variety of different thermodynamic models for the calculation of
activities in a mixture based on theoretical approaches and experimentally ob-
tained parameters. The Flory-Huggins model was one of the first theories to
account for the non-ideality of polymer mixtures (Flory 1942; Huggins 1941).
It predicts activity coefficients according to the molar volume of molecules and
an additional parameter accounting for interaction between different kinds of
molecules. In the 1970s, group contribution methods became popular, in which
the single molecules in a mixture are considered as aggregates of different func-
tional groups. The basic presumption of these methods is that the overall ther-
modynamic behaviour in a mixture can be derived from characteristics of these
basic groups and interactions amongst them. Whereas group properties, such
as van der Waals volumes and surfaces, are typically kept fixed, interaction
parameters have to be derived by experiments and their values are frequently
updated. The charm of such models lies in their fairly good ability of extrap-
olating binary data. Whereas experimental data is often available for binary
mixtures, it is elaborate to obtain reliable values for mixtures containing three
or more components. Group contribution models tuned to binary experiments
have proven to provide reasonably good results, when adapting the correspond-
ing group interaction parameters to polynary mixtures. Popular group contribu-
tion models are UNIQUAC (UNIversal QUAsi Chemical, Abrams and Praus-
nitz 1975) and especially UNIFAC (UNIversal quasichemical Functional group
Activity Coefficients, Fredenslund, Jones, and Prausnitz 1975) and its various
descendents. In the context of polymer thermodynamics the PC-SAFT equation
of state (Perturbed-Chain Statistical Associating Fluid Theory, Gross and Sad-
owski 2001) provides very good data, but is very complex and may rather be
applied by external software. An ordinary UNIFAC implementation is applied
within this work for reasons of simplicity.
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2.4.3 The UNIFAC Equations

UNIFAC and its variants belong to the class of so called gE models, which relate
the activity coefficients to the excess Gibbs free energy (Abrams and Prausnitz
1975)

ngE = ℜT ∑
j

n j lnγ j −→ ℜT lnγ j =
∂
(
ngE
)

∂n j

∣∣∣∣∣
T,p,ni 6= j

. (2.112)

The activity coefficient γ j of a species j in a mixture is described by

lnγ j = lnγ
C
j + lnγ

R
j (2.113)

The combinatorial part γC
j accounts for size and shape effects. It only depends

on the van-der-Waals volumes and surfaces of the single groups and is temper-
ature independent. Energetic group interactions are considered by the residual
contribution γR

j , which is determined by experimentally adjusted group interac-
tion parameters and the temperature.

The combinatorial contribution corresponds with the older UNIQUAC model
(Abrams and Prausnitz 1975; Fredenslund, Gmehling, and Rasmussen 1977,
pp. 24, 31)

lnγ
C
j = ln

Φ j

x j
+

z
2

q j ln
θ j

Φ j
+ l j−

Φ j

x j
∑
k

xklk. (2.114)

l j =
z
2
(r j−q j)− (r j−1) θ j =

q jx j

∑k qkxk
Φ j =

r jx j

∑k rkxk
.

The coordination number z is generally chosen to 10. Φ and θ are the molecular
volume and surface area fractions, respectively. The molecular volumes and
surface areas r j and q j are defined as

r j = ∑
k

ν
( j)
k Rk q j = ∑

k
ν
( j)
k Qk (2.115)

based on the volumes R j and surface areas Q j of the single groups within a
molecule, with ν

( j)
k being the number of groups k in a molecule j. These

group values rely on measured van der Waals group volumes and surface areas,
taken from Bondi (1968), which are normalised with respect to the standard seg-
ment values of a single CH2 group in a polyethylene molecule of infinite length
(Abrams and Prausnitz 1975). The residual contribution

lnγ
R
j = ∑

k
ν
( j)
k

(
lnΓk− lnΓ

( j)
k

)
(2.116)
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relies on the residual activity coefficients Γk of group k in a solution (Fre-
denslund, Gmehling, and Rasmussen 1977, p. 28), with Γ

( j)
k being the corre-

sponding activity coefficient in pure component j

lnΓk = Qk

[
1− ln

(
∑

j
ΘmΨmk

)
−∑

m

(
ΘmΨkm

∑n ΘnΨnm

)]
(2.117)

Θm =
QmXm

∑n QnXn
Xm =

∑ j ν
( j)
m x j

∑ j ∑n ν
( j)
n x j

Ψnm = e−
anm

T .

Θm and Xm denote the group surface area fraction and the group fraction in the
mixture, respectively, whereas the parameter Ψnm accounts for the temperature
dependent interaction between groups, based on the group-interaction parameter
anm, which essentially is an activation energy (with the division by ℜ already
incorporated into the value so that it has the unit of a temperature).

In the UNIFAC model, sub-groups and main groups are distinguished. Sub-
groups within a main group are of equivalent kind so that they do not show
considerable energetic interactions amongst themselves. Hence, only different
main groups contribute to the residual part γR

j . However, the sub-groups are
of different volume and surface area - like, as an example, the chain segments
C, CH, CH2 and CH3 of the first main group CH2. Hence the combinatorial
contribution depends on the distinct sub-group volumes and surface areas.

2.5 Spray Drying: Basic Assumptions and Physi-
cal Effects with Respect to Single Droplets

Mathematical modelling in this work is focused on processes within droplets.
Single droplet drying models generally apply a number of simplifying assump-
tions. Heat and mass transfer are typically based on linear driving force ap-
proaches based on dimensionless numbers rather than on resolving the respec-
tive transport equations in the gas in detail. The effect of inner circulation inside
the droplet is typically neglected. In the following these common approaches in
single droplet modelling and some basic estimations of the whole drying process
will be introduced.
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2. THEORETICAL PRINCIPLES

2.5.1 Approximate Residence Time in a Spray Dryer

The three-dimensional flow field in a spray dryer is complicated and depends
on various parameters like incoming gas fluxes, droplet atomisation, operation
mode (co- or counter-current) and the geometry of the spray dryer. The resi-
dence time of a droplet within a dryer therefore not only depends on its size
but may also differ locally and over time. As a very rough rule of thumb, the
residence time of a droplet with radius R in a spray dryer of height H can be es-
timated by Stokes’ relation for the terminal velocity of a spherical object within
stagnant air (Stokes 1851):

v(R) =
2g

9ηG

(
ρ

L−ρ
G)R2 (2.118)

t (R) =
H
v
=

9ηG

2g(ρL−ρG)

H
R2 . (2.119)

g is the force of gravity and the superscripts L and G denote the liquid and gas
phase, respectively. Gunn and Kinzer (1949) found that the terminal velocity of
water droplets in stagnant air corresponds with Stokes’ solution for droplet radii
smaller than approximately 50µm. In case of larger droplets it is overestimated
by Stokes’ law. Figure 2.2 provides the correlation of falling time, height and
droplet radius obtained by Stokes’ equation for the terminal velocity
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Figure 2.2: Falling time according to
Stokes’ law in dependence of height and
droplet radius.

Residence time distributions have
been measured by Kieviet and Kerk-
hof (1995) and Mazza, Brandão, and
Wildhagen (2003). A particle size
distribution with dw,50 = 134µm ex-
hibited a median residence time of
58.5s within a pilot-plant co-current
spray dryer of ≈ 3.7m height in
the experiments of Kieviet and Kerk-
hof. Mazza, Brandão, and Wildhagen
measured an estimated average resi-
dence time of 72.5s for final particles
of about 4.4µm volumetric median di-
ameter in a pilot-plant dryer of about
1.8m height. Both investigations found that the residence times of droplets may
differ significantly to the one of the drying gas.
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2.5. SPRAY DRYING: BASIC ASSUMPTIONS

Reactive drying processes do not only necessitate completion of product dry-
ing but also of chemical reactions. In comparison to batch, continuous stirred
tank or tube reactors, the residence time of a drop therefore sets a limitation
to processes, which are often carried out on considerably larger time scales.
With respect to spray polymerisation, this process route is only feasable for fast
polymerisation reactions such as poly acrylic acid synthesis. When discussing
simulation results, residence times can be presumed in the order of magnitude
of less than ten to one hundred seconds, depending on the droplet size.

2.5.2 Heat and Mass Transfer

As in many other applications, heat and mass transfer in spray drying are typi-
cally approximated by averaged approximate rules based on the dimensionless
Nusselt and Sherwood numbers. The contributions of convection and diffusion
within a boundary layer surrounding the droplet are boiled down to heat or mass
transfer coefficients acting on linear driving forces. In doing so, the drying be-
haviour can be well represented and the models are greatly simplified, without
the need of detailed knowledge on a local flowfield. The heat flux based on a
heat transfer coefficient α is defined as (Baehr and Stephan 2010, p. 12)

~̇qΓ = α
(
T sur f −T ∞

)
~n, (2.120)

where T ∞ is he temperature outside the boundary layer (in this case around the
droplet) and T sur f the surface temperature. ~n is the unit normal towards the
interface, pointing from the surface into the boundary layer. The superscript Γ

denotes that an interfacial flux is calculated. In the same way the mass flux over
an interface is expressed as (Baehr and Stephan 2010, p. 86)

~ΩN
j = ~J Γ,N

j = β

(
csur f

j − c∞
j

)
~n

ideal gas
=

β

ℜT̄

(
psur f

j − p∞
j

)
~n, (2.121)

in which β is the mass transfer coefficient and the superscripts sur f and ∞ again
denote the conditions on the surface and outside the boundary layer, respectively.
In the following, mass and molar fluxes across the interface between droplet and
drying gas will be written as ~Ω j and ~ΩN

j , respectively. When expressed in terms
of partial pressures on the right hand side of equation 2.121, the temperature T̄
is averaged over the boundary layer. The heat and mass transfer coefficients are
expressed by the corresponding heat and mass conductivities λ G and DG and the
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2. THEORETICAL PRINCIPLES

extend of the boundary layer. This geometric factor L can be considered as the
length scale of the problem. Additionally, the effect of the flowfield withing the
geometry is taken into account by the dimensionless Nusselt Nu and Sherwood
Sh numbers (Baehr and Stephan 2010, pp. 20, 88)

α =
λ G

L
Nu (2.122)

β =
DG

L
Sh. (2.123)

In case of a droplet, L equals the droplet diameter. There are many (slightly)
different Nusselt and Sherwood correlations in the literature of droplet drying,
Typically, these depend on the Reynolds and Prandtl or Schmidt numbers, like
the ones being proposed by Ranz and Marshall (1952a,b):

Nu = 2+0.6Pr1/3Re1/2 (2.124)

Sh = 2+0.6Sc1/3Re1/2. (2.125)

A value of 2 is the lower limit of both numbers and corresponds with heat and
mass transfer in stagnant air. For the main purpose of this work, modelling
of spray polymerisation and the development of a model considering structure
evolution, the differences in calculating the Nusselt and Sherwood numbers in
various models are of minor interest. For reasons of simplicity, Nusselt and
Sherwood numbers are presupposed depending on the initial droplet geometry
and kept fixed throughout the computations in this work. The fluid within the
boundary layer is assumed as an ideal gas as on the right hand side of equation
2.121. The averaged temperature inside the boundary layer T̄ is obtained using
the surface temperature and T ∞ via an arithemtic mean.

2.5.3 Inner Circulation Inside a Droplet

The assumption of ideal sphericity neglects transport in azimuthal direction.
However, due to friction at the droplet surface the gas flow around the drop
will induce a circular liquid flux inside the droplet. The impact of this effect
has been estimated by Muginstein, Fichman, and Gutfinger (2001). The liquid
velocity tangential to the droplet surface vL corresponds to the relative velocity
of the droplet to the gas and its radius R by

vL =
ηG

ηG +ηL (1−2R)vG ≈ 1
50

vG. (2.126)
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2.5. SPRAY DRYING: BASIC ASSUMPTIONS

If diffusive mass transfer is intense, convective mixing inside the drop is sub-
ordinate. Muginstein, Fichman, and Gutfinger found that the effect of inner
circulation can be neglected if the Péclet number of the liquid near the droplet
surface

PeL =
vLδ L

DL (2.127)

is smaller than 100, with DL being the diffusion coefficient in the liquid and δ L

the thickness of the thin liquid film at the droplet surface. Stokes’ equation 2.118
overestimates the velocity relative to the gas for large droplets and is therefore
conservative with respect to lateral liquid motion inside the drop. Assuming
this film being at least one order of magnitude smaller than the droplet radius,
the minimum diffusion coefficient, at which the effect of inner circulation is
negligible, is

DL >
vL0.1R

100
≈ g

(
ρL−ρG

)
R3

225000ηG . (2.128)

Droplet diameters of 50, 75 and 100 µm yield minimum diffusion coefficients
of about 0.26, 0.86 and 2.08×10−9 m2/s. With diffusion coefficients in liquid
mixtures being in the order of 10−9 m2/s, an intensification of mass transfer due
to internal mixing might occur for droplet radii larger then 75 µm. On the other
hand, Stokes’ equation overestimates the terminal velocity for droplets of this
size that the effect will still be comparably small. Mixtures containing a signifi-
cant amount of polymer exhibit much smaller diffusion coefficient, caused by an
increase of fluid viscosity. In the first approximation, both sides of the equation
will change similarly so that inner mixing is not affected and the Peclet number
remains in the same order of magnitude as before.

Concerning single droplet experiments in an ultrasound levitator, liquid mo-
tion may be intensified. According to Brenn et al. (2007), acoustic streaming
around the droplet induces additional convection inside the droplet and a fully
mixed regime is to be assumed. On the contrary, Sloth et al. (2006) employ the
approach of Muginstein, Fichman, and Gutfinger with the result that solely ra-
dial gradients have to be accounted for. Both contributions provide model results
in accordance with experimental findings, which makes it difficult to provide a
general statement. Application of the models in this work to ultrasound levi-
tator experiments may therefore necessitate further consideration of additional
convection inside the droplet. For droplet motion within a gas, especially the
case of small droplets, inner circulation can be considered as negligible.
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2. THEORETICAL PRINCIPLES

2.5.4 Are Droplets Fully Mixed?

Even if homogenisation due to inner circulation needs not to be taken into ac-
count, diffusive transport may lead to complete mixing of the droplet with re-
spect to either heat or mass transport - or both. The Biot numbers (subscript m
for mass transfer) set the diffusivities on both sides of an interface into relation
and provide therefore a measure for diffusive equilibration within the droplet
for given heat and mass transfer coefficients (Baehr and Stephan 2010, p. 130)

Bi =
αR
λ L =

λ GNu
λ L ·2 (2.129)

Bim =
βR
DL =

DGSh
DL ·2 . (2.130)

A heat transport Biot number smaller than 0.1 denotes that diffusive transport
within an object is fast compared to outer transport so that a lumped approxima-
tion of the whole body without resolving inner transport is feasible (Baehr and
Stephan 2010, p. 196). Insertion of approximate values for nitrogen and water
(the order of magnitude is relevant)

Bi≈ 0.03
0.6

Nu
2

= 0.025Nu (2.131)

Bim ≈
10−5

10−9
Sh
2

= 5000Sh, (2.132)

the droplet can be assumed as fully mixed with respect to heat transport as long
as the Nusselt number is fairly low. Parti (1994) points out that despite the other-
wise valid assumption of equality of heat and mass transfer, the Biot mass num-
ber cannot be interpreted similar to the heat transfer Biot number. As concentra-
tions and their gradients differ between liquid and gas by orders of magnitude,
the mass flux over an interface can be small even if the mass transfer coefficient
is comparably high. Consequently, a problem may still be treated in a lumped
way even if the mass transfer Biot number exceeds the limit value of 0.1. Con-
sidering maximum water concentrations in liquid of about 55.5×103 mol/m3

and 33 mol/m3 in the drying gas (at 100 °C) the ratio between liquid and gas
concentrations is about 1700. Hence, the limit mass transfer Biot number is in
the order of 170 and values below indicate full mixing of the droplet. Hence, the
approximated Bim indicates that mass transport needs to be modelled in detail
and that lumped modelling will introduce errors. Yet, the effect is not as large
as the very high mass transfer Biot number suggests at first glance.

40



3. SINGLE DROPLET

MODELLING OF SOLUTION

DRYING, REACTIVE

DRYING AND SPRAY

POLYMERISATION

Spray drying is a very common process in industries. Its wide span of appli-
cations is reflected in a variety of different kinds of mathematical models. Free
radical polymerisation is typically carried out in a solution. Model equations are
therefore limited to a solution of one single, quasi-homogeneous phase in this
work. A disperse phase is not considered. Spherically symmetric droplets are
presumed, which is common practice for spray drying in the literature and fea-
sible regarding the considerations in sections 2.5.3 and 2.5.4. Spatial gradients
are hence limited to the radial direction. It is possible to enhance the methodol-
ogy presented here to cases, in which a solid crust occurs, by implementation of
an additional continuous phase and a further interface between both phases.

Typical literature models for single droplet drying employ transport equa-
tions for mass fractions. In this work, model equations are derived in both mass
and molar notation for several reasons. In case of drying without reactions, it
is appropriate to use mass fractions or partial densities, as one is rather inter-
ested in the mass, which has evaporated from a droplet, than in the number
of moles or molecules. Moreover, the feed material is more easily described
by weighted portions. Easy chemical reactions can be modelled using a mass
based description as well. In case of a non-ideal mixture behaviour or com-
plicated reactions like spray polymerisation, however, a molar formulation is
favourable. The statistical moments of the chain length distribution are con-
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3. MODELLING OF REACTIVE DROPLET DRYING AND POLYMERISATION

centrations, which makes it reasonable to calculate all species using a molar
description. Furthermore, the diffusive behaviour of the polymeric system is
not trivial, even for the simple approach of (pseudo-)binary Fickian diffusion,
as will be shown in sections 3.1.4 and 3.1.5. When modelling higher moments
or the molar weight, polymer diffusion needs to be considered with respect to
the single chain molecules rather than a polymer partial density.

First of all, a lumped model of (reactive) solution drying processes will be
discussed shortly, which does not account for transport limitations inside the
droplet and assumes an ideal drying behaviour. After this, a one-dimensional
model will be derived, considering drying of one quasi-homogeneous phase
with additional chemical reactions. This model is valid either for drying of a
solution without reactions or reactive drying processes with constant physical
properties of the concerned species. Except for special cases like spray poly-
merisation, it covers the majority of imaginable reactive drying processes. Sub-
sequently, a further developed reactive drying model will be discussed, which
accounts for the peculiarities of spray polymerisation, namely the non-constant
averaged molar mass of the polymer. At last, the implementation of single drop-
let reactive drying models into a numerical code will be discussed.

3.1 Transport in a Reaction-Diffusion System -
Diffusion and Reaction Driven Convection

In a mixture of various species having different densities, the average density
varies according to changes in the mixture composition over space or time. Dif-
fusion of species with different densities then leads to a change in the overall
density and, considering the continuity equation 2.3 or 2.28, to a non-zero veloc-
ity field. Considering two control volumes, the diffusive volume fluxes between
these do not necessarily add up to zero (as the corresponding molar or mass
fluxes do) - depending on the specific volumes ( 1

ρ j
or MW j

ρ j
) of the respective

species. As a consequence one of these volumes would expand, whereas the
other element would shrink. The diffusion induced convective flux corrects this
in such a way, that both elements preserve their volume and the continuity equa-
tion is fulfilled. A similar effect occurs in case of volume or density changing
chemical reactions. If the density of a reaction product within a droplet is higher
than the educt’s value, the droplet will shrink due to chemical reactions. In a
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3.1. TRANSPORT IN A REACTION-DIFFUSION SYSTEM

spatially resolved model this can only be considered as an effect of convection.
As densities of the species contained in a mixture in drying applications are only
identical in exceptional cases, such convective effects have to be considered in
model development. Nevertheless, there exists a couple of drying models in lit-
erature, which do not account for convection (e.g. Sloth et al. 2006). Applied to
a mixture containing components of different densities, these models violate the
continuity equation and are not mass-conservative. The drying models of Sey-
del (2005), Handscomb, Kraft, and Bayly (2009, and subsequent publications)
and Czaputa and Brenn (2012) contain a diffusion driven convective term. Still,
their approaches are limited to binary mixtures and Fickian diffusion and do not
account for density changing chemical reactions.

In distributed polymerisation systems, convective and diffusive transport in-
volves the polymer species, as well. At first glance, it might be counterintuitive
that very large macromolecules diffuse at all. However, this phenomenon is a
direct consequence of diffusive transport of the other species in a mixture. If in
a binary system a solvent is diffusing into a polymer, diffusion of the polymer
component is simply the countermotion to diffusive solvent transport or, from a
molecular point of view, solvent and polymer molecules swap places. In mathe-
matical perception, the sum of all diffusive fluxes has to be zero, which implies
that there must be a diffusive polymer flux opposite to the solvent flux. Swelling
of a polymer as a result of solvent diffusion is an example.

In order to quantify the effect of diffusion and chemical reactions on the
velocity field, an additional equation is necessary, as the continuity equation
cannot be solved for the velocity field. Typically, the pressure is computed
by an additional algebraic equation in CFD methods and then inserted into the
momentum balance in order to derive the velocity change. Yet, this course of
action is not necessary for both diffusion and reaction induced convection.The
volume fraction ϕ of a single component can be calculated as follows:

ϕ j =
ρ j

ρ0
j
=

c jMWj

ρ0
j

. (3.1)

ρ0
j is the reference density of j, which is - under the assumption that there are

no mixing effects on the partial volumes of the species, in other words no excess
volumes occur - the density of the pure substance j and constant. The sum of
all volume fractions is naturally one, which gives a closing condition

∑ϕ j = ∑
ρ j

ρ0
j
= ∑

c jMWj

ρ0
j

= 1. (3.2)
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Having n components, only n− 1 partial densities or concentrations are inde-
pendent. A velocity field must ensure, that equation 3.2 is always fulfilled.
This closing condition can, hence, be applied at boundaries, where all fluxes
are balanced in algebraic equations. A constraint for the component transport
equations is derived by taking the derivative of equation 3.2 with respect to time.

In the vast majority of drying processes with or without chemical reactions
the assumption of constant densities ρ0

j and molar weights is valid and will there-
fore be applied in the following. An approach for cases, where excess volumes
cannot be neglected, will subsequently be discussed in short. In polymerisation
processes the averaged molar weight of the polymer species is typically not con-
stant any more, but a function of both time and space. This peculiarity will be
adresses in section 3.1.3.

3.1.1 Constant Physical Properties

The derivative of equation 3.2 with respect to time is under the assumptions of
ρ0

j = const. and MWj = const.

∑
1

ρ0
j

∂ρ j

∂ t
= ∑

MWj

ρ0
j

∂c j

∂ t
= 0. (3.3)

Inserting the transport equation 2.11 and using again the closing condition 3.2
one can obtain a relation between diffusion, chemical reactions and convection

0 = ∑
1

ρ0
j

(
−∇

(
ρ j~v+~j j

)
+ rF

j MWj

)
∇

(
∑

ρ j

ρ0
j
~v

)
=−∇∑

~j j

ρ0
j
+∑

rF
j MWj

ρ0
j

∇~v =−∇∑
~j j

ρ0
j
+∑

rF
j MWj

ρ0
j

. (3.4)

In a molar frame of reference, using the second part of equation 3.3 and equation
2.29, in a similar manner

∇~vN =−∇∑~JN
j

MWj

ρ0
j
−∑

rF
j MWj

ρ0
j

. (3.5)

is derived. Without chemical reactions, integration of equation 3.4 leads to

~v =~v0−∑
~j j

ρ0
j
. (3.6)
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The integration constant~v0 is the bulk velocity, which is independent from diffu-
sion and chemical reactions and contains the divergence-free part of the velocity
field. Additionally to this bulk velocity, diffusion and chemical reactions can be
considered as two independent, seperate contributions. Whereas the diffusion
induced velocity ~vD or ~vD,N can be derived by integration of the first term of
equations 3.4 or 3.5

~vD =−∑
~j j

ρ0
j

~vD,N =−∑~JN
j

MWj

ρ0
j
, (3.7)

the reaction induced velocity contribution~vR cannot be calculated directly. With

∇~vR = ∑
rF

j MWj

ρ0
j

(3.8)

a first order equation is obtained, which, generally, is underconstrained with
respect to all elements of ~vR. It can indeed be used in a flow solver for incom-
pressible liquids instead of the typical velocity constraint 2.8, which is to be
modified in this case as ρ 6= const. Still, this requires a solution of the momen-
tum balance in order to obtain the velocity field, even if one is solely interested
in component transport due to chemical reactions in absence of bulk convec-
tion. Nevertheless, for the special cases of one-dimensional problems equation
3.8 simply is a boundary value problem, which can be solved for ~vR with one,
single boundary condition.

Notably, the reaction induced velocity~vR is identical in both mass and molar
based notations as can be seen from the last terms of equations 3.4 and 3.5.
Whereas this fact might be surprising in the first place, it becomes clear if a
volume changing reaction within a batch reactor is considered. The fluid level
inside the reactor is raised or lowered according to the volume change with its
alteration being identical to the average reaction induced velocity at the liquid
surface. Of course, this effect will take place in the same way regardless whether
a molar or a mass based formulation of the problem is applied. As the bulk
velocity is independent from the choice of the frame of reference as well, mass
and molar based formulations only differ in regard of diffusion and the velocity
contribution related to this effect.
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Special Case: (Pseudo-)Binary Fickian Diffusion

Inserting Fickian diffusion according to equation 2.51 into the diffusion induced
velocity correlation 3.7 yields

~vD =−∑
~j j

ρ0
j
=−∑

1
ρ0

j
D(−∇ρ j +w j∇ρ)

= D∇∑
ρ j

ρ0
j
−D

1
ρ

∇ρ ∑
ρ j

ρ0
j
=− 1

ρ
D∇ρ =−D∇ lnρ. (3.9)

The total flux and the transport equation of a component j then become with
~v =~v0 +~vD +~vR

ρ j~v+~j j = ρ j

(
~v0− 1

ρ
D∇ρ +~vR

)
−D∇ρ j +w j∇ρ

= ρ j
(
~v0 +~vR)−D∇ρ j (3.10)

∂ρ j

∂ t
=−∇

(
ρ j
(
~v0 +~vR)−D∇ρ j

)
+ rF

j MWj, (3.11)

so that that the diffusion related velocity contribution can be eliminated. In a
molar based notation the same simplification can be applied, so that the diffusion
related velocity part and the transport equation become

~vD,N =−1
c

D∇c =−D∇ lnc (3.12)

∂c j

∂ t
=−∇

(
c j
(
~v0 +~vR)−D∇c j

)
+ rF

j . (3.13)

As the remaining velocity components are independent from a mass or molar
notation, equations 3.11 and 3.13 are identical and can be simply transformed
into one another by multiplication with the (constant) molar mass MWj. In
absence of a bulk flow and chemical reactions they become Fick’s second law. A
purely diffusive problem may exhibit a very large convective flux, if the specific
volumes ( 1

ρ0
j
, MW j

ρ0
j

) of the diffusing species differ strongly. From a numerical

point of view, this may introduce oscillations in higher order schemes so that
elimination of the convective flux as in equation 3.13 can be advantageous.

3.1.2 Consideration of Mixture Effects

If the volume occupied by a certain mass of a component j depends on the
other components in the mixture, the corresponding density ρ0

j is not constant
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anymore, but a function of the mixture composition, as well. The derivative of
equation 3.2 is in this case

∑
j

∂

∂ t

(
ρ j

ρ0
j

)
= ∑

j

(
1

ρ0
j

∂ρ j

∂ t
− ρ j

ρ0
j

2

∂ρ0
j

∂ t

)
= 0. (3.14)

Assuming that densities depend on the mass fractions of the components in the

mixture (ρ0
j = f (wk)) and that corresponding partial derivatives

∂ρ0
j

∂wk
are known,

∑
j

(
1

ρ0
j

∂ρ j

∂ t
− ρ j

ρ0
j

2 ∑
k

∂ρ0
j

∂wk

∂wk

∂ t

)
= 0 (3.15)

provides an expression, in which the component balance equations can be in-
serted, again. The resulting equation can be rather complicated and a straight-
forward solution for the diffusion and reaction induced velocity contributions is
hardly possible. Still, this equation can be used as an additional constraint in the
differential-algebraic system of equations in order to solve for the velocity as a
seperate variable. This means, that the equations are solved numerically for the
overall velocity~v, whereas the single contributions~vD and~vR remain unknown.
Approaches, in which the density ρ0

j depends on other quantities such as partial
densities, volume fractions etc., would be considered likewise.

3.1.3 Diffusion and Reaction Driven Convection at Variable
Molar Weights

In a polymeric system the (averaged) molar mass of the polymer may be a func-
tion of time and space. The total derivative of the molar formulation in the
closing condition equation 3.2 is

∑
∂

∂ t
c jMWj

ρ0
j

= ∑
∂c j

∂ t
MWj

ρ0
j

+∑
c j

ρ0
j

∂MWj

∂ t
= 0. (3.16)

∂MWj

∂ t
=

∂ (ρ j/c j)

∂ t
=

1
c j

∂ρ j

∂ t
− ρ j

c2
j

∂c j

∂ t
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The temporal derivative of MWj can be expressed using equations 2.46 and 2.29:

∂MWj

∂ t
=

1
c j

(
−∇

(
c jMWj~vN +MWj~JN

j

)
+ rF

j MW inst
j

)
−MWj

c j

(
−∇

(
c j~vN + ~JN

j

)
+ rF

j

)
(3.17)

∂MWj

∂ t
=−

(
~vN +

~JN
j

c j

)
︸ ︷︷ ︸

~v j

∇MWj +
rF

j

c j

(
MW inst

j −MWj
)
. (3.18)

Equation 3.18 can be considered as a transport equation for the molar weight of
a component j, which is advected with the component velocity ~v j. It is neces-
sary to distinguish between the molar weight with regard to the currently pro-
duced/consumed molecules MW inst

j in the reaction term and the average molar
weight of the yet existing molecules MWj =

ρ j
c j

which experience advection and
diffusion. Inserting equation 3.18 into the closing condition 3.16 gives

−∑
MWj

ρ0
j

∇

(
c j~vN + ~JN

j

)
+∑rF

j
MWj

ρ0
j

−∑
c j

ρ0
j

(
~vN +

~JN
j

c j

)
∇MWj +∑rF

j
MW inst

j −MWj

ρ0
j

= 0

−∇

(
∑c j

MWj

ρ0
j
~vN +∑

MWj

ρ0
j

~JN
j

)
+∑

c j~vN + ~JN
j

ρ0
j

∇MWj

−∑
c j

ρ0
j

(
~vN +

~JN
j

c j

)
∇MWj +∑rF

j
MW inst

j

ρ0
j

= 0

−∇~vN−∇∑
MWj

ρ0
j

~JN
j +∑rF

j
MW inst

j

ρ0
j

= 0. (3.19)

The diffusion and reaction induced velocity contributions

~vD,N =−∑
MWj

ρ0
j

~JN
j (3.20)

∇~vm,R = ∑rF
j

MW inst
j

ρ0
j

(3.21)
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are nearly identical to the case of constant molar weights. However, the reaction
induced velocity relies upon the molar mass of the currently produced molecules
MW inst

j , whereas the diffusion driven part is related to the average molar weight
of each component.

For obvious reasons, both the concentrations and the partial densities or cor-
responding values like the first moment need to be evaluated for species with
varying molar mass. The easiest way is to use equation 2.46 in order to obtain
partial densities using molar fluxes. If the "ordinary" transport equation 2.11 is
employed, mass-based diffusive fluxes will have to be obtained from their molar
counterpart by the conversion law 2.42.

Special Case: (Pseudo-)binary Fickian Diffusion

The general expression of diffusion driven convection for variable molar masses
is akin to the one of constant values. The diffusion induced velocity in case of
(pseudo) binary Fickian diffusion is however different:

~vD,N =−∑
MWj

ρ0
j

(
−D∇c j +D

c j

c
∇c
)

~vD,N =+D∇∑c j
MWj

ρ0
j
−D∑

c j

ρ0
j

∇MWj−D
1
c

∇c

~vD,N =−D∑
c j

ρ0
j

∇MWj−D
1
c

∇c. (3.22)

The second term is the diffusion driven velocity 3.12 in case of constant molar
weights, whereas the first term accounts for the spatial variation of molar masses.
The transport equation then becomes

∂c j

∂ t
=−∇

(
c j

(
~v0 +~vR−D∑

k

ck

ρ0
k

∇MWk

)
−D∇c j

)
+ rF

j . (3.23)

This expression can be transformed into a mass based notation using equations
2.44 and 2.45 and the component velocity~v j:

∂ρ j

∂ t
=−∇(ρ j~v j)+ rF

j MWj (3.24)

∂ρ j

∂ t
=−∇

(
ρ j

(
~v0 +~vR−D∑

k

ck

ρ0
k

∇MWk

)
− ρ j

c j
D∇c j

)
. (3.25)
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Notably, the diffusive flux does not depend on gradients of the component’s par-
tial density, but of the corresponding concentration. For species with a varying
molar weight, equation 2.57 can therefore no longer be used in order to calcu-
late diffusive mass fluxes. Neither the fluxes ~j j = −ρD∇x j nor the diffusion

induced mass-averaged velocity~vD =−∑ j
~j j

ρ0
j

refer to the molar weights of dif-

fusing species so that the effect of varying average molar weight of a polymer
species will not be modelled correctly (balance equation 3.11 assuming con-
stant molar mass will be obtained). If one is explicitly interested in the diffusive
mass fluxes ~j j and the diffusion driven velocity~vD, these can be obtained by the
conversion law 2.42 and either equation 2.35 or 3.7

~j j =−ρD∇w j +w jρD
∇MWj

MWj
−w jD∑

k
ρk

∇MWk

MWk
(3.26)

~vD =−D
∇ρ

ρ
−D∑

k

ρk

ρ0
k

∇MWk

MWk
+

1
ρ

D∑
k

ρk
∇MWk

MWk
. (3.27)

3.1.4 Transport of Polymer - Quasi-Steady-State Assumption

The quasi-steady-state assumption implicitly contains premises regarding the
transport behaviour of polymer radicals. The total concentration of living chains
[Rtot ] is an instantaneous value, which is calculated by an algebraic expression
solely depending on the local concentrations of educts. Hence, transport of liv-
ing chains is presumed not to play a role. Due to the limited lifetime of a poly-
mer radical, which amounts to fractions of seconds (Hutchinson 2005, p. 160),
this assumption is typically very reasonable. Before living chains may diffuse
and slowly exchange places with other molecules, they will rather be terminated.
Convection and diffusion will affect the educt concentrations and thus the alge-
braically determined polymer values. Moreover, the concentration and partial
density of the (dead) polymer are cumulative values and may experience signif-
icant changes due to transport. Generally, the balance equations of the polymer
concentration and the partial density can be expressed by (equations 2.29, 2.46)

∂ [P]
∂ t

=−∇

(
[P]~vN + ~JN

P

)
+ rF

P (3.28)

∂ρP

∂ t
=−∇

(
ρP~vN +MWP~JN

P

)
+ rF

P MW inst
P . (3.29)

The reaction term must be related to the instantaneous molar weight of the cur-
rently produced polymer MW inst

P , whereas diffusion affects all polymer molecules
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with the average molar weight MWP = ρP
[P] . The different velocity contributions

have to be calculated as derived in section 3.1.3. This approach is valid for
both Maxwell-Stefan and Fickian diffusion. In case of (pseudo-) binary Fickian
diffusion the corresponding simplified equations 3.23 and 3.25 can be used

∂ [P]
∂ t

=−∇

(
[P]
(
~v0 +~vR−D

[P]
ρ0

P
∇

ρP

[P]

)
−D∇ [P]

)
+ rF

P (3.30)

∂ρP

∂ t
=−∇

(
ρP

(
~v0 +~vR−D

[P]
ρ0

P
∇

ρP

[P]

)
− ρP

[P]
D∇ [P]

)
+ rF

P MW inst
P . (3.31)

Diffusive transport of the polymer’s partial density is only affected by the con-
centration of polymer, not its partial density or mass fraction. From this it fol-
lows that a gradient in the partial density of the polymer will not lead to a dif-
fusive flux as long as the polymer concentration does not vary, as well. This
means, that variations in the polymer’s molar weight will be preserved as long
as there are no modifications due to reactions. If, in contrast, the velocity contri-
bution due to variations in the molar weights was neglected, as in Fick’s second
law (equations 3.13 and 3.11)

∂ [P]
∂ t

=−∇
(
[P]
(
~v0 +~vR)−D∇ [P]

)
+ rF

P

∂ρP

∂ t
=−∇

(
ρP
(
~v0 +~vR)−D∇ρP

)
+ rF

P MW inst
P ,

diffusion would be calculated independently for the polymer concentration and
partial density. Spatial variations in the polymer’s partial density would flatten
out, even if the concentration of polymer was constant. As a result, a gradient in
the molar mass would always vanish unphysically after a sufficiently long time.
In a molecular sense, Fick’s second law, applied to both the concentration and
partial density of the polymer, means that the polymer molecules themselves
change places with each other, for example a chain consisting of one thousand
monomer units with a chain of length five hundred. This is not only counter-
intuitive, but also contrary to well-known observations like the gel-effect, where
for a growing polymer concentration the polymer molecules become more or
less fixed and termination reactions due to encounter of two radical chains are
scarcely taking place any more. Hence, Fick’s second law cannot be applied
to diffusion of polymer of variable molar weight without the above-mentioned
modifications.
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3.1.5 Transport of Statistical Moments

If the method of moments is applied to a distributed system, partial differential
equations for the statistical moments of the distributions of both living and dead
chains need to be evaluated. As has been stated above, the lifetime of polymer
radicals is very short. Transport of living chains should therefore be negligible.
Yet, a similar consideration of all polymer values in the mixture appeared to im-
prove numerical stability in simulations and the balance equations of living and
dead chain’s moments are mathematically equivalent. Thus, the same transport
approach will be applied to both sets of equations in the following.

Starting with the balance equation of dead chains of length s in terms of con-
centrations (equation 2.29), multiplication with sk and subsequent summation
over all chain lengths s yields

∑
s

sk ∂ [Ps]

∂ t
=−∑

s
sk

∇

(
[Ps]~vN + ~JN

Ps

)
+∑

s
skrF

Ps

∂∑s sk [Ps]

∂ t
=−∇

(
∑
s

sk [Ps]~vN +∑
s

sk~JN
Ps

)
+∑

s
skrF

Ps

∂ζk

∂ t
=−∇

(
ζk~vN + ~JN

ζk

)
+ rF

ζk
. (3.32)

The sk terms and summations are not depending on time and space and can be
shifted into the differential operators, where the concentrations in the accumula-
tion and convection terms can easily be replaced by the moments or the respec-
tive rates of formation. The transformation of the reaction term corresponds to
the classical approach in the method of moments, which has been introduced in
section 2.3.3. In contrast, the diffusive behaviour of the moments has merely
been condensed into a flux ~JN

ζk
= ∑s sk~JN

Ps
, which is yet unspecified and needs

further consideration.
A naive description of moment diffusion follows Fick’s second law 3.13:

∂Ps

∂ t
=−∇

(
[Ps]
(
~v0 +~vR)−D∇ [Ps]

)
+ rF

Ps (3.33)

∑
s

sk ∂Ps

∂ t
=−∇

(
∑
s

sk [Ps]
(
~v0 +~vR)−D∇∑

s
sk [Ps]

)
+∑

s
skrF

Ps (3.34)

∂ζk

∂ t
=−∇

(
ζk
(
~v0 +~vR)−D∇ζk

)
+ rF

ζk
. (3.35)

In this way a transport equation for the statistical moments is obtained, in which
moments are treated like normal species with Fickian diffusion. Furthermore,
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the moment equations are closed without the need of an additional condition.
This approach for moment diffusion has - without derivation - already been
proposed by Arriola (1989, 317f.). The diffusive flux of a moment ζk is then

~JN
ζk
=−D∇ζk +D

ζk

c
∇c. (3.36)

Wheras this way of proceeding follows a straightforward derivation, it ex-
hibits the same shortcomings which have been discussed before regarding the
application of Fick’s second law when using the QSSA. The underlying equa-
tion 3.33 assumes Fickian diffusion of polymer molecules of chain length s
solely depending on their concentration [Ps], regardless of the total polymer con-
centration. Polymer chains of different length will diffuse against one another, if
their gradients have opposite directions. Again, given enough time, this implies
vanishing gradients of the concentrations of all single chain lengths and, hence,
of the molar mass of the polymer.

Generally, the zeroth and first moments are equivalent to the total polymer
concentration and partial density, respectively. In terms of the distribution of
dead chains, with ρP = ζ1MWM , MWP =

ζ1
ζ0

MWM and equation 2.46 the transport
equations without reactions can be written as

∂ζ0

∂ t
=

∂ [P]
∂ t

=−∇

(
ζ0~vN + ~JN

ζ0

)
=−∇

(
ζ0~vN

ζ0

)
(3.37)

∂ζ1

∂ t
=

1
MWM

∂ρP

∂ t
=−∇

(
ζ1~vN +

ζ1

ζ0
~JN

ζ0

)
=−∇

(
ζ1~vN

ζ0

)
(3.38)

These transport expression are equivalent to equations 3.30 and 3.31 from the
QSSA. The diffusive flux of the first moment is then depending on the gradient
of the zeroth moment

~JN
ζ1
=

ζ1

ζk
~JN

ζk
. (3.39)

A generalisation of this relationship to higher moments can be accomplished
by the Maxwell-Stefan equations, if the following assumptions for the binary
diffusion coefficients between polymer chains Ps and bulk (B) molecules u and
v of different kind are made:

polymer↔ bulk ÐPsu = ÐPu

polymer↔ polymer ÐPsPt = ÐPP, ÐPP→ 0

bulk↔ bulk Ðuv
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The first presumption implies, that the diffusive interaction between polymer
and other molecules does not depend on the polymer’s chain length and is equal
for all polymer chains. This simplification is certainly not true for very short
polymer chains (a radical of length one virtually is a monomer molecule). Nev-
ertheless, their concentration is very low, so that it is common practice to neglect
the peculiar behaviour of short chains in polymer reaction engineering without
introducing significant errors (cmp. section 2.3.1). The binary diffusion coeffi-
cient ÐPu may, still, be different for various kinds of bulk molecules u.

Diffusion between polymer chains is also expected to be independent from
the chain lengths. Moreover, it is assumed, that there is virtually no diffusion of
polymer molecules against themselves with the binary diffusion coefficient ÐPP

tending to zero.

The interrelation between the driving force of a component and the diffusive
fluxes, equation 2.60, can be expressed in terms of the bulk components u, v and
polymer chains Ps

c~du = ∑
k

xu~JN
k − xk~JN

u

Ðuk

= xu

(
∑
s

~JN
Ps

ÐPu
+ ∑

v∈B

~JN
v

Ðuv

)
− ~JN

u

(
∑
s

xPs

ÐPu
+ ∑

v∈B

xv

Ðuv

)
.

The mole fractions and diffusive fluxes of the single polymer chains can be
eliminated using xP = ∑

s
xPs and ∑

s
~JN

Ps
=− ∑

v∈B
~JN

v :

c~du = xu ∑
v∈B

~JN
v

(
1

Ðuv
− 1

ÐPu

)
− ~JN

u

(
∑
v∈B

xv

Ðuv
+

xP

ÐPu

)
. (3.40)

Setting P= n, this is just the same equation as 2.63, in which the fluxes ~JN
n of the

n-th component have been eliminated. This means that the bulk components are
treated the same way as in ordinary Maxwell-Stefan diffusion. Their diffusive
fluxes ~JN

u just depend on the driving forces of the bulk species ~du, whereas the
driving forces of the polymer chains do not affect diffusive bulk behaviour. The

54



3.1. TRANSPORT IN A REACTION-DIFFUSION SYSTEM

driving force of a polymer species of chain length s is

c~dPs = ∑
k

xPs
~JN

k − xk~JN
Ps

ÐPk

= xPs

(
∑

t

~JN
Pt

ÐPP
+ ∑

v∈B

~JN
v

ÐPv

)
− ~JN

Ps

(
∑

t

xPt

ÐPP
+ ∑

v∈B

xv

ÐPv

)
.

Multiplication with ÐPP gives

ÐPPc~dPs = xPs ∑
t

~JN
Pt + xPs ∑

v∈B

ÐPP

ÐPv
~JN

v −∑
t

xPt
~JN

Ps −∑
v∈B

ÐPP

ÐPv
xv~JN

Ps .

The limit value for ÐPP→ 0 yields

~JN
Ps =

xPs

∑
t

xPt
∑

t

~JN
Pt =

[Ps]

[P]
~JN

P , (3.41)

where the diffusive flux of the polymer component as a whole ~JN
P can be calcu-

lated from the bulk components’ diffusion

~JN
P = ∑

s

~JN
Ps =−∑

v∈B

~JN
v . (3.42)

The diffusive flux of a moment ζk is thus

~JN
ζk
= ∑

s
sk~JN

Ps = ∑
s

sk [Ps]

[P]
~JN

P

~JN
ζk
=

ζk

ζ0
~JN

P . (3.43)

Living chains exhibit a short livetime in comparison to the diffusive time scale.
Their transport behaviour hence hardly affects chemical reactions. Regard of
their moments’ diffusion can improve numerical stability, yet. As, in terms of
diffusion, living and dead chains cannot be distinguished, the diffusive fluxes
are

~JN
ζk
=

ζk

λ0 +ζ0
~JN

P , ~JN
λk

=
λk

λ0 +ζ0
~JN

P , ~JN
P = ∑

s

~JN
Ps +

~JN
Rs =−∑

v∈B

~JN
v . (3.44)

Using the bulk moments µk, these relations can be expressed as

~JN
µk

=
µk

µ0
~JN

P , ~JN
λk

=
λk

µ0
~JN

P . (3.45)
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General transport equations for the moments are therefore

∂ζk

∂ t
=−∇

(
ζk~vN +

ζk

λ0 +ζ0
~JN

P

)
+ rF

ζk
=−∇

(
ζk~vN

P
)
+ rF

ζk
(3.46)

∂λk

∂ t
=−∇

(
λk~vN +

λk

λ0 +ζ0
~JN

P

)
+ rF

λk
=−∇

(
λk~vN

P
)
+ rF

λk
. (3.47)

As the component velocity of all moments is equal (~vP =~vN +
~JN
P

λ0+ζ0
), transport

will advect profiles in the chain length distribution but not smear out differences.
For (pseudo-)binary Fickian diffusion,~vD,N is according to equation 3.22

~vD,N =−1
c

D∇c−MWM
λ0 +ζ0

ρ0
P

D∇
λ1 +ζ1

λ0 +ζ0
(3.48)

and the transport equations can be expressed in terms of Fick’s second law as

∂∗
∂ t

=−∇

(
∗
(
~v0 +~vR−MWM

λ0 +ζ0

ρ0
P

D∇
λ1 +ζ1

λ0 +ζ0

)
− ∗

λ0 +ζ0
D∇(λ0 +ζ0)

)
+ rF
∗ , ∗= ζk or λk. (3.49)

3.2 Lumped Modelling - 0D approach

The most simple approximation of droplet drying with or without chemical re-
actions is to consider a droplet as one single, ideally mixed volume. As a result,
one obtains a very simple system of ordinary differential equations, which de-
scribes the evolution of the different mixture components without the effect of
transport inside the droplet. Depending on the species and drying conditions this
may introduce rather extensive simplifications. The mass transfer Biot number
indicates that concentration gradients may be present throughout the process
(section 2.5.4). Simulation results can therefore differ from the realistic be-
haviour. Still, it is worthwhile to attend to a 0D consideration, first. These kinds
of models are easy to derive and implement and they can be evaluated in a very
short time. Therefore, lumped models offer quick approximations of reactive
drying processes. Moreover, due to the low computational overhead, they are
a reasonable option for integrated models, in which a whole spray dryer is con-
sidered and a large number of droplets inside a complicated, three-dimensional
flow field are simulated. A spatially resolved consideration of transport within
the single droplets would be too costly in this case.
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3.2.1 General Equations for Reactive Spray Drying

From the reaction engineering point of view, a lumped model resembles a batch
execution with the particular difference of an outward flow of volatile species.
Balance equations are therefore like in a stirred tank reactor with no inflow and
selective outflow. Droplet volume V d and radius R evolve over time with

dV d

dt
=V d

∑
j

rF
j

MW inst
j

ρ0
j
−4πR2

∑
j

Ω
N
j

MWj

ρ0
j

(3.50)

dR
dt

=

(
dV d

dR

)−1 dV d

dt
=

R
3 ∑

j
rF

j
MW inst

j

ρ0
j
−∑

j
Ω

N
j

MWj

ρ0
j
. (3.51)

The first term corresponds to volume changes by chemical reaction, whereas the
second term denotes the mass loss due to evaporative molar fluxes ΩN

j . Again,
the molar mass of currently created/consumed molecules MW inst

j has to be con-
sidered in the reaction term, whereas vaporisation concerns the averaged molar
mass of component j in the mixture. In practice, this distinction only affects
polymer molecules, which do not evaporate anyway, and molar weights are con-
stant otherwise. The concentration of a component j varies over time with

dc j

dt
=

d
(
N j/V d

)
dt

=
1

V d
dN j

dt
− N j

V d2
dV d

dt
dc j

dt
= rF

j −
3
R

Ω
N
j − c j

3
R

dR
dt

. (3.52)

The system of equations is similar, based on mass fluxes and partial densities

dV d

dt
= ∑

j
V drF

j
MW inst

j

ρ0
j
−4πR2

∑
j

Ω j

ρ0
j

(3.53)

dR
dt

=
R
3 ∑

j
rF

j
MW inst

j

ρ0
j
−∑

j

Ω j

ρ0
j

(3.54)

dρ j

dt
= rF

j MW inst
j − 3

R
Ω j−ρ j

3
R

dR
dt

. (3.55)

The energy balance needs to consider the heat release by chemical reactions,
heat transfer across the interface to the drying gas and cooling due to evapora-
tion. Assuming constant heat capacities cp, j, the temperature evolves with

∂T
∂ t

=
1

ρ c̄p

(
∑

i
ri∆hR,i−

3
R

(
q̇Γ +∑

j
Ω j∆hv, j

))
(3.56)
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3.2.2 Spray Polymerisation - Quasi-Steady-State Assumption

If the QSSA is applied, the total concentration of living chains [Rtot ] inside the
droplet can be calculated according to equation 2.89. The concentrations of
solvent (S), monomer (M), initiator (I ) and dead polymer chains (D) evolve
with

d [S]
dt

=− 3
R

Ω
N
S − [S]

3
R

dR
dt

(3.57)

d [I]
dt

=−kd [I]− [I]
3
R

dR
dt

(3.58)

d [M]

dt
=−kp [M] [Rtot ]−2 f ki [I]− ktrs [S] [Rtot ]− ktrm [M] [Rtot ]

− 3
R

Ω
N
M− [M]

3
R

dR
dt

≈−kp [M] [Rtot ]−
3
R

Ω
N
M− [M]

3
R

dR
dt

(3.59)

d [P]
dt

= (ktd +0.5ktc) [Rtot ]
2 +(ktrm [M]+ ktrs [S]) [Rtot ]− [P]

3
R

dR
dt

. (3.60)

Additionally, the partial density of the polymer is of interest in order to obtain
its average molar weight or the cumulated degree of polymerisation. As the
formation of polymer is directly connected to the consumption of monomer and
accumulation of living chains is negligible, the reaction term can be related to
the monomer reactions

dρP

dt
=−rF

MMWM−ρP
3
R

dR
dt

= kp [M] [Rtot ]MWM−ρP
3
R

dR
dt

. (3.61)

The same relationship can be derived, if the rate of formation of dead poly-
mer and the molar weight of the currently generated dead chains MW inst

P =

DPinstMWM are applied. Using the definition of the degree of polymerisation
2.91 one obtains rF

P DPinstMWM = kp [M] [Rtot ]MWM . Equally, the change in
droplet radius due to chemical reactions is related to the molar weight of the in-
stantaneously created polymer and not to the average molar mass of the whole
polymer

dR
dt

∣∣∣∣R =
R
3

(
∑
j 6=P

rF
j

MWj

ρ0
j

+ rF
P

MW inst
P

ρ0
P

)

=
R
3

(
∑
j 6=P

rF
j

MWj

ρ0
j
− rF

M
MWM

ρ0
P

)
. (3.62)
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Considering propagation being the dominant volume/density changing reaction,
this relation can be further simplified to

dR
dt

∣∣∣∣R ≈ R
3

rF
MMWM

(
1

ρ0
M
− 1

ρ0
P

)
. (3.63)

This assumption is generally true, as the volumetric effects of initiator decom-
position or other polymerisation reactions besides propagation are negligibly
small. The volume change does not depend on the polymer chain-length. As
the volume occupied by a single monomer unit inside a chain is presupposed as
being constant, the conversion of monomer to polymer determines the overall
volume change.

3.2.3 Spray Polymerisation - Method of Moments

An implementation of the method of moments into a lumped model is straight-
forward. With the statistical moments having the unit of concentrations, they
can be inserted directly into equation 3.52 to

dλk

dt
= rF

λk
−λk

3
R

dR
dt

(3.64)

dζk

dt
= rF

ζk
−ζk

3
R

dR
dt

, (3.65)

for which the moments’ reaction rates can be taken from Table 2.3. The equa-
tions of the non-polymer components are identical to those of the quasi-steady-
state-assumption. Additional calculation of the polymer’s partial density is not
necessary, as the molar weight can be computed from the moments. The ef-
fect of density changing polymerisation reactions on the droplet radius can be
modelled by equation 3.63 with λ0 replacing [Rtot ].
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3.3 Distributed Modelling - 1D approach

A lumped approximation of the droplet may fall short by considering the droplet
as fully mixed and neglecting transport and spatial gradients. In the following, a
one-dimensional representation of reactive droplet drying and droplet polymeri-
sation will be derived. The droplet is considered as a solution, consisting of one
quasi-homogeneous liquid phase. A decreased solubility of single components
might lead to precipitation (as observed by Franke, Moritz, and Pauer 2017)
and the formation of additional phases, which will be undesirable in most ap-
plications. Such effects are not currently considered in the model, but could be
regarded as model events during the numerical solution or in the post-processing
based on threshold concentrations.

General transport equations and boundary conditions for reactive drying pro-
cesses will be derived in the following two sections. The majority of such ap-
plications can be treated sufficiently by these equations. Still, spray polymeri-
sation is a special case of reactive droplet drying, where the product properties,
particularly the molar mass, are strongly dependent on the educt concentrations
and may vary strongly over time and space. The specific treatment of polymer
systems will therefore be addressed in sections 3.3.3 and 3.3.4.

3.3.1 General Equations of the Droplet Continuum

For a better readability, vectors will be reduced to their radial component and
the subscript r omitted in the following, as only the radial direction needs to be
considered in a one-dimensional model. The nabla operator in radial direction is

∇rvr =
1
r2

∂(r2vr)
∂ r for the divergence of a vector~v, whereas the gradient operator

is the same as in cartesian coordinates.

Typically, in binary drying models a transport equation for the mass fraction
w j of one species is derived and the remaining component is calculated by the
closing condition. In reactive drying processes the kinetics of the chemical reac-
tions depend on concentrations, so that it is more appropriate to balance the con-
centrations directly or, alternatively, partial densities. In case of (pseudo-)binary
Fickian diffusion, it will be shown later that this approach is advantageous even
in the case of pure drying without reaction. Transport of the single compontents
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inside the droplet is then expressed by equations 2.11 and 2.29:

∂ρ j

∂ t
=− 1

r2
∂

∂ r

(
r2

ρ jv+ r2 j j
)
+ rF

j MW inst
j (3.66)

∂c j

∂ t
=− 1

r2
∂

∂ r

(
r2c jvN + r2JN

j
)
+ rF

j . (3.67)

Using equations 2.46 and 2.47 the component balance equations is

∂ρ j

∂ t
=− 1

r2
∂

∂ r

(
r2

ρ jvN + r2 ρ j

c j
JN

j

)
+ rF

j MW inst
j (3.68)

∂c j

∂ t
=− 1

r2
∂

∂ r

(
r2c jv+ r2 c j

ρ j
j j

)
+ rF

j , (3.69)

as well. The reaction induced velocity contribution is given by the boundary
value problem

1
r2

∂
(
r2vR

)
∂ r

=−∑
rF

j MWj

ρ0
j

, (3.70)

which is the one-dimensional case of equation 3.8.
Convection inside the droplet is mainly driven by diffusion. The reaction

related contribution is typically smaller. Therefore, convective energy transport
will not exceed energy transport by diffusion significantly. The Lewis number
Le contains the ratio of temperature conduction to diffusive matter transport

Le =
a
D

=

λ

ρcp

D
=

O
(
10−1

)
O(103)O(103)O(10−9)

≈ O
(
102) . (3.71)

The thermal diffusivity a is two orders of magnitude higher than matter dif-
fusivity, so that energy transport is dominated by heat conduction. Assuming
constant heat capacities, the enthalpy balance can be reduced to the temperature
balance 2.24, which is very simple in this case

∂T
∂ t

=− ∇~̇q
∑ρ jcp j

− ∑rF
j MWjh j

∑ρ jcp j
, (3.72)

as energy transport by convection and diffusion is neglected. As has been dis-
cussed in section 2.5.4, the droplet can be assumed as thermally mixed, if the
Nusselt number is around 4 or smaller. In this case the chemical reactions can
be summed over the droplet radius and inserted into the lumped energy balance
equation 3.56.
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3. MODELLING OF REACTIVE DROPLET DRYING AND POLYMERISATION

Figure 3.1: Transport across boundaries in a one-dimensional description, left:
general case of molar transport, right: transport across the droplet surface.

3.3.2 Boundary Conditions

The boundary conditions at the droplet’s centre and at the interface to the drying
gas can be derived using equation 2.2(

ψ
+~v++φ

+
ψ −ψ

+~vΓ−ψ
−~v−−φ

−
ψ +ψ

−~vΓ
)
·~n−σ

Γ
ψ = 0.

At both boundaries, there is no production/consumption of conserved quanties
so that the source term is zero and only the part inside the brackets remains. Due
to symmetry, this formula can be reduced to one-dimension in radial direction

ψ
+v++φ

+
ψ −ψ

+vΓ−ψ
−v−−φ

−
ψ +ψ

−vΓ = 0. (3.73)

The vector directions and the nomenclature of + and − indices are sketched for
transport in a molar average description in Figure 3.1, left frame.

Droplet Centre

The droplet centre is spatially fixed at r = 0 so that vΓ
∣∣
r=0 = 0. Due to symmetry,

scalar values on both sides of the interface are identical. Additionally, the slope
of any quantity has to be continous over the droplet centre. Both prerequisites
can only be fulfilled in case of zero gradients of the respective values:

∂ρ j

∂ r

∣∣∣∣
r=0

= 0,
∂w j

∂ r

∣∣∣∣
r=0

= 0 (3.74)

∂c j

∂ r

∣∣∣∣
r=0

= 0,
∂x j

∂ r

∣∣∣∣
r=0

= 0 (3.75)

∂T
∂ r

∣∣∣∣
r=0

= 0. (3.76)
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This implicitly involves zero diffusive fluxes and, due to symmetry and mass
conservation, a zero velocity at the droplet’s centre. Explicitly, this is derived by
the precondition of symmetry that vector quantities on both sides of the interface
have the same magnitude, but opposite direction. Setting ψ = ρ , with ρ−|r=0 =

ρ+|r=0 = ρ|r=0 and v−|r=0 =− v+|r=0 =− v|r=0, yields[
ρ
+v+−ρ

−v−
]

r=0 = [2ρv]r=0 = 0

v|r=0 = 0. (3.77)

With ψ = ρ j and − j−j
∣∣∣
r=0

= j+j
∣∣∣
r=0

= j j
∣∣
r=0 the boundary condition for the

diffusive fluxes is [
j+j − j−j

]
r=0

= 0

j j
∣∣
r=0 = 0. (3.78)

Due to the absence of diffusive fluxes the diffusion driven velocities vD and vD,N

are zero. As the overall velocity is zero, the reaction induced contribution needs
to be zero, as well, which provides the boundary condition for solving equation
3.70:

vR∣∣
r=0 = 0. (3.79)

Interface to the Drying Gas

The droplet’s boundary to the drying gas at r = R is moving due to evapora-
tion and volume-changing chemical reactions with the velocity vΓ. Wheras the
values inside the droplet (’−’-side) are known or can be calculated, the fluxes
in the drying gas are not available in detail. Mass, molar and heat fluxes are
calculated according to linear driving forces, where the transfer coefficients are
obtained from appropriate dimensionless correlations. In the interface balance
equations the terms considering the drying gas (all terms with superscript ’+’)
are subsumed into the linear driving forces Ω, ΩN or q̇Γ, respectively, in which
the motion of the interface, the detailed flow regime and the interplay of con-
vective and diffusive fluxes in the drying gas are compressed into one simple
expression (see the right frame of Figure 3.1). Mass and molar balances at the
droplet boundary are then [

ρ j
(
v− vΓ

)
+ j j

]
r=R = Ω j (3.80)[

c j
(
vN− vΓ

)
+ JN

j
]

r=R = Ω
N
j . (3.81)
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For reasons of better readability, the superscript ’−’ has been dropped for the
values on the droplet side. These equations can be expressed in terms of the
component velocity v j [

ρ j
(
v j− vΓ

)]
r=R = Ω j (3.82)[

c j
(
v j− vΓ

)]
r=R = Ω

N
j , (3.83)

as well, which can be simplified for non-volatile components to

v j
∣∣
r=R = vΓ. (3.84)

The component velocities of non-evaporating species at the interface to the dry-
ing gas is therefore identical to the boundary velocity vΓ. Division of equation
3.80 with ρ0 and summation over all components j gives[

∑
j

ρ j

ρ0
j

(
v− vΓ

)
+∑

j

ρ j

ρ0
j

j j

]
r=R

= ∑
j

Ω j

ρ0
j

(3.85)

[
v− vΓ− vD]

r=R = ∑
j

Ω j

ρ0
j
. (3.86)

As no convection is imposed, v = vR + vD and the interface velocity vΓ is

vΓ = vR∣∣
r=R−∑

j

Ω j

ρ0
j
. (3.87)

The first term expresses interface motion/droplet shrinkage due to chemical reac-
tions. The evaporation term is identical to the lumped model and can be regarded
as the evaporation driven interface velocity vΓ,evap

vΓ,evap =−∑
j

Ω j

ρ0
j
=−∑

j

MWjΩ
N
j

ρ0
j

. (3.88)

Equation 3.80 then becomes the general boundary condition for a component j[
ρ j
(
vD− vΓ,evap)+ j j

]
r=R = Ω j. (3.89)

Similarly, the expression in molar notation can be derived to[
c j
(
vD,N− vΓ,evap)+ JN

j
]

r=R = Ω
N
j . (3.90)
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The droplet radius R changes according to the interface velocity

dR
dt

=~vΓ. (3.91)

Obviously, the boundary conditions 3.89 and 3.90 are not directy coupled to
chemical reactions. This is due to the fact, that reaction induced transport is
of convective nature and therefore a first order phenomenon, which requires
only one boundary condition. The constraint for convection and the boundary
value problem 3.70 is already set at the droplet centre (equation 3.79). Both
phenomena, reaction and diffusion induced convection, are independent effects
and may be superimposed. The interplay of evaporation and diffusion at the
droplet’s boundary is not altered by chemical reactions. Still, concentration
profiles are shifted in space due to volume changing reactions and modified due
to consumption/generation in the droplet’s bulk.

In case of (pseudo-)binary Fickian diffusion with constant molar masses, the
equations can be simplified, again. Inserting ρ jvD + j j = −D ∂ρ j

∂ r and c jvD,N +

JN
j =−D ∂c j

∂ r the boundary conditions become

−
[

ρ jvΓ,evap−D
∂ρ j

∂ r

]
r=R

= Ω j (3.92)

−
[

c jvΓ,evap−D
∂c j

∂ r

]
r=R

= Ω
N
j . (3.93)
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3.3.3 Spray Polymerisation - QSSA

Spray polymerisation differs from other reactive drying processes in that the
average molar weight of the polymer is not constant. The general continuum
equations remain unchanged. Diffusion, however, needs further consideration
and diffusive fluxes necessarily have to be calculated in a molar frame of refer-
ence. A calculation of the molar mass of the polymer is mandatory in order to
obtain the correct transport behaviour. Applying the quasi-steady-state assump-
tion, hence, the polymer’s partial density needs to be calculated additionally to
the concentrations of all components in order to obtain its molar weight. With
the reaction terms being the same as in the lumped model (section 3.2.2) the
following set of equations can be obtained:

∂ [S]
∂ t

=− 1
r2

∂

∂ r

(
r2 [S]vN + r2JN

S
)

(3.94)

∂ [I]
∂ t

=− 1
r2

∂

∂ r

(
r2 [I]vN + r2JN

I
)
− kd [I] (3.95)

∂ [M]

∂ t
=− 1

r2
∂

∂ r

(
r2 [M]vN + r2JN

M
)
− kp [M] [Rtot ] (3.96)

∂ [P]
∂ t

=− 1
r2

∂

∂ r

(
r2 [P]vN + r2JN

P
)
+(ktd +0.5ktc) [Rtot ]

2

+(ktrm [M]+ ktrs [S]) [Rtot ] (3.97)

∂ρP

∂ t
=− 1

r2
∂

∂ r

(
r2

ρPvN + r2 ρP

[P]
JN

P

)
+ rF

P MW inst
P

=− 1
r2

∂

∂ r

(
r2

ρPvN + r2 ρP

[P]
JN

P

)
+ kp [M] [Rtot ]MWM. (3.98)

The zero-gradient boundary condition holds for the droplet centre. At the inter-
face to the drying gas, equation 3.90 is the boundary conditions for all concen-
trations. Considering the partial density, convection and diffusion are expressed
with respect to the molar averaged velocity and the molar diffusive flux of the
polymer so that instead of the mass based boundary condition 3.89 a reformula-
tion of equation 3.90 has to be used[

ρP
(
vD,N− vΓ,evap)+ ρP

[P]
JN

P

]
r=R

= 0. (3.99)

This equation (with no evaporation of the polymer) is the same condition as for
the polymer concentration[

[P]
(
vD,N− vΓ,evap)+ JN

P
]

r=R = 0. (3.100)
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When boundary conditions are implemented as algebraic constraints, this cannot
be done on both polymer conditions simultaneously, as the system of equations
would be underdetermined. Either the concentration or the partial density of
the polymer at the boundary therefore necessarily has to be calculated using a
differential equation.

In case of (pseudo-)binary Fickian diffusion, the set of equations can be
simplified, again. Using equations 3.23 or 3.30 and 3.31 the following relations
are obtained

∂c j

∂ t
=− 1

r2
∂

∂ r

(
r2c j

(
~vR−D

[P]
ρ0

P

∂

∂ r
ρP

[P]

)
− r2D

∂c j

∂ r

)
+ rF

j (3.101)

∂ρP

∂ t
=− 1

r2
∂

∂ r

(
r2

ρP

(
~vR−D

[P]
ρ0

P

∂

∂ r
ρP

[P]

)
− r2 ρP

[P]
D

∂ [P]
∂ r

)
+ kp [M] [Rtot ]MWM. (3.102)

The boundary conditions to the drying gas are then[
c j

(
−D

[P]
ρ0

P

∂

∂ r
ρP

[P]
− vΓ,evap

)
−D

∂c j

∂ r

]
r=R

= Ω
N
j (3.103)[

ρP

(
−D

[P]
ρ0

P

∂

∂ r
ρP

[P]
− vΓ,evap

)
− ρP

[P]
D

∂ [P]
∂ r

]
r=R

= 0. (3.104)

Reaction Driven Transport in Polymerisation

The reaction induced velocity contribution is related to the molar weights of
the components currently generated/consumed (equation 3.21). As has been
shown in section 3.2.2, due to stoichiometry the reaction related volume change
is independent from the chain length and only corresponds with the formation
rate of monomer or, in good approximation, the rate of the propagation reaction.
As all other reactions have a negligibly small effect on the volume, the reaction
driven velocity vR can be calculated according to

∂vR

∂ r
= ∑rF

j
MW inst

j

ρ0
j

= rF
MMWM

(
1

ρ0
M
− 1

ρ0
P

)
. (3.105)

The zero-velocity condition 3.79 is the boundary condition for solving this one-
dimensional ordinary differential equation / boundary value problem.
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3.3.4 Spray Polymerisation - Method of Moments

With the diffusive fluxes of the moments defined as in equation 3.44, the mo-
ments’ transport equation inside the droplet become

∂ζk

∂ t
=− 1

r2
∂

∂ r

(
r2

ζkvN + r2 ζk

λ0 +ζ0
JN

P

)
+ rF

ζk
(3.106)

∂λk

∂ t
=− 1

r2
∂

∂ r

(
r2

λkvN + r2 λk

λ0 +ζ0
JN

P

)
+ rF

λk
. (3.107)

Like in the lumped model, the equations of other species are the same as in the
QSSA, with [Rtot ] being replaced by the zeroth moment of the living chains’
distribution λk. At the droplet centre again zero-gradients are assumed. The
interface condition to the drying gas is equation 3.90, which is for the moments[

ζk
(
vD,N− vΓ,evap)+ ζk

ζ0 +λ0
JN

P

]
r=R

= 0 (3.108)[
λk
(
vD,N− vΓ,evap)+ λk

ζ0 +λ0
JN

P

]
r=R

= 0. (3.109)

Again these boundary conditions are linearly dependent. A formulation for bulk
moments is straightforward by replacing λk +ζk and ζk with the respective bulk
moment µk. The reaction induced velocity can be evaluated in the same way as
for the QSSA employing equation 3.105, as all monomer molecules consumed
by reactions are incorporated into polymer chains and rF

ζ1
+ rF

λ1
=−rF

M .
The special case of (pseudo-)binary Fickian diffusion leads to

∂c j

∂ t
=− 1

r2
∂

∂ r

(
r2c j

(
vR~vMW )− r2D

∂c j

∂ r

)
+ rF

j , (3.110)

∂∗
∂ t

=− 1
r2

∂

∂ r

(
r2 ∗

(
vR~vMW )− r2 ∗

λ0 +ζ0
D

∂

∂ r
(λ0 +ζ0)

)
+ rF
∗ (3.111)

∗= ζk or λk, ~vMW =−MWM
λ0 +ζ0

ρ0
P

D
∂

∂ r
λ1 +ζ1

λ0 +ζ0

with the boundary conditions[
c j
(
~vMW − vΓ,evap)−D

∂c j

∂ r

]
r=R

= Ω
N
j (3.112)[

∗
(
~vMW − vΓ,evap)− ∗

λ0 +ζ0
D

∂

∂ r
(λ0 +ζ0)

]
r=R

= 0 (3.113)

(3.114)
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3.4 Comparison with Existing Models

The concept of diffusion and reaction driven convection is not completely com-
mon in drying models. Similar formulations can be found at Czaputa and Brenn
(2012), Handscomb, Kraft, and Bayly (2009), and Seydel (2005). Other con-
tributions, such as (Brenn 2004; Sloth et al. 2006), omit the diffusive velocity
contribution. As very many drying models only involve two phases, the problem
is simplified and can be solved by elimination of the second phase and insertion
(like in Czaputa and Brenn 2012). Seydel calculates transport of a solid phase
within a solvent by means of population balances. By summation of the volume
fluxes of both phases up to zero, he expresses the corrective velocity depending
on the mass fractions (practically the same expression can be found in Hand-
scomb, Kraft, and Bayly 2009):

vr = D
∂wG

∂ r

1
ρ0

G
− 1

ρ0
L

wG
ρ0

G
+ wL

ρ0
L

. (3.115)

This approach can be extended to more components and rewritten for Fickian
diffusion in a molar notation using mole fractions and molar weights.

In comparison, the corrective convection contributions in this work are di-
rectly derived from continuum laws and condensed in short, elegant equations.
The approach is general in terms of the number of components and molar or
mass based notation. The effect of reaction driven density changes is included.
Moreover, Maxwell-Stefan equations can be implemented in a straightforward
manner. Finally, it allows for a varying (averaged) molar weight, which admit-
tedly is a special case, but important when diffusion of polymers with locally
changing degrees of polymerisation is to be modelled.

Generally speaking, drying models always need to consider a convective
contribution, even if only diffusive transport is present, as mass conservation is
violated otherwise. A formulation with respect to partial densities is to be pre-
ferred. The equation of the diffusive velocity becomes somewhat cumbersome
regarding to mass fractions, especially for a higher number of components, but is
simple and straightforward concerning partial densities. If only (pseudo-)binary
Fickian diffusion is involved, the latter reduces to simply Fick’s second law (see
equations 3.11 and 3.13). This can be applied to the great majority of drying
models and provides mass conservation and a very simple formulation at the
same time.
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3.5 Implementational Considerations

The system of partial differential equations can be numerically solved using the
method of lines. The radial coordinate is discretised by an appropriate method -
like finite differences (FDM) or finite volume methods (FVM). In doing so, an
initial value problem (IVP) is obtained, which consists of either solely ordinary
differential equations or a mixture of differential equations in the fluid bulk and
algebraic equations at the boundary. This system of equations can be solved
by standard ODE or DAE solvers. Due to the different time scales of physical
and chemical processes, the problem is stiff and cannot be treated efficiently by
every class of methods for IVP solving. BDF (backward differentiation formula)
solvers are suited well and commonly used for stiff problems.

The droplet polymerisation model equations exhibit some peculiarities, by
which the implementation is non-trivial. These obstacles will be addressed in
the following. There is ample literature on the above-mentioned methods. Com-
paring finite differences and finite volume methods, higher order discretisations
can easily be derived in the FDM, which is of advantage when strong gradients
occur near the interface to the drying gas. Moreover, the moving boundary sys-
tem of the shrinking droplet just involves one simple, additional term. On the
other hand, the FVM is advantageous with respect to conservation and the im-
plementation of the Neumann boundary conditions at the drying gas is straight-
forward. Numerical solutions in this work have been obtained by a Python im-
plementation of the model using a finite volume discretisation and the standard
BDF/NDF solver of Python’s SciPy library (Virtanen et al. 2020).

3.5.1 Implementation of the Moving Boundary Problem

The droplet is shrinking steadily due to evaporation and may change its size as
well because of chemical reactions. Therefore, the motion of the interface to the
drying gase needs to be considered in the implementation (equations 3.88 and
3.91). This can either be implemented in ways that discretisation points are fixed
and the interface moves over these points or by an adaptive computational do-
main (Crank 1987, p. 163). The first approach is more complicated with respect
to the implementation of the boundary conditions, as the points being involved
into the boundary conditions as well as their discretisation stamp are continually
changing, and prone to numerical errors. Moreover, the solution via an adaptive
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grid is not only more elegant, but easily implemented for one-dimensional prob-
lems like droplet drying. This can be undertaken by a coordinate transformation
of the radial coordiante r to a dimensionless coordinate ξ , which spans between
the droplet centre and the droplet boundary:

y(r, t)−→ y(ξ , t) with ξ (r = 0) = 0, ξ (r = R(t)) = 1. (3.116)

ξ =
r

R(t)
(3.117)

∂ξ

∂ r
=

1
R(t)

(3.118)

∂ξ

∂ t
=− r

R(t)2
dR
dt

=− ξ

R(t)
dR
dt

(3.119)

Thereby, the following conversion formulae for the calculation of a quantity y
can be obtained (cmp. Crank 1987, p. 170):

∂y
∂ r

=
∂y
∂ξ

∂ξ

∂ r
=

∂y
∂ξ

1
R(T )

(3.120)

∂y
∂ t

∣∣∣∣
r
=

∂y
∂ t

∣∣∣∣
ξ

+
∂y
∂ξ

∂ξ

∂ t
. (3.121)

The temporal derivative of this quantity considering the moving coordinate ξ is

∂y
∂ t

∣∣∣∣
ξ

=
∂y
∂ t

∣∣∣∣
r
+

∂y
∂ξ
· ξ

R(t)
dR
dt

. (3.122)

The first term on the right hand side denotes the Eulerian continuum law, the
transport equation of the respective quantity. The second term accounts for the
motion of the coordinate ξ . Formally, the course of action is similar to applying
a Lagrangian frame of reference. However, observer’s velocity is not determined
by the fluid but by the motion of the coordinate with the velocity ξ

dR
dt .

3.5.2 Boundary Conditions

The boundary conditions 3.90, 3.108 and 3.108 are algebraic equations. If the
gradients are discretised by finite differences, these equations can be calculated
simultaneously to the differential equations in the fluid bulk by a DAE solver.
Whereas this works perfectly well for normal components using equation 3.90,
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the system becomes singular when higher moments are considered by equations
3.108 and 3.109. As has been stated before, the moments’ boundary conditions
are linearly dependent. Factorising the moments ζk and λk , only one single
polymer boundary condition remains:[

vD,N− vΓ,evap +
JN

P
ζ0 +λ0

]
r=R

= 0. (3.123)

It just follows from the ansatz of all moments behaving the same way with
respect to transport - as one single component - that the moments’ balance at the
boundary is condensed into one equation. In case of finite differences polymer
boundary conditions therefore cannot be implemented as algebraic equations,
but need to be incorporated into the discretised partial differential equations

at the interface nodes. This is achieved by replacing vD,N +
JN

P
ζ0+λ0

at position
r = R by the interface velocity vΓ,evap in the discretisation of the divergence
term. For other components c jvN + JN

j can be replaced with c jvΓ +ΩN
j so that

solely differential equations need to be solved at the outer boundary.
A finite volume implementation of these boundary conditions is in contrast

straightforward. The domain’s boundary is identical to the outmost cell inter-
face. Fluxes over this cell boundary are hence defined by the fluxes over the
interface to the drying gas obtained by linear driving forces. In case of the non-
volatile polymer, there is just a zero flux accross the outmost cell interface.

3.5.3 Treatment of Convection Terms

Despite the absence of directed fluid motion, a convective flux arises inside the
droplet due to the different specific volumes of the diffusing species and as a
result of density changing reactions (equations 3.20 and 3.21). Whenever con-
vective terms are discretised by higher order schemes, the computation is prone
to numerical oscillations. In a second order finite difference scheme the gradient
at a point i is calculated using values of the neighbouring points i−1 and i+1 so
that the gradient of a sawtooth like profile is calculated to zero everywhere. The
same holds for finite volume approximations, when interface values between
two cells are calculated by the arithmetic mean of both cell values. Such oscilla-
tions typically origin at a discontinuity (Hirsch 1990, p. 408) like the interface
to the drying gas and - not being damped - may grow throughout a computation
until spatial profiles become distorted.
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This can be overcome by upwinding using first order approximations, i.e.
obtaining information from upstream points. A finite difference gradient then
involves values of points i− 1 and i if the velocity points in positive direction.
Likewise, interface values in a finite volume calculation are taken from the cell
opposite to the flow direction - the donor cell approach. Such first order ap-
proximations involve for their part numerical diffusion. Sharp gradients are
artificially flattened out depending on the numerical grid size.

Upwinding schemes are not symmetric and depend on the flow direction.
The sign of the diffusion induced convective flux may change throughout a com-
putation. One example is initial droplet expansion by cause of condensation at
high saturation of the drying gas followed by shrinkage due to drying after drop-
let heat up. Therefore, an upwinding discretisation in droplet polymerisation
needs to adapt to locally and temporally varying flow directions.

The disadvantage of numerical diffusion can be countered by monotonicity
preserving discretisations of higher order, so called TVD-schemes (Total Varia-
tion Diminishing). This approach has been defined by Harten (1983), whereas
the basic concept has already been laid out by van Leer (1973). Essentially,
a limiter function switches between first and second (or higher) order approx-
imations, depending on the local degree of numerical oscillations. Numerical
diffusion is prevented as far as possible and oscillations are effectively damped.

A trivial approach for countering numerical diffusion is to use a larger num-
ber of grid points. As this is costly, it is advisable to provide a tight discretisation
only in regions of steep gradients. In droplet drying this affects the drop’s outer
rim near the interface to the drying gas. A simple rule for a refined discretisa-
tion is to set grid points or volumes not equispaced but such that the volume
represented by each node is equal.

These numerical challenges are no special characteristic of spray polymeri-
sation, but will naturally arise in diffusion dominated systems, when specific
volumes are very different and diffusion induced convection is to be considered.
In a mass based notation the differences of bulk densities are however typically
not that large that the convective term becomes dominant and numerical fluctu-
ations cannot be damped by diffusion. As a molar based solution additionally
involves the molecular weight, specific volumes can differ to a much larger de-
gree, especially in case of macromolecules. The countermeasures - first order
upwinding or TVD schemes - are common knowledge though. Still, diffusive
moment transport according to equation 3.43 introduces additional peculiarities.
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3. MODELLING OF REACTIVE DROPLET DRYING AND POLYMERISATION

Diffusion of higher moments is not calculated by a typical diffusion term, but is

in fact convection with the diffusion contribution
~JN
P

ζ0+λ0
of the zeroth moment’s

species velocity. If this value exceeds the fluid’s convection and is oppositely di-
rected, the upwinding discretisation of the ordinary convective term will actually
consider downstream values when applied to higher moments’ diffusion. As a
result, the motion of higher moments is calculated incorrectly and the compu-
tation becomes unstable. The first order/upwinding discretisation of the higher
moments’ diffusion has therefore to be set seperately from the ordinary convec-
tive term based on the direction of the moments’ diffusive flux.

When diffusion is modelled in a pseudo-binary Fickian way, the use of an
extended Fick’s law (3.23) can alleviate the problem of numerical oscillations.
The molar weight induced velocity contribution is typically significantly smaller
than the ordinary diffusion driven convective contribution which vanishes in
Fick’s second law. The convective part of the transport equation is hence re-
duced so that the overall behaviour becomes largely dominated by diffusion.

Appropriate Application of TVD Limiters

Numerical tests concerning a TVD scheme employed the van Leer limiter φ vanLeer

(van Leer 1973) in this work. A value ui+1/2 between two finite volume cells i
and i+1 is calculated as follows:

uTV D
i+1/2 =

(
1−φ

vanLeer
i+1/2

)
u1st

i+1/2 +φ
vanLeer
i+1/2 u2nd

i+1/2 (3.124)

φ
vanLeer
i+1/2 =

θi+1/2 +
∣∣θi+1/2

∣∣
1+
∣∣θi+1/2

∣∣ (3.125)

θi+1/2 =
ui−ui−1

ui+1−ui
·
(
vi+1/2 ≥ 0

)
+

ui+1−ui

ui+2−ui+1
·
(
vi+1/2 < 0

)
. (3.126)

The limiter function depends on the local degree of oscillation θ . Whether
u1st

i+1/2 equals ui or ui+1 depends on the velocity direction. The second order

approximation u2nd
i+1/2 corresponds with an arithmetic mean (weighted in case of

uneven point distribution).
Limiting has to act the same way for all components. If inter-cell values in an

FVM implementation of various components are computed via different orders,
conservation will be violated. In each cell, the sum of all volume fractions is
one. Applying the donor cell approach to all components involves only one
cell’s values and is therefore consistent. Also a second order approximation -
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the arithmetic mean of two cells’ values - will again sum up to one. If however,
the inter-cell value of one component is obtained from the donor cell and values
of other components via arithmetic mean, the sum of all volume fractions will
commonly be different to one and convection wil violate conservation. The
limiter function hence needs to evaluate the largest oscillations of all species
and apply the lowest order to all components.

3.5.4 Implementation of Diffusion

Diffusion involves the calculation of inter-cell values. In the simple case of
binary Fickian diffusion

~JN
j =−Dc∇x j =−D∇c j +Dx j∇ lnc

either the overall concentration c or the mole fraction x j need to be known at
the boundary between two finite volume cells (or at a staggered grid point in
an FDM discretisation). Approximation via arithmetic mean can be used in this
case, as the concentration is not multiplied with a fixed velocity but individual
mole fractions’ gradients. These gradients will act contrary to oscillations of
a species’ concentration as long as all concentrations are consistent, i.e. all
volume fractions add up to one.

Higher moments’ diffusion is different, as - from a numerical point of view
- their motion is purely convective and does not involve a truely diffusive term.
Only the polymer’s / zeroth moments’ diffusive flux ~JN

P is known at inter-cell
positions, while other concentrations in higher moments diffusion

~JN
ζ j
=

ζ j

ζ0 +λ0
~JN

P

need to be approximated. Interpolation of inter-cell values via arithemtic mean

hence acts like a second order convective term with respect to the velocity
~JN
P

ζ0+λ0
and can be prone to numerical oscillations. If on the other hand upwinding is
applied, inter-cell concentrations via arithmetic mean and donor cell values are
mixed, which violates conservation. This violation is however typically small.
If necessary, an additional volume correction can be implemented based on the
constraints of the sum of volume fractions being one or its change over time
being zero. The deviation from either condition can be used for a corrective ve-
locity, calculated similarly to the reaction induced velocity as a boundary value
problem (see appendix B for details).
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3. MODELLING OF REACTIVE DROPLET DRYING AND POLYMERISATION

3.6 Verification of the Transport Approach

The concept of diffusion and reaction driven convection as derived above will
be applied to various test cases and verified in simple numerical experiments in
the following, before simulations of the overall (reactive) drying process will
be presented in the next chapter. All test cases are based on a one-dimensional
description, which corresponds with the dimensionality of the drying models.
An extension to higher dimensions is straightforward for the diffusion induced
velocity contribution.

3.6.1 Diffusion Driven Convection, Constant Properties

A very simple test case is binary Fickian diffusion of two components A and
B. Both components differ in density and molar weight and, accordingly, in
their mass specific volume νm and molar volume νN . The domain consists
of a volume stretching from z = 0m to z = L = 1m. The boundaries are as-
sumed to be impermeable, which corresponds with Neumann conditions of
∇w j

∣∣
z=0,z=1 = ∇ρ j

∣∣
z=0,z=1 = ∇c j

∣∣
z=0,z=1 = 0. Initially, the left part of the

volume is filled with pure component B and the right one with pure A. The
diffusion coefficient is chosen to D = 1×10−9 m/s2 (which however only af-
fects the time-scale of the dynamic problem). Each graph provides simulated
profiles between 0 and 1×109 s, with a stepping of 2.5×107 s.

Figure 3.2 shows profiles, when writing the transport equation in terms of
the mass fraction wA and neglecting the diffusion related velocity contribution
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Figure 3.2: Binary diffusion, transport equation in wA, diffusion induced con-
vection neglected.
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Table 3.1: Test case binary diffusion, physical data.

A B

density
[

kg
m3

]
1000 1500

molar weight
[
[10−3 kg

mol

]
18 180

νm
[
10−3 m3

kg

]
1 0.667

νN
[
10−3 m3

mol

]
0.018 0.120

(as a drying model compare Sloth et al. 2006):

∂wA

∂ t
= ∇(D∇wA) .

Under the considered initial conditions, a system will always relax to wA =

wB = 0.5 as in Figure 3.2, if the convective part is not regarded. With the pure
density of B being 1.5 times greater than the one of A the final mass fraction of
component A should be 40 %, when two equal volumes of A and B are mixed,
and the final mixture density 1250 kg/m3.

This also holds, if not mass or mole fractions are balanced but partial densi-
ties or concentrations, as in Figure 3.3 with the transport equation

∂cA

∂ t
=−∇~JN

A , ~JN
A =−cD∇xA.

The mole fraction of component A is equilibrated to its correct value (∼ 0.87),
but the concentrations are not calculated correctly.
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Figure 3.3: Binary diffusion, transport equation in cA, diffusion induced convec-
tion neglected.
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Figure 3.4: Binary diffusion, transport equation in wA or ρA, diffusion induced
convection considered.

Addition of the convective part (see also equation 3.9) leads to the equations

∂wA

∂ t
= 2D

∇ρ

ρ
∇wA +∇(D∇wA)

∂cA

∂ t
=−∇

(
cA~vD,N + ~JN

A

)
, ~vD,N =−∑

~JN
j MWj

ρ0
j

and solves the problem correctly, as shown in Figures 3.4 and 3.5. The same re-
sults can be obtained using Fick’s second law ∂cA

∂ t = ∇(D∇cA). Due to the step-
wise initial species distribution, initial velocity profiles (dashed lines) exhibit a
Dirac delta function like peak at the transition between the volumes containing
solely A and B. The diffusion induced velocity is indeed dependent on the frame
of reference. With the mass specific volume νm

A of component A being higher
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Figure 3.5: Binary diffusion, transport equation in cA, diffusion induced convec-
tion considered.
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than the one of species B, but the molar specific volume νN
A being smaller, the

velocity profiles of the molar and mass averaged solutions are of different signs
and values. The more the specific volumes of mixture components differ, the
higher the magnitude of the corrective velocity is. This becomes especially im-
portant when modelling diffusion of macromolecules in molar notation and thus
markedly different molar volumes of the various species.

3.6.2 Diffusion Driven Convection, Variable Molar Weight

Considering typical applications in which diffusive transport is modelled, like
drying, a species having variable (averaged) molar weight is rather exotic. A mo-
lar mass transport model will primarily be used for reactive processes involving
polymers, in which the time and position dependence of the polymer properties
is of interest. Nevertheless, as a validation example a polymer membrane con-
sisting of two layers I and II may be considered, which is infiltrated by solvent
(S). If both layers are made up of the same polymer (P), but with a different
degree of polymerisation/chain length, this case can be modelled as binary dif-
fusion with the polymer species having a variable molar weight. The species’
values are provided in Table 3.2. As a sharp jump is hard to be resolved numer-
ically, the polymer’s molar weight changes continuously near the transition be-
tween the layers I and II. The initial polymer concentration is equal throughout
the complete domain with a value of 90 % of pure polymer with the larger mo-

lar weight and hence smaller bulk concentration c0,I
P =

ρ0
P

MW I
P

. Due to its smaller
molar weight in layer II, the polymer’s bulk concentration is twice as high there
compared to layer I. Hence, a larger amount of water is initially contained in
compartment I compared to layer II. The initial slope of cS can be determined

by the closing condition cS = 1
νN

S

(
1− cPνN

P
)
=

ρ0
S

MWS

(
1− cP

MWP
ρ0

P

)
. Figure 3.6

shows the initial profiles as dashed lines. Again, the domain is bounded at both
sides. The solvent contained for a larger part in layer II therefore penetrates into
layer I until equilibrium is achieved. All numerical results have been obtained
by solving the transport equations for cS, cP and ρP. This is equivalent to a
solution with respect to polymer moments as ζ1MWM = ρP.

The naive assumption of diffusive polymer transport by Fick’s law

∂c j

∂ t
= ∇(D∇c j)

∂ζs

∂ t
= ∇(D∇ζs)

∂ρ j

∂ t
= ∇(D∇ρ j)
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Table 3.2: Test case binary diffusion with variable molar weight, physical data.

S PI PII

density
[

kg
m3

]
1000 1200 1200

molar weight
[
10−3 kg

mol

]
18 400000 200000

νm
[
10−3 m3

kg

]
1 0.833 0.833

νN
[
10−3 m3

mol

]
0.018 333.3 166.7

involves diffusion of higher moments or the polymer’s partial density (cmp. sec-
tions 3.1.4 and 3.1.5). This means nothing else than that not only the mole
fractions are equilibrated, but also the polymer’s molar mass will be smoothed
out. The profiles in Figure 3.6 confirm this prediction. The initial jump of the
molar weight is completely equilibrated at the end of the calculation. In the con-
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Figure 3.6: Binary diffusion with variable molar weight, transport equation us-
ing Fick’s second law, profiles of the components and the polymer’s molar mass
with dashed lines showing the initial state.
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Figure 3.7: Binary diffusion with variable molar weight considered in the trans-
port equation, dashed lines show the initial state.

sidered application, both membrane layers would hence diffuse into each other,
resulting in a mixed polymer of constant average molecular weight.

The corrected transport equations according to Fick’s second law for variable
molar weights are (see equations 3.22, 3.23 and 3.25)

∂c j

∂ t
= ∇

(
c jD

cP∇MWP

ρ0
P

+D∇c j

)
∂ρP

∂ t
= ∇

(
ρPD

(
cP∇MWP

ρ0
P

+
∇cP

cP

))
.
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The unphysical smoothing of the polymer’s molar weight is avoided by coupling
the transport of its partial density to the molar frame of reference. Additionally,
the additional convective term corrects Fick’s second law, which is only valid for
species having constant physical properties. The same result could have been
obtained by to the general expressions

∂c j

∂ t
=−∇

(
c j~vD,N + ~JN

j

)
∂ρP

∂ t
=−∇

(
ρP~vD,N +MWP~JN

j

)
with ~JN

i =−cD∇xi. The convective contribution due to molar mass differences

is included in the diffusion induced velocity~vD,N =−∑
~JN

j MW j

ρ0
j

and has not to be

considered separately (see section 3.1.3). As can be seen from Figure 3.7, the
molar mass of the polymer is preserved at its initial values. Unphysical poly-
mer mixing is avoided. The transition between both layers moves towards the
right, which is a consequence of solvent transport from layer II to layer I. The
polymer within the left section is swelling, wheras the polymer in layer II is
shrinking. Unlike in other binary diffusion systems, only the mole fractions are
equilibrated. Due to the molar mass differences, the initially constant polymer
concentration is steepening, as the solvent concentration raises in layer I and
shrinks in the second section. The solvent concentration is only partially equi-
librated. A very important observation is that even the mass fractions are not
constant. A formulation of Fickian diffusion in a mass based frame of reference
would result in wrong profiles, unless fluxes and diffusion induced velocities
were calculated according to equations 3.26 and 3.27.

An extension of this example to higher moments is straightforward.

3.6.3 Diffusion Driven Convection, Excess Volumes

Even if a varying molar mass is considered in the previous example, the solu-
tion is ideal in that mixing does not induce any volume effect. However, excess
volumes may occur in real solutions, which means that the specific reference
volumes of the components depend on the (local) mixture composition. This
effect shall in principle be studied by a simple example. The basic initial setup
is the same as in the first test case, with two components A and B being ini-
tially separated. The physical properties of the pure species are identical as well.
However, the density of component A is not taken constant, but as a function of
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the mass fraction of B

ρ
0
A = ρ

0∗
A +wB

dρ0
A

dwB
.

In order to provide clear graphical results, a value of dρ0
A

dwB
= 400kg/m3 is con-

sidered, which is very large in comparison to the pure reference density of
ρ0∗

A = 1000kg/m3. As equal volumes of species A and B are initially provided,
the mass fractions after equilibration are weq

A = 0.4 and weq
B = 0.6. The final

reference density of component A is therefore 1240kg/m3 so that the volume
occupied by A contracts by a ratio of 1000

1240 = 0.8065. As half of the initial setup
consists of pure component A, the overall domain shrinks by a ratio of 0.9032.

As has been pointed out in section 3.1.2, obtaining direct, analytical expres-
sions for diffusion and reaction induced velocities becomes difficult under the
occurence of excess volumes. Here, the derivative of the closing condition 3.14
is

∑
j

∂

(
ρ j/ρ0

j

)
∂ t

= ∑
j

1
ρ0

j

∂ρ j

∂ t
− wA

ρ0
A

2
dρ0

A
dwB

(
∂ρB

∂ t
−wB

∂ρ

∂ t

)
= 0.

This equation can be applied as an algebraic constraint for the calculation of the
volume corrective velocities. If the left boundary is considered as being fixed,
its velocity is zero and the boundary conditions for components A and B are
identical to those in the ideal case (section 3.6.1). The right boundary at z = L
is moving due to the contraction of the domain. By splitting the total velocity v
into the standard diffusion induced part vD = −∑

j j

ρ0
j

and the unknown part vρ

resulting from the varying reference density of A, it can be easily shown that the
motion of the boundary vΓ equals vρ . Division of the general boundary condi-
tion (the same as formula 3.80 for non-volatile components in droplet drying)

ρ j
(
v− vΓ

)
+ j j = 0

by ρ0
j and summation over all components leads to

∑
j

ρ j

ρ0
j

(
vD + vρ − vΓ

)
+∑

j

j j

ρ0
j
=
(
vD + vρ − vΓ

)
− vD = 0

−→ vΓ = vρ .

The boundary condition for a single component is ρ jvD + j j
∣∣
z=L = 0, which

is the same as for a fixed, impermeable wall and simplifies for binary Fickian
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diffusion to ∇ρ j
∣∣
z=L = 0. In the numerical solution of the problem, the mov-

ing boundary problem was implemented by a coordinate transformation as ex-
plained in section 3.5.1. The algebraic velocity equation was only solved for vρ ,
whereas the diffusion induced velocity was explicitly treated. As can be seen
from Figure 3.8, the mass fraction is equilibrated to 0.4. However, in compari-
son to the initial example with constant reference densities (section 3.6.1), the
partial density evolves to higher values due to the volume effects in the mix-
ture. Initially, the reference density ρ0

A exhibits a step-wise slope due to the pure
species in both parts of the domain. The final reference density is in accordance
with its predicted value, as is the contraction of the domain L

L0
.

The mixture density matches its theoretical value of 1250/0.9032= 1384kg/m3.
Velocity profiles are provided for vρ and correspond with the volume contraction
due to the density increase. The initial velocity profile (dotted line) is a (theo-
retically) infinite step function, with its magnitude in simulations depending on
the numerical resolution.

In the problems considered in this work, it is generally assumed that excess
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Figure 3.8: Binary diffusion considering volume effects in the mixture, transport
by Fickian diffusion.
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3.6. VERIFICATION OF THE TRANSPORT APPROACH

volumes are negligible and the densities of the components in a mixture are
constant. Then the diffusion and reaction induced velocity contributions can be
directly calculated without the detour of an additional set of algebraic equations.
Still, this small example shows that problems, in which the reference densities
are depending on the mixture compositions, can be consistently solved as long
as there is a mathematical conjunction of the density change with mixture prop-
erties such as mass fractions.

3.6.4 Reaction Induced Convection

An ideally mixed batch reactor, in which a volume/density changing chemical
reaction takes place, may serve as a test case for the approach of reaction driven
flow. Typically, such problems are treated by lumped, 0D considerations due to
the absence of spatial gradients. However, this test case can be solved analyti-
cally in a one-dimensional way as well.

For reasons of simplicity the reactor is considered as a cylinder with ver-
tical walls. Mass transfer between the gas and the liquid phase is neglected.
Although the detailed velocity field inside a real reactor is very complicated
and density changing reactions induce in fact a three-dimensional flow field, for
a reactor of constant cross-section the problem can be considered as pseudo
one-dimensional, as the net effect of the velocity field of a rising or lowering
fluid surface only applies in vertical direction. Due to the ideal mixing of the
reactor volume the concentrations of a component are identical everywhere so
that diffusion is not taking place. The component velocity is hence equal to
the fluid velocity, which is just the reaction induced velocity vR in the reduced,
one-dimensional description. The component balance at the liquid surface is the
same as equation 3.84, in which the interface velocity is equal to the component
velocity of non-volatile species. The reaction induced convection according to
equation 3.8 can, again, be treated as a boundary value problem. The whole
problem is characterised as follows

∂c j

∂ t
=−∂

(
c jvR

)
∂ z

+ rF
j (3.127)

∂vR

∂ z
= ∑

rF
j MWj

ρ0
j

, vR (z = 0) = 0 (3.128)

dh
dt

= vΓ = vR (z = h) . (3.129)
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h is the height of the fluid level inside the reactor. With c j 6= f (z) and rF
j 6= f (z)

the set of equations can be simplified by inserting equation 3.128 into 3.127 and
integrating 3.128

∂c j

∂ t
= rF

j − c j ∑
rF

j MWj

ρ0
j

(3.130)

vR (z) = z∑
rF

j MWj

ρ0
j

(3.131)

dh
dt

= h∑
rF

j MWj

ρ0
j

. (3.132)

A lumped, 0D description of the problem is (cmp. section 3.2.1)

dc j

dt
= rF

j −
c j

V
dV
dt

= rF
j −

c j

h
dh
dt

(3.133)

dh
dt

=
1
A

dV
dt

= h∑
rF

j MWj

ρ0
j

, (3.134)

with A and V being the reactor cross-section and volume, respectively. Both
descriptions are equal, which shows that the reaction driven velocity represents
the volume change throughout the reactor consistently in the spatially resolved
case.
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4. SIMULATION OF SPRAY

POLYMERISATION

In the following, the spray polymerisation models provided in chapter 3 are
analysed for the test case of acrylic acid polymerisation in droplets. Due to the
limited residence time in a spray dryer, polymerisation reactions have to be fast
and full conversion needs to be achieved within less than a minute. Acrylic
acid reactions are of the fastest in polymerisation. Moreover, spray polymeri-
sation of this system has already been investigated in lab scale in the work of
Franke, Moritz, and Pauer (2017). It is hence a sensible choice for the theoreti-
cal investigations in this work. Kinetics have been chosen similar to the values
of Wittenberg (2013). Before going into details of simulations, it needs to be
clearly stated that this work is focused on modelling spray polymerisation in
principle and deriving the fundamental effects of process parameters with PAA
synthesis being a reasonable example system. With the current kinetic data, a
detailed prediction of polymer properties is not possible. The following stud-
ies will therefore exhibit the qualitative features and interdependencies of the
process rather than detailed properties of AA polymerisation.

First of all, the lumped, 0D approach for the method of moments is applied
to show peculiarities of spray polymerisation. Further on, spatial effects are re-
solved by 1D simulations and compared to the 0D method. The influence of
monomer evaporation is evaluated as well as partial pre-polymerisation before
atomisation as an alternative process approach. Moreover, the influence of mix-
ture thermodynamics and changes within the drying gas throughout the process
are investigated for large monomer fractions in the drying gas. The simpler
Quasi-Steady-State Assumption model is compared to the method of moments.
Finally, the process variants of droplet polymerisation in a solution, in bulk and
with pre-polymerisation are further investigated by means of numerical DoEs.
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4.1 Kinetics and Process Conditions

Process conditions and concentrations in a spray droplet may differ significantly
from kinetic experiments. Due to drying, the monomer content can be much
higher in spray polymerisation, which is also a desired property as the solvent
should be removed throughout the process. Finding appropriate kinetic data is
therefore a challenge when spray polymerisation processes are to be simulated.

Wittenberg (2013) provides the most complete kinetic scheme on acrylic
acid polymerisation in the literature, covering monomer contents up to 60 w%.
Extrapolation of the data to higher monomer contents may introduce significant
deviations from actual reaction kinetics in a drop. This is especially true for bulk
polymerisation as the concentration dependency of propagation reactions has
been derived for dilution of acrylic acid and enforces the monomer mass fraction
wM , which is rather a function of conversion than of monomer to solvent ratio
at high monomer contents. Recent bulk polymerisation data has been provided
by Dušička, Nikitin, and Lacík (2019), yet only for a temperature of 25°C, with
kp being slightly above 30m3/(mols). For wM = 1,T = 298.15K, Wittenberg’s
correlation (pp. 149-154) yields the following kp value:

Ap = 120000 ·
(
0.063+(1−0.063) · e−17)≈ 7560m3/mol s

Ea,p = 67000 · e−8.6 +
2600

1+50 · e−9.9 +10400≈ 13000J/mol

kp ≈ 40
m3

mols
.

kp in bulk polymerisation is overestimated by about 30% at low temperatures us-
ing Wittenberg’s kinetics. The deviation at high temperatures remains unkown.

Large extrapolation errors with the present kinetic data is inevitable. As the
aim of this work is not focused on obtaining PAA polymer properties in all de-
tails, but to obtain principle cause-effect relationships of polymerisation within
a drop, the scheme was simplified as follows. Wittenberg applied several modifi-
cations to plain Arrhenius equations. In particular, the chain length dependency
of termination conflicts with the basic premise of the method of moments that all
chains behave the same way. Therefore, an averaged At was applied, which goes
along with a chain length slightly below 13000 monomer units. Moreover, only
ordinary moments of the chain length distribution are calculated without distinc-
tion between secondary and tertiary radicals and implementation of backbiting,
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Table 4.1: Chemical reactions in PAA spray polymerisation model.

reaction mechanism reaction equation

initiation 2 fdM+ I −→ IC+2 fdR1 kd = Aie−
Ea,I
ℜT

propagation Rs +M −→ Rs+1 kp = Ape−
−Ea,p

ℜT

termination kt = Ate−
−Ea,t

ℜT

by recombination Rs +Rt −→ Ps+t ktc = (1− ftd)kt

by disproportionation Rs +Rt −→ Ps +Pt ktd = ftdkt

which is considered in Wittenberg’s model with tertiary radicals’ termination
being about an order of magnitude slower.

The reaction scheme is summarised in Table 4.1. Kinetic parameters used
in this work are provided in Table 4.2. The kinetics consist of plain second
order reactions except for initiation, which is of first order. Yet, many poly-
merisation kinetics contain additional dependencies of termination rates on con-
version (Trommsdorff-Norrish / gel effect) and of chain propagation on the ini-
tial monomer content w0

M . Respective modifications were implemented in the
model as well and could be activated by switches. Formulae are similar to the
ones provided by Wittenberg (2013). As high monomer contents are typical in
spray polymerisation, the kp modification of Ea, which mostly applies to small
monomer concentrations, was left out and the w0

M dependency of At was ex-
tended beyond Wittenberg’s limit value of 0.3 without changing the overall be-
haviour of the equation too strongly. As a difference to ordinary polymerisation
processes, evaporation may change the total weight fraction of monomer and

Table 4.2: Kinetic data.

Ai
[
m3/(mols)

]
Ea,i [J/mol] ∆hR [J/mol]

kd
ln1/2
t1/2

e
Ea,I

ℜT1/2 108×103

t1/2 = 10h, T1/2 = 40°C
kp 7.5×103 13×103 −77.5×103

kt 47.5×106 15.464×103

ftd = 0.05
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4. SIMULATION OF SPRAY POLYMERISATION

polymer. Thus, the "initial" monomer concentration generally is not constant,
but varies throughout the process. It needs to be evaluated in each time step
depending on wS, wM and wP. The modifications to k0

p and k0
t values obtained

by Arrhenius equations are as follows:

kp/k, p0 = 1+14.8e−17w0
M (4.1)

kt/k0
t = e−XP360w0,∗

M
3.7

(4.2)

w0,∗
M =

{
w0

M 0w0
M ≤ 0.3

0.3+0.01
(
w0

M−0.3
)

1w0
M > 0.3

.

Basic 0D and 1D calculations have therefore been undertaken for both plain
Arrhenius calculations and kp and kt modifications in order to examine the role
of kinetics within the process. The investigation of process parameters by nu-
merical design of experiments was conducted with modified kp and kt values.

Numerical experiments were carried out for an aqueous solution of acrylid
acid as monomer. In order to accelerate radical formation and to limit the pro-
cess time, VA-44 was chosen as initiator which has a very low 10 hour half-life
decomposition temperature. The initial monomer content was 75 wt% and ini-
tiator was provided with a molar ratio to monomer of 2×10−4 if not stated
otherwise. The initiator efficiency was set to 0.7, a reasonable value for free
radical polymerisation. Under the assumption that no polymerisation reactions
had taken place before and during atomisation, the initial polymer content was
zero. The drying gas temperature was 95°C at a relative humidity of 0%.

The initial drop temperature was set to 20°C. Heat and mass transfer were
specified for constant drying gas properties at Nusselt and Sherwood numbers
of 3. Partial pressures of surficial mixture components were calculated using
UNIFAC thermodynamics. The initial droplet radius R0 was set to 50µm. Ques-
tions of initiator solubility after solvent evaporation were not regarded further in
this study. The droplet’s energy balance equation accounts for heat conduction,
heat transport to the surrounding gas, the heat of evaporation and the heat of
propagation reactions.

Distributed simulations have been carried out for constant and variable dif-
fusion coefficients. Correlations for solvent-polymer diffusion coefficients are
often based on the free volume theory (Duda et al. 1982; Vrentas, Duda, and
Ling 1985; Vrentas, Duda, Ling, and Hou 1985) or experimental correlations.
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4.1. KINETICS AND PROCESS CONDITIONS

In order to keep the diffusion approach simple, flexible and easily adjustable, a
formulation based on the following rules was constructed:

• The diffusion coefficient decreases for higher polymer weight fractions
wP with a third power law: D∼ (1−w∗P)

3.

• The critical weight fraction, at which this power law approaches zero, is
set as wcrit

P : w∗P = wP/wcrit
P .

• The decrease of the diffusion coefficient is limited to a certain order of
magnitude Dlim

log10
.

The final modification of the diffusion coefficient is

D
D0 = max

((
1− wP

wcrit
P

)3

,0

)
+10−Dlim

log10

(
1− e−5wP/wcrit

P

)
, (4.3)

in which D0 is the initial diffusion coefficient in infinite dilution of polymer. The
max function prevents the power law from becoming negative. Addition of both
terms provides a comparably smooth transition between power law calculation
and the constant limit diffusion coefficient. The factor 1− e−5wP/wcrit

P prevents
the sum of both terms from becoming larger than one at small wP.Exemplary
diffusion data for various parameter settings is plotted in Figure 4.1.

Figure 4.1: Dependence of the diffusion coefficient on the polymer weight frac-
tion for different parameter settings.
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4. SIMULATION OF SPRAY POLYMERISATION

Table 4.3: Antoine parameters
(T [°C] , p [mmHg])

water AA

A 8.07131 8.68508
B 1730.63 2409.29
C 233.462 274.87

Acrylic acid has a boiling temperature of
141°C at atmospheric pressure and is volatile
under spray polymerisation process conditions.
In order to examine the principles of droplet
polymerisation and different effects indepen-
dently from material properties, calculations
were performed without and with monomer
evaporation. Antoine parameters for water and
acrylic acid are provided in Table 4.3.

4.2 Lumped Simulation of Droplet Polymerisation

4.2.1 Principle Course of the Process -
Plain Kinetics, no Monomer Evaporation

As long as diffusion plays a minor role, a 0D approach describes spray polymeri-
sation thoroughly and efficiently. Figure 4.2 shows the course of the process
over 300s. Plain kinetics without additional dependencies on initial monomer
content or conversion have been applied and monomer evaporation was not con-
sidered. Immediately after drop formation, drying of the solvent takes place
followed by a long phase of polymerisation. Hence, droplet shrinkage is very
rapid during drying and thereafter more gradual due to the density increasing
reaction. At the beginning of polymerisation, the temperature exhibits a small
overshoot due to high conversion rates, but throughout the rest of the reaction
time it remains virtually identical to the gas temperature of 95°C.

A deeper look into the interplay of drying and polymerisation is provided
in Figure 4.3, which contains the first two seconds of the process. The solvent
evaporates within 0.5 seconds. Due to the heat of evaporation, the droplet is ef-
fectively cooled and remains at a temperature between 35 and 40 ◦C within this
initial period. With decreasing solvent content, the concentrations of other com-
ponents increase. After complete evaporation, the droplet is rapidly heated up
and chemical reactions set in. The heat of reaction is mostly dissipated into the
surrounding gas so that the droplet temperature rises only slightly above the gas
temperature. Polymer is only produced after solvent evaporation which leads to
two insights. The assumed concurrence of chemical reactions and evaporation
(Biedasek 2009, p. 15) does not exist. In fact, solvent vaporisation and polymeri-
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Figure 4.2: 0D simulation of polymerisation in a droplet over 300s
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Figure 4.3: 0D simulation of droplet polymerisation within the first two seconds.
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sation are two consecutive processes and the second one starts not before the first
one is finished. Secondly, polymerisation takes place as bulk/mass polymerisa-
tion but not within a solution. Both findings depend on the assumption that the
0D approach sufficiently describes spray polymerisation, i.e. solvent evapora-
tion is not hindered by diffusion. This will be further discussed by means of
the 1D model in section 4.3. Subsequently (Figure 4.2), polymer of a higher
density than the monomer is formed so that the droplet shrinks further. The heat
of reaction is efficiently removed from the droplet due to its beneficial surface
area to volume ratio. Whereas nearly full conversion is achieved at about 200s,
the zeroth moment still rises significantly and has not approached its final value
after 300s. Continuous initiator decomposition at a minimal rest of monomer
leads to ongoing formation of short polymer chains.

4.2.2 Effects of Kinetics on the Process

The simple introductory example exhibited an increase of polymer concentra-
tion even at practically full conversion and a rather long process time compared
with the residence time in a spray dryer.

Initiator Efficiency

The first phenomenon is due to the fact that chain propagation and initiation
evolve differently over time. The ratio of initiator to monomer rises and leads to
formation of short chains when only a small monomer fraction is left in the drop-
let. This becomes clearer by the moments of dead chains in Figure 4.4 (solid
lines). Whereas the zeroth moment increases even at very low monomer con-
tents, the first moment (= the total amount of monomer units in polymer chains)
changes only slightly after 100s and remains virtually unaltered after 200s. The
same holds for higher moments. Thus, the number average of the chain length
distribution Pn decreases with the additional build-up of small chains while the
weight average Pw approaches its limit value earlier. As a result, the disper-
sity Ð = Pw/Pn rises strongly and differs significantly from the typical value for
radical polymerisation of 2. Chain initiation - build-up of iniator radicals and
their reaction with monomer to chain radicals - is implemented as one single
reaction with initiator decomposition being the rate determining step. This is
valid under the assumption of monomer abundance and allows for not consider-
ing short-living initiator radicals as an additional component. The initiator effi-

94



4.2. LUMPED SIMULATION OF DROPLET POLYMERISATION

ciency specifies how many chain radicals evolve on average by decomposition
of one initiator molecule. At low monomer contents it becomes more unlikely
that an initiator radical approaches a monomer molecule instead of terminating
itself by other reactions before. This was additionally modelled by a simple
approach for a diminished initiator efficiency at small monomer concentrations

fd = f 0
d

(
1− ecM/cI63

M

)
. (4.4)

cI63
M is the monomer concentration of 63% of initial initiator efficiency f 0

d .
If this value is higher, initiator efficiency will go down earlier. For the dashed
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Figure 4.4: Characteristic values of the polymer’s chain length distribution and
statistical moments, 63 % initial initiator efficiency at 1 (solid line), 100 (dashed)
and 500 mol/m3 (dash-dotted) monomer concentration.
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and the dash-dotted lines in Figure 4.4, cI63
M was set to 100 and 500mol/m3,

respectively. As a result, the concentration of living chains λ0 decreases earlier
and the total number of polymer chains ζ0 approaches its plateau sooner and at
lower final values. The higher moments of living and dead chains remain unal-
tered. Hence, the number average remains at higher values and the dispersity
does not increase that strongly. As maximum monomer concentrations in the
bulk are about 14500mol/m3, around one percent of monomer is affected by
cI63

M = 100mol/m3 with the strongest effect on a few permille.

Trommsdorff-Norrish Effect

With a larger amount of polymer being created, the viscosity of the solution
increases and the mobility of chains is lowered. The probability of two living
chains encountering each other becomes lower and termination more unlikely.
This typical Trommsdorff-Norrish or gel effect was modelled in Figure 4.5 by
the conversion dependency of equation 4.2. The solid line shows the process
without, the dashed line with the gel effect (cI63

M = 100mol/m3 in both cases).
The onset of the gel effect takes place after about 5s. Due to the strongly in-
creased conversion rate, the excess temperature is slightly higher. Still, the con-
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Figure 4.5: 0D simulation of polymerisation without (solid) and with the
Trommsdorf-Norrish effect included (dashed).
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trol of the reaction temperature is very good due to the droplet’s large ratio of
surface area to volume. As the drop shrinkage by cause of density changing
reactions is accelerated, the inititaor concentration further rises after the evap-
oration period until monomer conversion becomes less intense. Moreover, the
increase of polymer concentration at very low monomer contents is much less
pronounced because termination of these small chains becomes unlikely and
monomer is rather consumed by propagation. The overall process time is nearly
an order of magnitude smaller than without taking the gel effect into account.

Figure 4.6 shows the corresponding course of conversion, zeroth moments of
living and dead chains and characteristic values of the chain length distribution.
Additionally, data for the gel effect with practically constant initiator efficiency
(cI63

M = 1mol/m3, dash-dotted line) is included. Inclusion of the gel effect in-
duces full conversion after 25s, independently from the initiator efficiency at
low monomer contents which only affects the last remaing monomer molecules.
With termination becoming improbable due to the gel effect, the living chains’
concentration λ0 rises rapidly until the time of (nearly) full conversion. At con-
stant initiator efficiency, λ0 remains on this high level until virtually the last
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Figure 4.6: Conversion, concentrations of polymer chains and characteristic
values of the CLD calculated without (solid line) and with the Trommsdorff-
Norrish effect for cI63

M = 100mol/m3 (dashed) and 1mol/m3 (dash-dotted).
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monomer molecules are consumed. Otherwise it decreases strongly afterwards,
as less chains are initiated (cI63

M = 100mol/m3). Consequently, the dead chains’
concentration ζ0 approaches its plateau earlier and at a smaller value in the lat-
ter case. The gel effect involves a higher number average of the chain length
distribution as the ratio of propagation to termination is much higher. Again,
an earlier decrease of initiator efficiency leads to significantly higher Pn values,
whereas higher moments and the weight average are independent of the initiator
model. With the Trommsdorf-Norrish effect included and cI63

M = 100mol/m3,
the dispersity changes only to a minor degree and finally remains slightly above
the typical value for free radical polymerisation of 2.

The implementations of initiator efficiency, the Trommsdorf-Norrish effect
and propagation dependency on monomer content are simple, but show the
impact of kinetic effects on polymerisation within a drop and on the overall
process time. Subsequent calculations include the gel effect and cI63

M is set to
100mol/m3. In doing so, studies can be evaluated without the need of address-
ing side effects which alter results at very low concentrations. Whilst these
values do not appear completely unrealistic, it has to be born in mind that the
kinetic model is simple and only partly based on measurements. Under the nec-
cessity of fast conversion in spray polymerisation, kinetic parameters are needed
for process conditions that are not commonly covered by experiments. Hence,
the following studies will concentrate on qualitative features of the process.

4.3 Spatial Effects in Droplet Polymerisation

Section 4.2 showed that kinetic parameters strongly affect a spray polymeri-
sation process. Due to drying, inhomogeneities may occur within the process
when the surficial solvent concentration is low and still near its feed value within
the droplet’s core. This also affects the monomer and initiator concentrations
and can therefore lead to an inhomogeneous product. In the following, the re-
sults of a 1D model as proposed in section 3.3.4 will be compared with the
corresponding lumped simulations for various cases. Diffusion was modelled
by the pseudo-binary Fickian approach provided at the end of section 3.1.5. If
not stated differently, simulations have been carried out with the Trommsdorf-
Norrish effect and kp dependency on w0

M being active. Feed monomer content
was set to 75wt%. Monomer evaporation was switched off in the simulations
considering effects of diffusion.
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4.3.1 Effect of the Diffusion Coefficient on Concentration Gra-
dients

A typical order of magnitude of diffusion coefficients in an aqueous solution is
D = 1×10−9 m2/s. This value was used for the 1D simulation in Figure 4.7.
Concentrations are provided as radial profiles at intervals of 4s. The related
0D results are depicted as circles for the same instants of time and in between
as dashed lines. The instants of the radial profiles are indicated in the time-
dependent R and T graphs additionally by circles and dashes for the lumped and
distributed simulation, respectively. Initial profiles are drawn in bold.

Both calculations are practically identical. The profiles are flat and 0D re-
sults are matched over the whole droplet. Only minor differences occur within
the first two seconds of the process as is depicted in Figure 4.8 in which aver-
aged 1D values are compared with their 0D counterparts. At low solid contents
the drying rate is overestimated in the 0D model, in which, due to the abscence
of radial gradients, the surficial solvent content and partial pressure remain at a
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Figure 4.7: 1D simulation of polymerisation in a droplet with a diffusion coeffi-
cient of D = 1×10−9 m2/s , radial profiles at 0,4,8, ...,40s, corresponding 0D
results as circles and dashed lines.
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higher level until solvent evaporation is finished. Its behaviour is therefore more
stepwise, whereas the transition between drying at small droplet temperatures
with high shrinking rates to chemical reactions at high temperatures is more
gradual in the distributed simulation. As full solvent evaporation takes about
0.7s longer in the 1D model, polymerisation is slightly retarded as well. Hence,
polymer concentrations are marginally smaller and the droplet radii a bit higher
compared to the 0D simulation at same instants of time. Still, the differences
are so small that after two seconds both results can be regarded as equivalent.

This result may be surprising at first glance as the mass transfer Biot number
is one order of magnitude higher than its limit value which allows for lumped
modelling (section 2.5.4). Yet, these results are not to be mistaken. The mass
transfer Biot number refers to solvent diffusion in the droplet. In fact, the course
of solvent concentration over time is significantly different in lumped and dis-
tributed modelling. The time until full evaporation differs by a factor of about
three. If solely solvent vaporisation was of interest, the error introduced by
lumped modelling would indeed be very high. Yet, considering that polymerisa-
tion sets in just after evaporation and that the reaction product is of main interest,
it is irrelevant whether full solvent evaporation was achieved after less than 0.4
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Figure 4.8: Comparison of 0D (dashed lines) and averaged 1D results (solid,
D = 1×10−9 m2/s) within the first two seconds of spray polymerisation.
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Figure 4.9: Comparison of 0D (dashed lines, circles) and 1D results (solid) for
a small diffusion coefficient of D = 1×10−12 m2/s at 0,4,8, ...,40s

or slightly above 1 s. Hence, lumped and distributed modelling provide virtually
equal results of the reactive drying process despite the strong relative deviation
in solvent evaporation at the process’ beginning.

Figure 4.9 provides a 1D simulation for D = 1×10−12 m2/s, a diffusion co-
efficient which can be considered as reasonable for a polymer rich solution. In
this case, strong radial concentration gradients occur. Directly after the droplet
is exposed to the drying gas, the solvent concentration at the droplet’s surface
decreases within fractions of a second. Afterwards, evaporation is limited by
transport from the droplet’s core to its surface. The quasi-stationary equilibrium
of evaporation and diffusive solvent transport from the core involves a small sol-
vent content at the surface and low drying rates. Hence, the drop is heated up
almost immediately. Chemical reactions set in, but - as initiator concentrations
are lower and therefore less chain radicals are induced - at lower rates compared
to the case with no diffusion limitation. Due to this and additional slight cool-
ing by solvent evaporation, the temperature overshoot is smaller compared to
the 0D simulation. Whereas the solvent concentration exhibits strong gradients
over the drop’s radius, this is less pronounced for the initiator. The monomer
concentration nearly even flattens out within the simulated 40s. This is not only
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caused by diffusion of monomer and initiator to the droplet’s core, but also by
chemical reactions which are faster at the surface due to the high educt concen-
tration. Initiator decomposition is accelerated and a higher number of polymer
radicals created. Monomer conversion is hence accelerated by a higher educt
concentration of both living chains and monomer itself. Therefore, the surficial
monomer content decreases even faster. The higher educt concentrations near
the droplet’s surface result in a larger concentration of polymer.

4.3.2 Inhomogeneities of the Product at Small Diffusion Co-
efficients, Effect of Moments’ Diffusion

Polymer properties of the previous simulation with D = 1×10−12 m2/s are
shown in Figure 4.10. The upper row contains number and weight average and
dispersity profiles, when just Arrhenius equations were used for calculation of
reaction parameters. Despite the strong gradients of reactants at the beginning of
the simulation, the number and weight average of the chain length distribution
vary only slightly over the droplet radius. Spatial gradients are much smaller
than changes over time. The resulting product can still be considered as fairly
homogeneous. In the middle row, additional conversion and w0

M dependency
of termination and propagation according to equations 4.1 and 4.2 had been
switched on. For one thing, the changes over time are stronger, with Pn and
Pw running through a maximum near 16 s. This is in accordance with 0D cal-
culations including the Trommsdorf-Norrish effect (compare Figure 4.6). For
another thing, spatial variations are somewhat higher as well, but still distinctly
lower than differences throughout the process time. For reasons of clarity the
final Pn and Pw profiles at 40s are plotted in subgraphs. Values at the outer shell
are about 10% higher compared to the inner core. The picture changes, when
the feed monomer content is reduced from 75 to 25wt%. In this case, spatial dif-
ferences of the monomer concentration between droplet core and outer shell are
much higher and result in large inhomogeneities of number and weight average
of the chain length distribution. It has to be kept in mind that a sphere’s volume
grows with the third power of the radius. When deviations, as in the depicted
case, only affect the outer 20% of Pn and Pw profiles, this outer shell contains
about half of the droplet volume though.

The same calculation as in the lower row, but with simplified Fickian dif-
fusion acting independently on all moments (cmp. equation 3.36), is shown
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in Figure 4.11. As before, including kp dependency on w0
M involves shorter

chains at the droplet’s outer rim. Yet, profiles are smeared out so that these in-
homogeneities are not as distinct as when modelled correctly. Moreover, due to
unrealistic polymer transport, higher chain lengths are predicted even at inter-
mediate positions in the droplet (e.g. 20µm), at which solution concentrations
are mostly unaffected by drying and similar to those at the drop’s centre. As
proposed theoretically before, a simple model of Fickian moment diffusion will,
given enough time for equilibration, always end up in homogeneous product fea-
tures. A proper polymer diffusion model is therefore necessary, when diffusive
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Figure 4.10: Characteristic values of the polymer for D = 1×10−12 m2/s,
upper row: simple second order kinetics, middle row: dependency on w0
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profiles at 4,8, ...,40s; small subplots show final profiles at 40s.
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transport of moments is to be considered.
The assumption of a very low diffusion coefficient is valid when a consider-

able amount of polymer is present. Still, the polymer content is virtually zero
at the beginning of the spray polymerisation process so that the diffusivity is
similar to the one of an ordinary solution. With further progress of polymer
formation, diffusion will be hindered increasingly. In Figure 4.12, the diffusion
coefficient was varied according to equation 4.3 with wcrit

P = 0.8 and Dlim
log10

= 4.
In doing so, the diffusion coefficient will be lowered by four orders of magnitude
for a polymer weight fraction beyond 0.8, whereas it remains unaltered in abs-
cence of polymer. The initial diffusion coefficient D0 was set to 1×10−9 m2/s.
Flat profiles are obtained similar to the results of an unmodified, constant diffu-
sion coefficient D0. Considering again the course of process within the initial
seconds in Figure 4.8, it becomes clear that as long as solvent evaporates, the
droplet is strongly cooled and polymer formation is effectively prevented. As
long as there is no polymer built up, the diffusivity stays at a high level so
that drying is not limited by transport within the droplet. Hence, the solvent
completely evaporates before a considerable amount of polymer is formed and
diffusion can be hindered in fact.

Interim Conclusion

Considering the test case with solely solvent evaporation and low humidity in
the drying gas, it is clear that spatial gradients will only occur when polymer
is already present within the droplet at the beginning of the process. The the-
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Figure 4.12: 0D (dashed lines, circles) and 1D results (solid) for a diffusion coef-
ficient varying between 1×10−9 and 1×10−13 m2/s, depending on the polymer
content, profiles at 0,4,8, ...,40s .

oretical case of a very large droplet, in which diffusion would be too slow for
equaling out gradients even at D = 1×10−9 m2/s, is not applicable to spray
processes and only of academic nature.

As chemical reactions are efficiently prevented in presence of solvent due to
the heat of evaporation, the process can be divided into two different phases, a
period of sole evaporation and the stage of synthesis, which is then carried out
as bulk polymerisation.

As long as only solvent evaporation is occuring and no other effects evoke
a strong decrease of the diffusion coefficient, a lumped model represents the
droplet polymerisation process as good as a distributed approach. In terms of
reaction modelling this allows for the implementation of more complicated reac-
tion mechanisms for which implementations in a 1D model become costly. Such
schemes could involve moments of tertiary radicals, copolymers or the like or
even a detailed simulation of the molar weight distribution with algorithms such
as adaptive h-p Galerkin methods (Wulkow 2008).
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4.3.3 Effect of Monomer Evaporation

So far monomer vaporisation has been neglected in order to study the model be-
haviour in case of hardly evaporating monomers. Yet, acrylic acid is a volatile
component and the assumption of sole solvent evaporation is an unsuitable sim-
plification. As Figure 4.13 shows, the process changes drastically, when the
monomer is also affected by drying. Same as for the solvent, the relative satu-
ration of the drying gas with respect to monomer was set to 0% and a variable
diffusion coefficient starting at 1×10−9 m2/s was assumed as before. Within
the first 0.5s the process is mostly unchanged to the previous example. The
solvent concentration at the droplet’s surface decreases strongly due to evapora-
tion. Under abscence of polymer, the diffusion coefficient remains at its original
value so that diffusive transport from the drop’s bulk to its surface is scarcely
hindered. The monomer concentration, like the initiator’s one, rises at the drop-
let’s surface at first. After most of the solvent was vaporised and its surface
concentration gets low, the activity of monomer at the interface to the drying
gas is increased due to its higher concentration and monomer evaporation starts.
At the same time, solvent evaporation and as a consequence thereof cooling of
the droplet are weakened. The drop’s temperature rises to a new quasi-steady-
state, at which heat transfer from the drying gas and cooling due to monomer
evaporation are in equilibrium. This is similar to solvent vaporisation, but at an
elevated temperature so that polymerisation reactions partly take place. Finally,
a small sphere remains consisting of polymer and a considerably high fraction
of initiator.

Comparing 0D and 1D results, the lumped model exhibits a more stepwise
behaviour again. Solvent is evaporated nearly completely before monomer evap-
oration sets in. In the 1D case the solvent concentration in the droplet’s core
remains at a higher value when monomer vaporisation already takes place. The
temperature curve of the 0D model shows a clear distinction between evapora-
tion of solvent and monomer, whereas the transition between these two phases is
gradual in the distributed case. Nevertheless, the outcome of both models is vir-
tually the same until polymerisation begins to play a role, especially comparing
surface values of the 1D calculation with 0D results. However, polymerisation
reactions lead to a different result in the distributed simulation. The final radius
is a bit higher than in the 0D case. At some point, evaporation of monomer is
hindered and a slightly higher number of monomer molecules is converted into
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Figure 4.13: 1D and 0D simulation of AA spray polymerisation with evapora-
tion of the monomer at 0,0.4,0.8, ...,4s; subgraphs show final profiles of initia-
tor and polymer concentration.

polymer. Despite the difference being small, it is large enough that the initiator
concentration approaches a lower value. Moreover, the polymer concentration
is drastically higher. Final profiles of these two components are depicted in the
subgraphs. Interestingly, the concentrations of both remaining species exhibit
a distinct minimum at the droplet surface. This is not a violation of conserva-
tion laws, as it might look at first sight, but an effect of the polymer component
with locally varying molecular weight and a maximal mole specific volume at
the droplet surface. Characteristic values of the chain length distribution are
depicted in Figure 4.14. Final profiles at 4s are again drawn in subplots. At the
end of the calculation, Pn is about a factor of five higher at the surface than in the
droplet’s core. Despite the low concentration of polymer molecules, the amount
of monomer units in chains and the volume occupied by polymer are highest at
the droplet surface.

The difference in the calculated number average between 1D and 0D calcula-
tions is striking. During the phase of mainly monomer evaporation both models
calculate similar Pn values. Whereas the 0D model remains at this high level, the
number average decreases rapidly in the distributed case with final values being
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Figure 4.14: Characteristic values of the chain length distribution for polymeri-
sation with evaporation of the monomer at 0.4,0.8, ...,4s; subgraphs show final
profiles

more than one order of magnitude lower. A similar behaviour can be observed
for the weight average, yet to a much smaller degree and with its surficial value
remaining at the same level as the corresponding 0D value. With both values
evolving differently, the dispersity of the product grows strongly to an average
value above 50. Figure 4.15 provides more insight into this surprising outcome
of the 1D simulation. Concentration, moments and characteristic values of the
chain length distribution are plotted over the droplet temperature. 1D results
(solid lines) have been condensed into averaged values.

As discussed before, the 0D model exhibits a stepwise behaviour. In the very
first phase the droplet is heated up until cooling by solvent vaporisation balances
heat transfer from the surrounding gas at about 35°C. Due to solvent evaporisa-
tion, the monomer concentration rises. It comes to its maximum, when virtually
no solvent is left and monomer evaporation becomes dominant. A second equi-
librium of cooling due to the heat of monomer vaporisation and heat transfer
from the surrounding occurs slightly above 60°C. This temperature level is
larger than in the preceding phase, because the vapour pressure and the heat
of evaporation of acrylic acid are smaller compared to water. Now, monomer
evaporates and the concentration of the remaining initiator rises rapidly. At the
same time, polymerisation reactions set in so that a small portion of monomer
is converted into polymer. This period of concurrent chemical reactions and to
a much larger degree evaporation takes place in a quasi-steady-state at a mostly
constant temperature. As can be observed from the moments ζ0 and ζ1, virtually
all polymer molecules are build up in this phase. Pn and Pw values and hence the
dispersity remain at the same level, when evaporation and reactions break down
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and the droplet is finally heated to the surrounding gas temperature.

In the 1D model, by way of contrast, these processes are superimposed by
diffusion effects. As was already discussed concerning Figure 4.13, the con-
centration profiles exhibit strong gradients. The surficial solvent fraction de-
creases earlier so that the monomer content is elevated there. Hence, the temper-
ature evolution during this quasi-steady-state period of solvent drying is more
smeared out and does not remain near a certain level as in the 0D case. The
two phases of solvent and monomer evaporation are not separated that distinctly
as in the lumped model. Monomer is already vaporised before the solvent is
completely consumed. Same as in the 0D calculation, polymerisation reactions
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Figure 4.15: Averaged 1D (solid) and 0D values (dashed lines) over the droplet
temperature for the case of droplet polymerisation with monomer evaporation.
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set in during this phase and the course of the first moment over the temperature
is identical until it exceeds a concentration of 2000mol/m3. At this point, when
the droplet radius is already smaller than 10µm, the diffusion coefficient at the
droplet’s surface has decreases due to the growing polymer fraction that much
that transport of monomer from the drop’s core is slowed down. The surficial
monomer concentration and its evaporation rate are lowered further. Within a
short transition time, the droplet heats up and chemical reactions are acceler-
ated while evaporation still is partly taking place. When diffusion is hindered
that much that drying is practically stopped, the drop temperature approaches
the level of the drying gas temperature and the rest of monomer is converted
into polymer. Initiator decomposition is accelerated strongly at this higher tem-
perature. Hence, a large amount of chain radicals is created (see the zeroth
moment of the living chains’ distribution λ0). Comparing the values at which
most of the polymer is created - > 90°C in the 1D and ∼ 60°C in the 0D case
- the living chains’ concentration is about one order of magnitude higher in the
distributed simulation. The initiator to monomer ratio is exceedingly high with
values above 1 : 10. Therefore, a large number of very short chains is added in
this final reaction period resulting in a tremendous drop of the number average
Pn. Higher moments are not affected so strongly, as for instance the total amount
of monomer units - the first moment - remains in the same order of magnitude.
The effect on the weight average is therefore much smaller. As a result, the
dispersity grows to unusually high values.

Comparing the final droplet radii without and with monomer evaporation
of about 45 and below 10µm, less than one hundredth of the initial monomer
content remains in the drop. In reality, the effects may be less or even more pro-
nounced than being calculated in the 1D model, depending on the relationship
of diffusivity to the solution’s composition. Provided that monomer evaporation
is scarcely hindered by polymer formation, the result will be as predicted in
the 0D calculation. If diffusion is hindered earlier than presupposed here, more
monomer will remain within the droplet. The initiator to monomer ratio will
still approach unuasally high levels, yet smaller than in the present calculation.

Interim Conclusion

Clearly, only a distributed model covers all relevant processes when educt con-
centrations within the droplet are affected by diffusion. Monomer evaporation
plays a major role concerning the yield of droplet polymerisation. The process

110



4.3. SPATIAL EFFECTS IN DROPLET POLYMERISATION

is unattractive in such a regime, even, if a very efficient recovery of monomer
from the drying gas could be applied. Moreover, polymer properties are affected
due to the large change in reaction conditions.

As a remedy, transport of monomer to the drying gas has to be limited. This
can either be achieved on the droplet side by preventing transport to the gas
interface or on the gas side by reduction of the driving force for evaporation.
The first approach can be realised by providing polymer already at atomisation
of the drop so that the diffusivity drops to low levels at an earlier instant of time.
The second solution may be achieved by milder drying conditions with respect
to the monomer, for example by a higher monomer saturation in the drying gas.
Both approaches will be discussed in the following two examples and further
investigated by means of numerical DoEs in section 4.5. A third way could
involve additional additives, which lower the activity of the monomer to such a
degree that evaporation becomes subordinate.

4.3.4 Pre-polymerisation Before Atomisation

The previous example showed that only a small fraction of the initial monomer
content may be converted into polymer if it is a volatile species. One solution
is to provide polymer already within the feed material, which will build a skin
of low diffusivity at the droplet surface under drying. A pre-polymerisation
period was implemented into the model by switching off mass transfer to the
surrounding and clamping the temperature to a level Tprepoly within an initial
process phase. In order to provide smooth transitions to the numerical solver,
this was realised via a prefactor, gradually switching heat and mass transfer to
the surrounding from zero to its full value(see also Figure 4.16, left plot):

fprepoly = 0.5+0.5 · tanh(200t) . (4.5)

This factor was applied to mass fluxes in the boundary conditions at r = R
and also to the energy balance in order to keep the temperature at the same,
controlled level. The real equivalent to this model setup could be feed material
running through small tubes, in which the temperature control is good enough
to prevent a runaway of reactions, and being atomised thereafter. Figure 4.17
shows a calculation including 5s pre-polymerisation at the same temperature as
in the drying gas. Concentrations before atomisation are drawn as flat profiles
over the droplet radius in the 1D case. Despite no droplet was created at these
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instants of time, this representation makes it easier to evaluate the evolution
throughout the process and to distinguish 1D and 0D results.

Due to the smooth numerical switch, heat and mass transfer to the surround-
ing are not instantly switched on at 0s, but drying has already partly started
before and just reached 50% of its full effect by this point. Hence, the third
radial profile in the distributed case as well as the respective circle from the 0D
calculation already show the effect of mild drying. The lumped simulation is
easily explained. Before atomisation, the process is just executed like in a batch
or in a plug flow within a tube reactor. After exposition to the drying gas, the
solvent evaporates first, just as in the previous example. After (nearly) complete
solvent vaporisation, the monomer species is exposed to drying, which happens
rapidly and consumes most of the remaining monomer. Concurrently, chemical
reactions take place and small fractions of additional polymer are built. One
difference to the previous case is that, starting at a the drying gas temperature,
water evaporation takes place at higher temperature so that chemical reactions
are slightly more in favour. Secondly, with polymer being present, the monomer
fraction is smaller so that the drying period is reduced. The polymer created in
the pre-atomisation phase is by far the main constituent of the final product in
the 0D case. As the right graph in Figure 4.16 shows, the lumped model vir-
tually simulates a polymerisation process in a tube reactor followed by spray
drying.

Drying and chemical reactions are again superimposed by diffusion effects
in the 1D simulation. The presence of polymer at the droplet’s surface decreases
the diffusivity so that solvent evaporation practically stops within a second. The
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Figure 4.16: Left: numerical switch for transition between pre-polymerisation
(0) and normal droplet polymerisation (1), right: polymer mass over time.
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Figure 4.17: 1D and 0D results of droplet polymerisation with monomer evap-
oration and a 5s period of pre-polymerisaiton before atomisation; profiles at
−5,−2.5,0,2.5, ...,20s.

temperature drop due to evaporative cooling is less pronounced than in the 0D
case. Likewise, subsequent and partly parallel monomer evaporation stops soon
after. Under abscence of solvent and monomer at the droplet’s surface, the dif-
fusion coefficient locally becomes very low. Hence, all species exhibit steep
concentration gradients near the interface to the drying gas. Additional polymer
production lowers the diffusion coefficient further within the droplet. Final con-
centration gradients are therefore a bit smoother, but still very pronounced as
transport only scarcely takes place.

The final product exhibits a substantially larger radius than in the 0D calcu-
lation, not only as more monomer is converted into polymer, but also as still a
large amount of solvent remains when transport to the drying gas is practically
prohibited. The solvent concentration in the droplet’s core even rises after evap-
oration has stopped, as the drop shrinks by cause of density changing reactions
and the remaining solvent is concentrated within a smaller volume. Figure 4.16,
right frame, shows that in the 1D case about twice as much monomer is con-
verted into polymer as in the lumped simulation. Yet, more than half of the
initial monomer still evaporates into the drying gas.
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Figure 4.18: Characteristic values of the chain length distribution for the pre-
polymerisation case at −2.5,0,2.5, ...,20s.

The characteristic values of the chain length distribution are plotted in Fig-
ure 4.18. Generally, the changes over time are much smaller compared to the
previous example without pre-polymerisation (cmp. the y-axis scale). In the
0D calculation, the largest part of the final polymer is created before atomisa-
tion under nearly constant conditions so that chain length distribution properties
change only little. As single profiles are hard to identify in Figures 4.17 and
4.18, profiles at 0.5 (dashed) and the final state of 20s (solid line) are drawn in
Figure 4.19. After 0.5s the surficial polymer weight fraction is already nearly
one. The diffusion coefficient thus exhibits a sharp drop near the droplet’s sur-
face. As only a small outer rim of the droplet is affected, diffusive transport
can still take place under locally high mole fraction gradients. Yet, it is already
strongly limited. With drying being very weak at this instant of time (com-
pare Figure 4.17), the profile is not a snapshot within a very transient phase of
strong changes but represents a quasi-steady-state despite its steep gradient at
the surface and the edge in the profile. Both peculiarities just correspond with
the strong local variations of the diffusion coefficient and provide a continuous
course of the diffusive flux at this point. Throughout the process, mole fraction
profiles are smoothed, but the steep gradients at the droplet’s surface largely
remain.

The final solvent content is partly reduced and its profile is smoothed. The
product consists of more than 80wt% polymer everywhere in the droplet. The
diffusion coefficient therefore approached its lower limit value of 1×10−13 m2/s
throughout the whole product. Considering the time scale of a spray process the
final solvent content is "frozen". The time span of full evaporation shifts from
less than a second to more than an hour.
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Figure 4.19: Radial profiles of the pre-polymerisation case at 0.5 (dashed) and
20s (solid lines).

Interim Conclusion

Pre-polymerisation as a process variant allows for a reduced loss of volatile
monomers to the drying gas. Moreover, the residence time for creation of the
same amount of polymer per droplet can be reduced, as the process is partly
shifted prior to atomisation. On the downside, removal of solvent is strongly
exacerbated. Technically, this process variant involves additional issues such
as heat control in the pre-polymerisation phase or atomisation of a polymer rich
solution and clogging. Moreover, it not only prevents monomer evaporation, but
also solvent vaporisation. The amount of generated polymer before atomisation
therefore needs to be adjusted carefully.
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4.3.5 Polymerisation at Elevated Monomer Content in the
Drying Gas

A higher partial pressure of monomer in the drying gas will reduce the driving
force for monomer evaporation. In the following example, monomer saturation
was set to 90%. Other drying and feed conditions were kept at the same levels as
in previous simulations. Figure 4.20 shows the evolution of droplet radius and
temperature and solvent, initiator, monomer and polymer concentrations during
the first 7.5s. Comparison with Figure 4.12 shows that, same as before, solvent
evaporation takes place almost instantaneously and the monomer concentration
rises to a similar level. However, the increase in monomer content happens
not only due to reduction of solvent but also by monomer uptake from the dry-
ing gas. The droplet radius rises despite solvent evaporation and, different to
previous simulations, the initiator concentration is lowered. As long as the drop-
let temperature stays below the dew point of the monomer (92.4°C under the
present conditions), condensation of monomer from the drying gas at the "cold"
droplet will take place. If the droplet consisted of pure monomer, uptake from
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Figure 4.20: Droplet polymerisation with 90% monomer saturation in the dry-
ing gas at 0,0.5,1,3,5,7.5s.
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the drying gas would stop as soon as the dew point was surpassed. In a mixture,
the monomer activity typically will be lowered. Hence, its partial pressure at the
droplet surface may be considerably smaller than in the surrounding gas. As a
result, the droplet serves as an absorber for monomer from the drying gas. Both
effects lead to a monomer uptake within the first second of the process.

Thereafter, the temperature at the drop’s surface is so high that monomer
evaporation sets in. Other than before, the drying conditions are mild. Within
the next seven seconds, the droplet shrinks to about 75 % of its initial radius,
as evaporation is strongly limited and also buffered by the amount of monomer
additionally taken up within the first second. In comparison, it takes less than
half of a second under harsh conditions to vaporise most of the monomer (see
Figure 4.13). After this period of time, the monomer content at the droplet’s
surface has become so low that evaporation stops. The course of the drop radius
therefore approaches a flat tangent at the end of this phase.

The temperature level during this quasi-steady-state period is comparably
high, starting slightly below the drying gas temperature and surpassing it when
monomer evaporation stops. Therefore, chemical reactions take place through-
out this phase and a considerable amount of polymer is created. This is also
the reason for stopping monomer evaporation after about ten seconds, as the
polymer content at the surface becomes so high that monomer activity is sub-
stantially lowered. Comparison of lumped and distributed results shows that
surficial values of the 1D simulation are almost identical to corresponding 0D
values. Inside the droplet, creation of polymer partly hinders diffusion so that
even under mild drying conditions monomer transport to the outer rim is de-
creased. Hence, the monomer concentration is higher and the initiator concen-
tration lower inside the droplet. For the same reason, the droplet radius is a little
higher in the distributed case.

Figure 4.21 depicts the course of the process starting from 10s (bold pro-
files) until 120s. First, 0D simulation shall be discussed. After ten seconds of
the process, the monomer content has decreased so much that its partial pressure
at the drop’s surface becomes lower than in the surrounding gas. The droplet
begins to take up monomer from the drying gas. In the simple, lumped approxi-
mation, the process approaches a new quasi-steady-state of reactive absorption,
in which the (fully mixed) monomer concentration stays at a nearly constant
level and the amount of absorbed monomer is directly transformed into poly-
mer. With decreasing initiator content - due to chemical reactions and dilution
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Figure 4.21: Droplet polymerisation with 90% monomer saturation in the dry-
ing gas at 10,15,20,40,80,120s.

by monomer uptake - the concentration of living chains becomes lower and
the monomer conversion rate is reduced. When the initiator is consumed com-
pletely (beyond the simulated time span), chemical reactions will break down
and reactive absorption will stop. Even as the process is not finished after 120s,
the droplet radius is increased strongly as a result of monomer uptake. The ex-
cess temperature is elevated during the phase of reactive absorption, due to both
the heat of absorption and chemical reactions. Polymer concentration is finally
lower than at the beginning of this process phase as with decreasing initiator
concentration longer chains are produced.

The distributed results exhibit very strong inhomogeneities in Figure 4.21.
The principle course of the process at the drop’s surface is similar to the lumped
model, whereas the inhibition of transport evokes a completely different be-
haviour at the droplet’s inner core. After less than 40s process time full con-
version is achieved there. In contrast, monomer is constantly absorbed from the
drying gas at the droplet’s outer rim so that its concentration remains on a nearly
constant level. The low diffusivity of the polymer rich mixture prevents trans-
port inside the drop so that chemical reactions of the absorbed monomer only

118



4.3. SPATIAL EFFECTS IN DROPLET POLYMERISATION

0 50 100

r [µm]

25000

50000

75000

100000

125000

150000

175000

P
n

0 50 100

r [µm]

50000

100000

150000

200000

250000

300000

350000

400000

P
w

0 50 100

r [µm]

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ð
X

0 50 100

r [µm]

0.0

0.2

0.4

0.6

0.8

1.0

w
P

[−
]

0 50 100

r [µm]

10−13

10−12

10−11

10−10

10−9

D
[m

2
/s

]

0 50 100

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

X
[−

]

Figure 4.22: Radial profiles of polymer properties, diffusion coeffi-
cient and conversion for 90% monomer saturation in the drying gas at
2,6,10,15,20,40,80,120s.

take place near the droplet’s surface. With less monomer being consumed by
reactions, the absorption rate is reduced likewise. Hence, the surficial monomer
concentration is higher than in the lumped simulation. The effect of reactive
absorption and the increase in droplet radius are therefore less pronounced in
the distributed case and overestimated in the fully mixed model.

The polymer weight fractions and corresponding diffusion coefficients are
depicted in the second row of Figure 4.22. In presence of monomer, the diffu-
sivity at the droplet’s surface stays at a comparably high level. Ongoing absorp-
tion leads to expansion of this outer volume. Transport within the inner core is
inhibited with increasing polymer creation. Still, this nearly impermeable core
grows slightly due to exchange of initiator and monomer near its transition to the
monomer rich shell. The number and weight average of the chain length distri-
bution exhibit a strong jump between the core with full conversion and the shell
with absorbed monomer, as the monomer to initiator ratio is much higher and
constantly increasing throughout the process at the droplet’s outer part. Values
of the lumped calculation are in the order of those near the droplet surface.
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The long-time behaviour is depicted in Figure 4.23, as a hypothetical drop
polymerisation process over half an hour at constant gas properties. Initial (0 s)
and final profiles (1800 s) are drawn in bold. The progress of radius and conver-
sion over time shows that reactive absorption does not stop before ten minutes
process time - much longer than the typical residence time in a dryer. Surprising
is the drop in conversion in the distributed calculation. This is caused by large
gradients of the chain length distribution throughout the drop. As explained be-
fore, the high ratio of monomer to initatiator leads to the creation of very long
chains at the droplets outer rim. The same number of polymer molecules there-
fore occupies a much larger volume near the surface and the total concentration
is much than in the core. Fickian diffusion is driven by mole fraction gradients.
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Figure 4.23: Long term evolution of the reactive absorption process for 90%
monomer saturation in the drying gas (t = 0,4,60,240,480,1800s, initial and
final state in bold).
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Flat mole fraction profiles involve a higher monomer concentration in the drop-
let’s core than at its outer rim due to the different length of polymer molecules.
Diffusion therefore leads to monomer transport from the drop’s surface towards
its centre (similar to the example in section 3.6.2). With the polymer in the core
being diluted over time, the diffusion coefficient rises again. Diffusion is there-
fore accelerated and monomer transport further promoted. Ongoing polymer
dilution while initiator is completely consumed leads to a drop in conversion.
Finally, the polymer weight fraction is smallest at the core.

These profiles demonstrate the limits of a pseudo-binary Fickian diffusion

concept. In the generalised driving force ~d j = ∑k

(
δ jk + x j

∂ lnγ j
∂xk

∣∣∣
T,p,γl 6=k

)
∇xk

of the Maxwell-Stefan approach (equation 2.62), the activity coefficients in the
mixture affect diffusive fluxes. The final profiles are therefore unlikely. Rather
the monomer concentration will be a flat profile with values near the surficial
one. Still, this effect mainly sets in on longer time scales. Profiles at 240 s still
exhibit a polymer weight fraction near one at the droplet’s centre. The principle
diffusive behaviour of the process is hence modelled correctly for the relevant
time scales of spray drying.

The basic course of the process is depicted in Figure 4.24 concerning the
activities of solvent and monomer depending on weight fractions at the droplet
surface (PPAA

n = 10000). The process only takes place at the binary boundaries
of the three-component system of solvent, monomer and polymer. In the first,
rapid phase the binary solvent-monomer mixture is reduced to practically pure
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Figure 4.24: Activities of solvent and monomer using UNIFAC thermodynam-
ics for Pn = 10000. Composition of the mixture throughout the process provided
by bold line and arrows. Right graph: activity of acrylic acid in a AA-PAA mix-
ture using UNIFAC and ideal thermodynamics.
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monomer (+initiator). Polymerisation then leads to a monomer-polymer mix-
ture. During the quasi-steady-state of reactive absorption, the surficial monomer
content is lowered due to chemical reactions. In fact, it is the lowered activity at
reduced monomer contents which causes the uptake of monomer from the gas
phase. The smaller the monomer activity is, the smaller its partial pressure at
the droplet surface is and the higher the driving force of monomer tranport from
the surrounding gas to the droplet. After the initiator has been totally consumed,
chemical reactions stop and the monomer content approaches an equilibrium at
a final value which is elevated again.

While a high monomer partial pressure in the drying gas prevents monomer
loss due to evaporation, full conversion is not achieved. Due to ongoing monomer
uptake, a certain amount of monomer remains finally in the droplet, depending
on its saturation in the drying gas. Moreover, the absorption period lasts for a
very long time with respect to the residence time within a spray dryer.

Interim Conclusion

An elevated monomer content in the drying gas does not prevent monomer evap-
oration completely. Rather the process is divided into two stages, monomer
evaporation and subsequent reactive absorption. Absorption kinetics have been
taken into account reversely to evaporation and might need further investigation.
In abundance of monomer in the gas, reactive absorption is an ongoing process.

4.3.6 Influence of Non-Ideality of Activities

The right graph of Figure 4.24 shows the activity of acrylic acid in a binary
solution with PAA comparing UNIFAC calculations with ideal thermodynam-
ics. With activities being identical to the mole fraction in the latter case, the
AA activity stays at a level near one except for very low mass fractions, as the
number of polymer molecules typically is orders of magnitude smaller than the
amount of monomer molecules. Ideal thermodynamics therefore involve high
surficial monomer pressures throughout the whole process except the very end,
when the monomer mole fraction breaks down. As Figure 4.25 shows, this af-
fects the model behaviour at high monomer saturations in the gas tremendously.
Reactive absorption is taking place so scarcely in the distributed simulation that
the droplet radius remains virtually constant after consumption of the monomer
initially contained in the drop. Monomer uptake by absorption is again higher
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in the fully mixed droplet , yet to only a small degree compared to the previ-
ous simulations. In both the lumped and distributed calculations, the conversion
approaches a value of practically one.

Number and mass average in Figure 4.26 show an inversed behaviour at
the droplet surface compared to the previous calculation using UNIFAC. There,
monomer uptake was so strong that very large molecules were created in the
absorption phase due to the high monomer to initiator ratio. Pn and Pw profiles
showed strong maxima at the drop’s surface. In case of ideal thermodynamics,
the uptake is scarce and the surficial monomer concentration small. Polymer
molecules created by reactive absorption are very short, evoking a minimum in
average chain length. Mole fractions profiles of monomer and polymer show
strong gradients at the surface which are caused by absorption of monomer. Yet,
this is only visible in mole numbers, whereas the polymer mass fraction is nearly
one throughout the droplet. The diffusion coefficient stays at a low level every-
where and monomer infiltration into the droplet is prevented.
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Figure 4.25: Course of the droplet polymerisation process assuming ideal mix-
ture thermodynamics and a drying gas of 90% monomer saturation
(t = 0,0.3,3,10,20,60,120s).
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Figure 4.26: Polymer properties assuming ideal mixture thermodynamics and a
drying gas of 90% monomer saturation (t = 0,0.3,3,10,20,60,120s).

Assumption of ideality of activities presumes that the occupied area of mole-
cules at the drop’s surface is proportional to their mole fraction. This is only
valid for molecules of comparable size and not for solutions involving macro-
molecules. Whilst mixture thermodynamics of polymer solutions are clearly
non-ideal and the example is rather of academic nature, it shows the impact of
the thermodynamic model on the process behaviour of evaporation / absorption.

Interim Conclusion

Mixture thermodynamics play a dominant role for drying and reactive absorp-
tion. Simplification of the activity at the droplet’s surface to an ideal behaviour
can lead to drastically erroneous results. On the other hand, this also shows
that reactive absorption in the previous calculation could have been less or more
dominant, depending on the non-ideality of thermodynamics. Taking into ac-
count that ideal thermodynamics do not represent a polymer mixture well, the
principle effect of reactive absorption can be taken for real.
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4.3.7 Interaction with the drying gas

Gas properties were assumed as constant throughout all previous simulations.
This is valid as long as the process is executed near the limit case of a single
drop in an infinitely expanded volume, i.e. that the gas mass is very large com-
pared to the droplet’s one. Especially for the case of reactive absorption, mass
and heat transfer between the drying gas and the droplet persist so that drying
gas properties also may change throughout the process. This shall be approx-
imated in the following by a simplified ansatz. If the total amount of mass of
each volatile species and of heat being exchanged over the droplet’s surface are
integrated throughout the process and the initial drying gas properties (volume
being in contact with the droplet V G,0, partial pressures pG,0

j and temperature
T G,0) are provided, the current status of the drying gas can be obtained by alge-
braic equations:

pG
j = pG NG

j

∑k NG
k

(4.6)

T G = T G,0 +
Qlg

∑k NG
k cN

p,k
(4.7)

NG
j = NG,0

j +
∫ t

t0
4πR(t)Ω

N
j dt (4.8)

Qlg =
∫ t

t0
4πR(t) q̇lgdt (4.9)

NG,0
j =

pG,0
j V G,0

ℜT
(4.10)

This set of equations considers the gas surrounding the droplet as a stirred
tank reactor. A certain volume is attributed to each droplet, which can be con-
sidered as a function of the number of droplets per unit volume - a large droplet
number corresponds with a low interacting gas volume and vice versa. This vol-
ume is considered as fully mixed. Moreover, gas volume and droplet are treated
as a closed, adiabatic system. Evaporation and absorption of matter to/from the
gas expands or shrinks the gas volume, which remains at constant pressure pG.
No heat is exchanged between the gas attributed to the drop and its surrounding.
This model is of course an idealised simplification assuming all droplets within
the dryer behaving in a uniform, equally distributed manner inside a gas exhibit-
ing no gradients. Additionally, the relative motion between gas and droplets is
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Figure 4.27: Droplet polymerisation with variable drying gas of 90% initial
monomer saturation at 0,0.5,5,12,20,60,120s.

not taken into account. Yet, this simple model can be used to predict basically
how strong the gas is affected by the droplet and how such droplet-induced
changes feed back into the process of reactive drying.

Figure 4.27 shows calculations at the same process conditions as in Figures
4.20 and 4.21, but with variable drying gas of initial volume of 105 times the
droplet volume at process start. Considering the gas density being three orders
of magnitude lower than the liquids one, the gas mass amounts to about a hun-
dred times the mass of the droplet. Similar to the previous simulation, after the
initial solvent and monomer evaporation periods, reactive adsorption sets in and
the increase of droplet radius is much higher in the case of full mixing than in
the distributed model. However, compared to Figure 4.21, the effect is much
less pronounced and ends early. The 0D calculation approaches a steady state
after about 70s with much less monomer uptake than in the case of constant
drying gas. Monomer absorption is even far less visible in the distributed model.
Despite the process has not reached an equilibrium after the calculated time of
120s and monomer absorption will continue for a long time, changes of the ra-
dius and concentration profiles over time are very small, once, the monomer in
the droplet’s core has been consumed by polymerisation reactions. Moreover,
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Figure 4.28: Polymer properties when the drying gas is variable at
0.5,5,12,20,60,120s.

the conversion stays at a very high level near one in the distributed case after
this point and approaches a steady-state value of 95% in the lumped calculation.
Generally, the drop’s temperature rises throughout the time. As will be seen
later, this is coupled with an increase of drying gas temperature. The increase is
much stronger in the 0D simulation, as monomer absorption and reactions are
much more pronounced there.

Profiles of number and weight averages and the dispersity of the chain length
distribution are drawn in Figure 4.28. Similar to Figure 4.22 polymer chains are
much longer at the droplet’s surface than within its core. But, as only a minor
amount of monomer is absorbed, this merely concerns a small shell, whereas
in case of constant gas properties a very large outer volume is appended to the
inner core. Additionally, the difference between shell and core is much smaller
when the drying gas is variable.

Drying gas properties are depicted in Figure 4.29. Changes of solvent and
monomer partial pressures are comparably small with respect to initial or satura-
tion pressures of both components. Less than 1.5 and 7% of the initial monomer
content within the gas are transferred to the droplet in the distributed and lumped
simulations, respectively. In contrast to the small alterations of solvent and
monomer content, the gas temperature changes more strongly, especially in the
lumped simulation. This is cause by monomer absorption and the heat of re-
actions. The amount of the different heat effects is depicted for the distributed
calculation in the lower right graph. Droplet heat up naturally only plays a role
at the very beginning. In the following period, cooling due to evaporation has
the strongest impact. Both processes consume heat from the drying gas so that
the accumulated energy transferred from the droplet to the gas is negative. How-
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ever, the amount of heat created by polymerisation reactions rises strongly until
monomer conversion in the droplet’s core is finished after 25s. Moreover, ab-
sorption of monomer additionally releases heat, yet to a smaller degree. The
balance of all heat contributions becomes positve after 14s. Chemical reactions
play the major role concerning the total energy balance of droplet and drying
gas. Differently to ordinary spray drying, the gas is in total not cooled because
of evaporation but heated up due to the heat of reactions. Additionally, mass
transfer takes place in both directions. Absorption processes partly recover the
heat of evaporation. Even if the assumption of an adiabatic process is a simplifi-
cation, the drying gas may leave the process at a higher temperature than within
its feed, depending on process conditions.

As was discussed with respect to Figure 4.27, the monomer uptake is strongly
slowed down when the drying gas is variable. The lumped model exhibits
a steady state after about 70s. Considering the drying gas properties in Fig-
ure 4.29, this is not caused by changes of the monomer content in the gas, which
are rather slight. It is indeed the elevated temperature, which slows down absorp-
tion. The monomer saturation pressure depends non-linearly on the temperature.
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Figure 4.29: Properties of the variable drying gas and total heat transfered be-
tween droplet and gas (only distributed calculation).
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Droplet and gas temperature are coupled. The temperature increase goes along
with a strongly elevated monomer partial pressure at the droplet’s surface. By
this, the driving force for absorption is largely reduced. Surficial monomer con-
centrations are lowered and chemical reactions slowed down. Alteration of the
drying gas by droplet processes hence moderates the effect of reactive absorp-
tion.

The proposed simple model of the gas as a stirred tank reactor strongly de-
pends on the drying gas volume. The limit case of an infinite volume corre-
sponds with the previous simulation of a constant gas, whereas the opposite
example of the gas mass being similar to the droplet’s mass involves exceed-
ingly high changes. The ratio of gas volume with respect to the initial droplet
volume was varied between 104 and 106 in Figure 4.30. Only distributed results
are shown. A volume ratio of 106 is already near to the limit case of a constant
drying gas. Then, gas properties in the second row change only slightly. The
evolution of droplet radius, temperature and conversion is also very similar to
the results in Figures 4.21 and 4.22 with constant gas properties. Monomer up-
take is not stopped and conversion of just above 80% after 120s would not be
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Figure 4.30: Effect of the gas volume interacting with a single droplet on the
process and gas properties (distributed simulation)
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applicable in a reactive spray drying process. If the volume ratio is low with a
factor of just 104, the drying gas changes strongly. Other than before, changes
of solvent and monomer partial pressures are much more pronounced due to the
smaller gas volume. About 11% of the initial monomer content in the drying
gas is consumed throughout the process. The temperature rise is so high that,
due to the high saturation pressure, reactive absorbtion practically stops early.
The previously discussed case of a volume ratio of 105 lies in between. Con-
cerning droplet radius and conversion it is comparable to the ratio of 104, with
respect to droplet temperature and drying gas properties it is more similar to the
106 ratio. A constant or marginally changing drying gas will evoke the largest
alterations due to absorption in the drop (leaving the droplet temperature out).
On the other hand, the stronger the gas changes are, in particular concerning its
temperature, the smaller the effect of reactive absorption is on the droplet.

Droplets in a real spray dryer are of different size and exposed to a non-
uniform drying gas. The droplet number density will also change locally. The
ratio of gas to droplet volume and gas properties hence varies within a spray
dryer. Still, the principle cause-effect relationships that the gas changes coupled
with processes inside the drop, especially reactive absorption, are covered well
by this model. Moreover, these results provide a potential technical solution
to the problem of ongoing monomer absorption. As the temperature controls
monomer absorption, the droplets need to be heated up shortly before the end
of the process. The surficial monomer pressure will rise and absorption will
stop. The remaining amount of monomer will be converted to polymer at high
temperatures very quickly. Technically, it is not trivial to provide a rapid and
preferably uniform heating near the end of the process, but a smart solution
which efficiently brings absorption to an end and affects final product properties
only to a minor measure. Possible technical implementations might involve
blowing in of hot drying gas or microwave heating devices for droplet heat up.

Interim Conclusion

The effect of the drying gas has been modelled in an approximate manner. This
example shows the impact of the process on the gas, which may alter conditions
such that reactive absorption ends. Moreover, the model reveals a difference
of reactive drying to conventional spray drying. The energy balance is substan-
tially different due to the heat of reaction. Increase of the gas temperature stops
absorption processes and is therefore an additional lever for process control.
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4.3.8 Applicability of the QSSA model

All simulations so far have been performed using the method of moments. The
Quasi-Steady-State Assumption model presented in section 3.3.3 is simpler, as
the polymer is only represented by two variables instead of six moments - the
concentration of dead chains cD and of the monomer units being incorporated
in these chains cD,M , identical to the zeroth and first moment of the dead chains’
distribution. Living chains’ properties and polymerisation reactions are pro-
vided as algebraic expressions depending on initiator and monomer concentra-
tions. The QSSA hence introduces less interactions between variables in sim-
ulations. Calculations are therefore significantly faster. On the downside, the
QSSA is not as versatile as the method of moments with respect to chemical
reactions. Moreover, only the number average of the chain length distribution
is calculated, whereas its weight average and dispersity remain unknown. For a
simple reaction scheme as it is employed in this work, results of the QSSA and
the method of moments should behave identical otherwise.

Figure 4.31 shows a QSSA simulation with respect to the previous test case
of polymerisation involving monomer evaporation into a gas with high monomer

0 50 100

t [s]

45

50

55

60

65

70

R
[µ
m

]

0 50 100

t [s]

20

40

60

80

100

120

140

T
[◦
C

]

0 20 40 60

r [µm]

20000

30000

40000

50000

60000

70000

80000

90000

100000

P
n

QSAA
MoM

0 20 40 60

r [µm]

0.0

0.5

1.0

1.5

2.0

2.5

c I
[m
ol
/m

3
]

0 20 40 60

r [µm]

0

2000

4000

6000

8000

10000

12000

14000

c M
[m
ol
/m

3
]

0 20 40 60

r [µm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c P
[m
ol
/m

3
]

Figure 4.31: Course of the process employing the QSSA, conditions identical
to Figure 4.27.
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saturation and consideration of gas alterations throughout the process. This is
the most complicated example with the highest number of physical effects and
therefore a good test case for the applicability of the QSSA. Calculation of ac-
tivities were performed according to UNIFAC. The dotted profiles show cor-
responding results obtained by the method of moments. Both models exhibit
an equivalent behaviour. Profiles of initiator, monomer and polymer concentra-
tions throughout the process are practically identical. Likewise, the calculated
number averages of the chain length distributions match very well with the ex-
ception of visible discrepancies of the first profiles at 0.5s. The assumption of
a quasi-steady-state is not strictly valid at this early instant of time, because the
process undergoes large changes during the first second. Nevertheless, this only
affects a short period throughout the process and a vanishingly small amount
of polymer. Computation times were 2754s using the method of moments and
930s for the QSSA model on a third generation Core i5 mobile CPU running at
2.5GHz (60 nodes in radial direction).

Interim Conclusion

Provided that polymerisation reactions are simple, the Quasi-Steady-State As-
sumption provides an approximation, which is as good as the method of mo-
ments. The latter is more versatile concerning polymer properties and chemical
reactions. Hence, the QSSA is a good alternative as long the reaction scheme
is not complicated and mainly the number average of the chain length distribu-
tion is of interest. In other cases it may still serve as a screening method before
employing detailed simulations.

132



4.4. SUMMARY OF BASIC FINDINGS ON DROPLET POLYMERISATION

4.4 Summary of Basic Findings on Droplet Poly-
merisation

The residence time within a spray dryer is very short. Spray polymerisation
therefore demands very fast chemical reactions. Due to the cooling effect of
drying, evaporation of a solvent reduces the droplet temperature and hinders
chemical reactions. Before polymer is built, the largest part of the solvent has
vanished, if the drying gas exhibits a low solvent saturation. Polymerisation
is therefore carried out in bulk. The assumption of concurrent solvent drying
end chemical reactions is not confirmed by the simulations in this work. The
process rather takes place in subsequent steps of drying and chemical reactions
afterwards. Kinetic data for reaction conditions in the droplet may be hard to
obtain and require extrapolation of literature data.

As long as the monomer does not evaporate, bulk polymerisation in the drop
takes place in a very uniform way and is described sufficiently by a lumped
model considering the droplet as fully mixed. Monomer vaporisation introduces
spatial inhomogeneities. In this case, evaporation of monomer and chemical re-
actions in fact take place at the same time, with the share of both processes
depending on the monomer saturation in the drying gas. This case is only ap-
propriately described by a distributed model. If the monomer saturation in the
drying gas is low, the largest part of the initial monomer is lost to the drying gas.
Moreover, as the initiator concentration rises tremendously, very many short
chains are created and a product of very high dispersity is obtained. Even with
potential monomer recovery, this appears unfavourable.

The monomer loss to the drying gas can be limited by pre-polymerisation.
If already a certain amount of polymer is created before atomisation, drying
will leave a polymer rich outer shell at the droplet’s surface with a low diffu-
sivity. Evaporation becomes hindered so that a larger amount of monomer can
be converted to polymer. It is sensible to further investigate this process variant
mainly for bulk polymerisation, as not only monomer vaporisation is prevented,
but also solvent drying.

Another option for limiting monomer loss involves a high monomer satura-
tion in the drying gas. In doing so, the driving force for mass transfer is limited
so that polymerisation reactions are in favour over evaporation. With the sur-
ficial monomer fraction being reduced by chemical reactions and evaporation,
its partial pressure at the droplet surface is also lowered und undershots the
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monomer pressure in the surrounding at some time so that mass transfer is in-
verted. In the following phase, monomer is absorbed from the gas and converted
into polymer. This process of reactive absorption is strongly depending on mix-
ture thermodynamics at the droplet’s surface. In the - unrealistic - case of an
ideal mixture, monomer absorption does not play a role. Moreover, interactions
between drying gas and the droplet strongly affect the duration of this final pro-
cess period and the amount of monomer uptake. In the limit case of a constant
drying gas, theoretically very large amount of monomer would be absorbed and
the process would take much longer than the typical residence time in a dryer.
On the other hand, chemical reactions heat up droplet and drying gas. Due to the
thereby increased monomer partial pressure at the droplet’s surface, absorption
is hindered and the monomer uptake limited. Reactive absorption can therefore
be stopped if the droplet temperature is increased. Whilst absorbed monomer
is for the largest part converted into polymer as well, this reaction takes place,
when the initiator content is already low, due to both prior decomposition and
dilution by monomer. The chain length distribution therefore exhibits inhomo-
geneities between the droplet core not being affected by absorption and the outer
shell.

An interesting idea is to run the drying gas in circulation. Its monomer sat-
uration would self-adapt the the spray conditions so that over some cycles the
system will reach a steady-state, in which monomer absorption and evaporation
during different process phases are at an equilibrium throughout the whole pro-
cess. All monomer provided initially in the feed will be converted to polymer
on average of all droplets. However, this is only feasable to systems of bulk
polymerisation as otherwise the solvent will accumulate in the drying gas.

As long as the reaction scheme is as simple as in the present simulations
and if only Pn values are of interest, the Quasi-Steady-State-Assumption suffi-
ciently describes the system. QSSA calculations are significantly faster. In more
complicated cases QSSA models can still be used for screening of the process.
Lumped models are only applicable, when drying and diffusional transport lim-
itations do not interfere. This is the case when monomer evaporation does not
play a role. In other cases, only a distributed simulation reveals all details of the
process and lumped calculations can exhibit large errors. 0D results often only
match surficial 1D values, with the distributed model predicting very different
results inside the droplet.
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4.5 Process Evaluation, Numerical DoEs

The previous examples provide insight in the basic mechanisms during single
dropled polymerisation in a spray dryer. Yet, the question how the process de-
pends on various parameters remained open. Design of Experiment (DoE) is
a tool in order to evaluate correlations between product properties and process
parameters. Being originally applied to measurements, it is a valid method in
order to examine the behaviour of a numerical model with respect to several
parameters. The advantage of this approach is that model responses can be re-
vealed, which are not visible in one-factor-at-a-time variations. In all parameter
studies, the initiator to monomer ratio I/M, gas temperature T G and its satura-
tion with monomer ΨG

M , the initial droplet radius R0, the ratio between gas and
droplet volume V G/V d and the diffusion parameters wcrit

P and Dlim
log10

have been
varied. Three different numerical DoEs will be evaluated in the following:

• Polymerisation in solvent: Additionally, the initial monomer mass frac-
tion wM and the solvent saturation in the drying gas ΨG

S were varied.

• Bulk polymerisation: As solvent evaporates early, the model behaviour in
complete abscence of solvent is evaluated. (No additional variables were
varied.)

• Pre-polymerisation: The impact of polymerisation prior to atomatisation
is studied by the extra parameters temperature Tprepoly and time tprepoly.

4.5.1 DoEs’ Setup and Evaluation

Distribution of DoE Points

When used in conjunction with measurements, DoE approaches are often set
such that the number of expensive experiments is minimised whilst the desired
interrelations can still be obtained. The kinds of correlations (linear, quadratic,
parameter interactions), which the DoE shall be able to predict, need to be cho-
sen beforehand and determine the parameter settings used in the experiments.
Boundary points are often favoured in order to cover a large range of parame-
ters (e.g. D-optimal designs) without the need of extrapolation.

When numerical simulations can be carried out with comparably small com-
putation times, such limitation are irrelevant and a broad variety of parameter
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Figure 4.32: Latin hypercube sampling vs. maximin construction in 2D, 3D
maximin example

settings can be applied. This is particularly useful, if strong non-linearities and
interactions between parameters need to be evaluated. The settings are then
chosen such that the whole parameter space is covered sufficiently and fairly
regularly. In the following studies, points were set according to a maximin con-
struction taken from the Python diversipy package, described in Wessing (2015).
This algorithm maximises the minimum distance between sample points and
ensures a better coverage of the parameter space than typical latin hypercube
sampling. The sampling of single variables may be irregular, though, with some
value ranges being chosen more often than others. An example is provided in
Figure 4.32. The left frame shows latin hypercube sampling of 50 points in two
dimensions, the middle one a corresponding maximin construction. The right
frame provides a maximin construction in three dimensions by 200 points.

The effects of process/input parameters on the outcome were modelled via
multiple regression using Gaussian Processes. The theory is shortly described in
appendix A. Further insight is provided by Rasmussen and Williams (2006). All
calculations were carried out with the lumped and the one-dimensional model
(employing 20 finite volume cells of equal volume).

Characteristic Values for DoE Evaluation

The simulation data needs to be condensed into characteristic values before a
regression can be undertaken. Such values are the conversion X - with its ref-
erence value continually changing due to monomer evaporation and absorption
- and the yield Y - the amount of monomer being converted into polymer com-
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pared to the monomer initially contained in the droplet:

X =
mP

mM +mP
(4.11)

Y =
mP

mM (t = 0)
. (4.12)

Absorption and condensation of monomer may cause the final polymer mass to
be higher than the initial monomer mass. In this cases, the yield rises above
100 % with respect to the initial monomer content in the droplet, as the drying
gas acts as an additional feed. Other values are polymer properties and polymer
mass per droplet. When solvent is present at atomisation, the product’s moisture
content is also relevant:

ΨS =
mS

mP +mM
. (4.13)

A rough estimation of the travel distance / falling height covered during the pro-
cess can be provided in simulations’ post-processing by piecewise summation
of the distances traveled between each instant of time using the terminal velocity
according to Stokes’ flow (equation 2.118)

h f all(ti) =
i

∑
j=1

2g
9ηG

(
ρ

L−ρ
G) R̄2

j−1, j
(
t j− t j−1

)
. (4.14)

This is a very coarse value, as it generally neglects the gas motion around the
droplet and the three-dimensional flow field in the dryer with effects like recircu-
lation, but still provides a qualitative information about the residence time and
dimensions required by the combination of process parameters.

Regression of such values can for instance be caried out with respect to cer-
tain instants of process time (e.g. conversion after 10 s). However, the residence
time in the dryer strongly depends on the droplet size, which for its part is af-
fected by process conditions. Figure 4.33 shows an example regression of the
height of fall after 10 s in droplet polymerisation within a solution. The vertical
dashed lines represent the point of prediction (50 % monomer mass fraction in
the feed, an initiator to monomer ratio of 10−4 etc.), the solid lines the predicted
value when varying one parameter and the dotted ones the 95 % bounds of the
Gaussian process in the fit. The fall distance - inverse to the residence time -
may differ strongly, not only depending on the initial radius, but also on the sat-
uration of solvent and monomer in the drying gas. It is therefore not reasonable
to compare parameter variations at a certain instant of time, when in one case
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Figure 4.33: Example evaluation of a drop’s falling distance at polymerisation
in solvent after 10 s process time.

the droplet already left the dryer and in another case this represents just a frac-
tion of the total process time. Evaluation of characteristic values with respect to
a certain falling height provides therefore more meaningful results concerning
the applicability of process parameters.

As the numerical model of droplet polymerisation exhibits the aforemen-
tioned uncertainties, only the principle behaviour of the process can be depicted.
Assessing values with respect to a distinct falling height means evaluation at a
comparable position within the dryer, not distinctly at the respective height. The
numerical DoEs reveal principle, qualitative features concerning the applicabil-
ity of droplet polymerisation within a spray.

4.5.2 Droplet Polymerisation with Solvent in the Feed

As polymerisation within a spray under bulk conditions involves less additional
steps (like separation of solvent und vaporised monomer in the drying gas), in-
troduction of a solvent appears only sensible in case of requirements such as
dissolution of salts like NaA. Numericals experiments in sections 4.2 and 4.3
showed a rapid decrease of solvent content due to drying at the very beginning
of the process. A similar observation was made by Franke, Moritz, and Pauer
(2017), who observed precipitation of low-molecular NaA salt.
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Requirements for polymerisation within a solvent are therefore:

• Process conditions are significantly different to bulk polymerisation. If
salts are present, the solvent stays at a sufficiently high level to prevent
precipitation during the reaction period.

• The remaining moisture content at the end of the process is low and ex-
pensive further drying is prevented.

It is obvious that these are conflicting goals.
Figure 4.34 shows a predicted plot of the droplet polymerisation in presence

of a solvent for characteristic values after 5 m. Additionally to the yield and
conversion, the average solvent concentration during polymer creation and the
moisture content are shown.

The yield of the process is strongly improved at increased initiator to monomer
ratios, small droplet radii and a higher monomer partial pressure in the drying
gas. All three parameters are linked to reactive absorption of monomer from
the drying gas. Increased consumption of monomer in chemical reactions due
to an increase of chain radicals will intensify the rate of absorption of monomer
from the gas phase. Small droplets have a much longer residence time so that
the monomer take up is prolonged. A higher monomer partial pressure in the
gas increases the driving force for absorption. Whereas the gas temperature also
has a strong effect on the yield, it is limited insofar that boiling needs to be pre-
vented. The current model does not consider boiling directly, which needs to be
evaluated within post-processing.

The conversion after 5 m is for one thing influenced by typical process pa-
rameters from polymer reaction engineering as the initiator to monomer ratio
and the temperature, for another thing by parameters affecting the droplet radius
and therefore the residence time. Besides the initial radius these are in particu-
lar the saturation of monomer and solvent in the drying gas, which control the
evaporation and absorption rates of both components.

The moisture content ΨS is mainly affected by the solvent content in the
drying gas, except for very low monomer saturations, which favour monomer
evaporation over solvent vaporisation. At the prediction point of 25 % solvent
saturation in the gas, the moisture content at 5 m falling distance is fairly low.
At the same time, the average solvent concentration in the droplet is also greatly
diminished compared to its initial value. c̄S is a weighted average with respect
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Figure 4.34: Evaluation of polymerisation in solvent at 5 m height of fall.
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to the polymer creation at evaluation points i during post-processing

c̄S =
∑

i
j
(
mP, j−mP, j−1

) cS,i−1+cS,i
2

mP,i
. (4.15)

In doing so, process periods with sole drying or in which reactions have stopped
are not taken into account. For the parameter combination in the plot, the pre-
dicted average solvent concentration 3400 mol/m3 is only a small fraction of
the initial solvent concentration of 14500 mol/m3. This corrsponds with a vir-
tual monomer mass fraction of about 94 % so that the process is nearly carried
out under bulk conditions. This shows the principle problem of spray poly-
merisation in presence of a solvent: Drying needs to be strongly inhibited, if
polymerisation shall not be carried out in bulk. Possible solutions in order to
provide a sufficiently high solvent concentration are:

• Continuous increase of the drying gas temperature throughout the process:
Process conditions change from mild to harsh drying conditions so that the
solvent content in the droplet is high at the beginning, when precipitation
is to be hindered, decreased, when the solute content is already limited,
and very low at the end, when a dry product is required. In order to prevent
bursting of the droplet, boiling of the remaining solvent has to be avoided.
As evaporation rates are small after the initial rapid drying phase, droplet
and gas temperatures are nearly identical. Possible temperature profiles in
the dryer are therefore limited by the boiling point of the mixture.

• If only a small solvent concentration is required during chemical reactions,
this can be achieved by adjusting the solvent saturation in the gas like at
the prediction point in Figure 4.34. The remaining moisture content is
fairly low then. Yet, process design needs to account for inhomogeneities
within the drying gas in order to prevent locally harsh drying conditions.

In any case, process conditions are such that the drying gas needs to be precondi-
tioned in order to provide certain solvent and monomer saturations. Afterwards
recovery of monomer from the gas is necessary. Even taking all model uncer-
tainties into account, droplet polymerisation in presence of a solvent remains
a very limited process variant due the target conflict of (partly) preventing sol-
vent evaporation first and promoting it afterwards, when a polymer hull around
the droplet decreases the solvent permeability. This conflict may be resolved
as long as the required solvent concentrations are low, but the possible process
window is very narrow.
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4.5.3 Bulk Polymerisation within a Droplet

With control of the solvent concentration being a challenge, bulk polymerisation
appears a more favourable process option. An overview on process characteris-
tics for polymerisation in bulk is provided in Figure 4.35. The yield is mainly
affected by drying and absorption. Just as in the previous example of polymeri-
sation in solvent, monomer uptake is increased due to longer residence times
of small droplets and increased monomer saturations in the gas. The diffusion
parameter Dlim

log10
controls the maximum order of magnitude at which the dif-

fusion coefficient is decreased (at the point of prediction from 10−9 to 10−13

m2/s). The higher the permeability of the polymer hull is, the more intense the
transport of absorbed monomer towards the droplet’s core will be and the higher
the conversion rate in reactive absorbtion. section 4.3.5 already showed that the
monomer uptake is much higher in the 0D approximation (which corresponds
with Dlim

log10
= 0 in the 1D model). Knowledge about the evolution of diffusivity

with ongoing polymerisation is therefore crucial for an accurate prediction of
the process outcome especially when absorption from the gas may play a role.

The conversion after 5 m falling distance is generally rather high. In regimes
of ongoing monomer absorption it is decreased as the reference monomer amount
for conversion calculation increases continuously. The maxima in the conver-
sion curves concerning the initiator to monomer ratio, the droplet radius and the
gas temperature are caused by a runaway of the chemical reactions when these
values are increased further. This is indicated by the maximum temperature in
the process, which rises to very high values in these cases. As has been stated
before, the boiling point of the mixture was not considered in the simulation
which explains values beyond the boiling temperature of pure AA. However,
the regression runs short in predicting the runaway behaviour in detail as it is a
switching-type effect when increasing process parameters.

The runaway behaviour is shown in 4.36 by a one-factor-at-a-time variation
of the three above-mentioned process parameters in the left graph. The right
graph exhibits the course of initiator concentration, droplet temperature and
radius over time for the point depicted in the initiator to monomer variation
on the very left. Other parameters had been set to 85 % monomer saturation,
wcrit

P = 0.8, Dlim
log10

= 4 and a ratio between gas and droplet volume of 105. The
course of the process over time reveals the reason for the runaway behaviour.
The early droplet heat-up period with slight monomer condensation is followed
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Figure 4.35: Process evaluation for bulk polymerisation at 5 m height of fall.
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Figure 4.36: Runaway behaviour of the polymerisation process: yield, conver-
sion and maximum temperature in a one-factor-at-a-time variation (left graphs),
course of the process over time (right) for the depicted point on the very left.

by monomer evaporation and at the same time polymerisation reactions. The
heat of reaction can be consumed by monomer vaporisation - an increase in
droplet temperature will go along with enlarged mass transfer and evaporative
cooling. With enough polymer being created, transport of monomer to the drop-
let surface is hindered and evaporation decreases. With less cooling due to va-
porisation, the droplet temperature rises, chemical reactions are accelerated and
the heat of reaction cannot be transferred completely to the surrounding gas any-
more. Consequently the reactions run away until all initiator is consumed. This
effect is remarkable as heat exchange of a small droplet with its surrounding is
very intense due to the high surface area to volume ratio. Just for that reason,
the droplet returns to the temperature of the surrounding gas within a fraction of
a second after the temperature peak. Still, the heat release by chemical reactions
can be uncontrollably high under certain process conditions.

Taking the boiling temperature of the mixture into account, the runaway be-
haviour will be superimposed by boiling and possibly bursting of the droplet so
that the maximum temperature will be limited. Still, the outcome that the pro-
cess runs out of control is the same and corresponding parameter settings need
to be avoided. This affects in particular cases in which the reaction rate is very
high and mass transfer to the droplet’s surface can be strongly limited - a large
initiator content and high temperatures or a low diffusivity of the polymer hull
and a large droplet radius. The runaway is not captured by a lumped model, as
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either the surficial monomer content is high enough due to (falsely) full mixing
to provide sufficient evaporative cooling or the monomer content is too small to
maintain a reaction being out of control. If the diffusion coefficient stays at a
sufficiently high level, this challenge will therefore vanish.

The heat release by chemical reactions is significant. The fourth row in Fig-
ure 4.35 shows the energy being set free per droplet. The heat of the polymerisa-
tion reaction (77.5 kJ/mol) is higher than the heat of evaporation (47.5 kJ/mol)
so that at slightly less than 40 % yield and 100 % conversion the droplet’s en-
ergy balance throughout the whole process sums up to zero. This is different to
typical spray drying, which is energy-intensive like all drying operations. This
peculiarity provides some flexibility concerning the yield per droplet. Two pro-
cess variants of bulk polymerisation appear favourable:

• Run the process at a yield which requires low additional energy input and
recover the evaporated monomer from the drying gas:
If the monomer saturation after recovery equals its value at the dryer’s
inlet, the drying gas can be recirculated. From an energetic point of view
heat losses to the surrounding and accompanying processes like gas pre-
conditioning need to be compensated. The processes within the total gas
and droplets will run energy-self-sufficient at yield values of about 40 %
or higher.

• Run the drying gas in recirculation without monomer recovery:
The process will adjust itself automatically to a drying gas saturation at
which the yield is 100 %. As long as the yield is smaller, monomer will
accumulate in the drying gas until absorption and evaporation are in bal-
ance, for a monomer content too high it will be the other way round.

In both cases reactive absorption should be prevented at the end of the pro-
cess in order to achieve a product of 100 % conversion at the dryer’s outlet as
discussed earlier. The second solution is simple and elegant, as no monomer is
lost, no additional steps for recovery and preconditioning of the gas are required
and the process is intrinsically controlled. Yet, the challenge relies in the very
high monomer saturation of the gas. For one thing, condensation of monomer at
cold spots has to be prevented, for another thing thermal polymerisation in the
gas phase due to impurities might be an issue.

The monomer saturation in the drying gas in order to achieve 100 % yield
after a falling distance of 5 m is depicted in Figure 4.37 depending on gas tem-
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perature and droplet radius. The contour lines of the isosurface in the T G−R0

plane refer to monomer saturations in the gas between 45 and 100 %. Other
parameters have been kept at an I/M ratio of 10−4, wcrit

P = 0.8, Dlim
log10

= 4 and a
V G/V d ratio of 105. This graph is speculative in terms of absolute numbers and
only predicts the qualitative features of the process. It is obvious that the droplet
radius, at which 100 % yield can be achieved, is limited if a certain monomer
saturation may not be exceeded. Moreover, a collective of droplets of various
size will experience a different individual yield per droplet. Generally, all drops
surpass a period of evaporation. A high yield near 100 % will only be achieved
by subsequent absorption. Smaller drops take up more monomer due to the
longer residence time and exhibit a yield even beyond 100 % (their parameter
combinations lie above the isosurface), larger droplets absorb less monomer and
exhibit a net loss of monomer. As a positive result, the droplet size distribution
could therefore narrow throughout the process. On the downside, even if the av-
erage yield is at 100 %, a distinct fraction of the droplets might leave the dryer
prematurely. 100 % conversion thus need to be ensured concerning all relevant
droplet sizes.
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Figure 4.37: Isosurface and contour
lines for 100 % yield in bulk poly-
merisation depending on droplet
size, gas temperature and monomer
saturation.

Figure 4.38 exhibits the differences
between the distributed and the lumped
model by the ratio of the respective yield
Y 1D/0D =Y 1D/Y 0D. Generally, both mod-
els differ strongly as long as diffusion is
limited in consequence of polymer cre-
ation. All parameters exhibit a strong
interaction with the maximum limitation
of the diffusion coefficient so that for
Dlim

log10
= 0 most of the differences be-

tween both models vanish. The 0D model
thus falls short of predicting the process
behaviour appropriately and 1D simula-
tions are commonly advisable.

Finally, the predicted polymer proper-
ties shall be shortly discussed in order to

highlight the model’s capability to simulate characteristic values of the polymer
and local inhomogeneities. Predictions of number and mass average and dis-
persity are plotted in Figure 4.39. Additionally the droplet is split into an outer
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Figure 4.38: Comparison of 1D and 0D simulation by ratio of polymer yield.

shell and an inner core of identical volume and the ratios between shell and core
for Pn and Pm are depicted in the lower rows. Values again refer to 5 m falling
distance. The prediction point is chosen such that 100 % yield are achieved. The
dependence of number and mass average on the initiator content is just as ex-
pected. The fewer chains are initiated, the longer these chains will grow. This
applies similarly to low gas temperatures as kinetics of chain initiation display
a higher temperature dependence than propagation reactions.

Parameter settings with a tendency to runaway (I/M ↑, R0 ↓, T G ↑) exhibit
a decrease in number average. During runaway a very high number of small
chains is created which decrease the average chain length, but scarcely con-
tribute to a mass-weighted average. This is also visible in the dispersity, which
rises in case of all undesirable process condition - besides the runaway settings
a small monomer saturation in the gas, as discussed in section 4.3.3. Compar-
ing number and mass average in the droplet’s shell and the core, chains are
generally longer at the outer rim. This is due to reactive absorption, which pro-
vides an ongoing influx of monomer molecules at a decreasing initiator fraction
in the vicinity of the droplet’s surface. The chains being created are therefore
continuously getting larger and the ratio between shell and core chainlength is
strongly dependent on the monomer saturation. The maximum near 50 % satura-
tion implies that the complete outer half of the final droplet is created by reactive
absorption. If reactive absorption is even stronger, the largest part of the product
comes from this process period so that in total it is more homogeneous again.
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Figure 4.39: Characteristic values of the chain length distribution in bulk poly-
merisation.
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4.5.4 Bulk Feed with Pre-Polymerisation before Atomisation

Pre-polymerisation in presence of a solvent does not appear as a favourable
process variant due to hindered solvent evaporation (see section 4.3.4). In the
following, the case of pre-polymerisation under bulk conditions shall be further
evaluated. Therefore, the time and temperature during polymerisation before
atomisation have been varied additionally to the parameters used before (0s ≤
tprepoly≤7 s, 70°C≤ Tprepoly≤130 °C in order to be in a similar range as for T G).
Both parameters determine the initial polymer conversion at droplet formation
Xprepoly. This value was used for the regression of process features, as the effect
of a certain amount of polymer being present at droplet creation on the process
is clearer to understand than time and temperature of an upstream process.

An overview of the process is provided in Figure 4.40. Pre-polymerisation
indeed acts as a lever to increase the yield. The relative gain per additional poly-
mer created before atomisation is largest for small and moderate conversions
Xprepoly. Interestingly, the yield at the point of prediction is not exceedingly
high, but achieved without additional monomer in the gas phase. In pure bulk
polymerisation (Xprepoly = 0), the yield would be about one percent at the same
process conditions. Whereas pre-polymerisation directly provides 20 % of yield
(equal to Xprepoly), around the same amount of additional yield is achieved by
alteration of transport conditions within the drop in providing polymer right at
the start. It is clear that this effect is most pronounced when diffusion is strongly
hindered by polymer creation (Dlim

log10
↑) and vanishes in ideally mixed drops (see

also section 4.3.4).

The other values in Figure 4.40 can be explained briefly. The conversion is
generally at a high level as - besides for large droplets or large monomer satu-
rations - the residence time is long enough that the monomer is fully consumed
by evaporation and chemical reactions. The temperature and energy balance
fits scatter significantly so that only clear features can be regarded. These are
temperature maxima in regions which are prone to runaway and a minimum
in case of no prepolymerisation (and hence nearly full monomer evaporation).
Correspondingly, the overall energy balance exhibits the same minimum and is
otherwise nearly balanced. At high amounts of pre-polymerisation, chemical re-
actions are shifted prior to the spray process and the energy release in the drop
remains unaffected.

The spatial inhomogeneity of the polymers number average is depicted in
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Figure 4.40: Process evaluation for partly pre-polymerisation in bulk.
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Figure 4.41: Inhomogeneity of the number average between droplet shell and
core when pre-polymerisation is applied.

Figure 4.41 at the same point of prediction. Remarkably, the ratio between shell
and core is inverted to the prior simulation of pure bulk polymerisation. This
is due to the fact that reactive absorption does not take place as the monomer
saturation in the gas was set to zero. Polymerisation reactions therefore occur
simultaneously with monomer evaporation, by which the initiator content at the
surface is elevated. Hence, smaller chains are created at the droplet’s surface
than in the shell. The behaviour changes for high monomer saturations, which
evoke absorption of monomer with the differences between shell and core as
described in the previous section.
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Figure 4.42: Isosurface of 100 %
yield via pre-polymerisation.

When 100 % yield are desired (e.g.
by recirculation of the drying gas as de-
scribed above), prior polymerisation may
widen the process window. Figure 4.42
again shows an isosurface of 100 % yield
depending on droplet radius, saturation
with monomer and the conversion after
pre-polymerisation. The contour lines in
the R0−ΦM plane refer to Xprepoly = 10
to 60 %. Other process parameters are
I/M = 10−4, T G = 110°C, wcrit

P = 0.8
and Dlim

log10
= 4. The maximal droplet ra-

dius at a certain monomer saturation in
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the drying gas is raised by 10 to 20 µm for 20 % of conversion before atomisa-
tion. For large Xprepoly values the gain is higher, but these appear of rather aca-
demic nature because atomisation of a strongly polymer loaden solution brings
its own challenges along.

Summing these results up, pre-polymerisation may be useful in two aspects:

• Droplet polymerisation within a gas containing no monomer:
Slight polymerisation may raise the yield in unloaden gas strongly, if the
diffusion coefficient within the polymer is sufficiently low. Challenges
arising from an elevated monomer content in the gas are avoided. Precon-
ditioning of the gas and recovery of monomer can be implemented in a
simpler way. Due to the heat of reaction, the energy demand within the
dryer is low or even energy is released, depending on the final yield.

• Enhancement of the process window at higher monomer contents within
the gas:
Pre-polymerisation may either be used to increase the yield at otherwise
constant process conditions or enlarge the applicable range of process pa-
rameters. The relative gain is yet highest in cases of very small yield if no
pre-polymerisation was applied.

In any case, polymerisation prior to atomisation is an additional process step,
which itself needs to be designed carefully and involves further invest. More-
over, if a pre-polymerisation step is installed anyway and well-controlled, the
question is whether polymerisation in a spray is really advantageous over spray
drying a diluted polymer solution, which has been processed up to full conver-
sion beforehand.
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4.6 Discussion and Suggestions for Further Research

The simulations show that the presented distributed model is capable of pre-
dicting polymerisation within a drop sufficiently. Current challenges are the
uncertainty of the data the model is operating with. Whereas the model analysis
has been performed to the author’s best knowledge and the qualitative features
should be predicted correctly by the present model, the process peculiarities -
like the region in which reactive absorption takes place - might be shifted over
the parameter range. Experimental validation of the proposed process behaviour
is therefore necessary. This means in particular:

• Solvent concentration within the drop during polymerisation:
Numerical results show clearly that the solvent content during polymerisa-
tion reactions is very low and that nearly bulk conditions prevail. As soon
as this is confirmed experimentally, further research should concentrate
on bulk polymerisation except for applications involving precipitation.

• Monomer evaporation behaviour at low gas saturation:
All evidence points out that, without early build-up of a polymer hull,
monomer will be lost for the largest part to the surrounding. When this
prediction is confirmed, investigations involving gas without some degree
of monomer saturation can be stopped completely, except for the special
case of pre-polymerisation.

• Limitations of the monomer saturation in the drying gas:
A higher monomer content in the gas both limits evaporation and drives
(re)absorption from the gas, which helps to improve the yield. Yet, prob-
lems like condensation at cold spots or thermal polymerisation in the gas
may arise and must be thoroughly analysed.

• Behaviour of reactive absorption:
The mechanism of reactive absorption in conjunction with polymerisation
is plausible, but so far just a prediction by the model with uncertainties
in the underlying data. As this effect has a major impact on the overall
process behaviour and yield, it needs to be analysed experimentally.

• Possibility of pre-polymerisation:
The process window can be enhanced by partly polymerisation upstream
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to the spray process. Challenges like clogging and spray generation of
a polymer loaden solution need to be investigated in order to obtain the
limitations of this process variant and its applicability.

Options for further model development are:

• Kinetic data:
The kinetic model in this work was comparably simple and extrapolated
from data at much lower monomer contents. More detailed data will im-
prove the model accuracy.

• Thermodynamics and mass transfer:
Absorption kinetics, which are currently calculated according to the same
linear driving force as evaporation, can be refined. Additionally, instead
of UNIFAC a more advanced model could be employed, which accounts
for polymer peculiarities.

• Diffusion:
The dependency of the diffusion coefficient on polymer content was based
on an artificial approach which enables easy variation of diffusion param-
eters. Prediction of a real process needs more accurate data. Moreover,
a more advanced mechanism than pseudo-binary Fickian diffusion would
represent various diffusivities of the species in the solution better. Yet,
this will require reliable data on diffusion coefficients of all components
at all relevant mixture compositions.

• Consideration of boiling:
So far, boiling of the mixture is not regarded in the model. When it comes
to process design, this point has to be taken into account. Yet, this can
also be checked during post-processing the data.
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5. SMOOTHED PARTICLE

HYDRODYNAMICS AND ITS

APPLICATION TO SINGLE

DROPLET SLURRY DRYING

Typical single droplet drying models presume spherical symmetry, like the drop-
let polymerisation model discussed in the previous chapters. The continuum is
modelled in a quasi-homogeneous way, possibly with the distinction between
a crust/shell and a core. In the following, a drying model based on the mesh-
free SPH approach will be introduced, which calculates drying and morphology
determining processes on a detailed scale. The basic physical effects incorpo-
rated within the model are depicted in Figure 5.1. Heat and mass transfer to the
surrounding (q̇Γ, ΩΓ

H2O) and heat conduction (q̇cond) determine drying. The mo-
tion within the slurry is affected by surface tension (~FLL) and wetting (~FLS/~FSL)
forces as well as interaction between suspended primary particles (~FSS).

Figure 5.1: Physical effects incorporated in the SPH drying model
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First of all, the SPH method itself will be introduced on a theoretical base.
Thereafter, implementations of the various physical effects playing a role in
droplet drying will be presented. As readers may have a process engineer-
ing/drying background with little knowledge on meshfree methods, the pecu-
liarities of the method and challenges will be adressed, too. In the SPH liter-
ature the term "particle" is generally used for interpolation points, which can
become confusing when drying of a slurry involving primary solid particles is
to be modelled. The following explanations will be compliant with the common
SPH wording. Suspended solids are called "primary particles". Otherwise the
term "particles" refers to SPH points.

The model implementation considers the two-phase system of an incompres-
sible Newtonian liquid and solid primary particles and their interaction by sur-
face tension and wetting. Heat and mass transfer to/from the surrounding gas
by linear driving forces is a new topic in SPH and will be derived in more de-
tail. Within the droplet, heat conduction will be considered by an established
approach. Furthermore, an extension of the mass transfer model to the second
drying phase and different approaches for modelling crust formation will be in-
troduced. As an alternative to linear driving forces and in order to underline the
flexibility of the approach, diffusion driven drying of a porous structure will be
derived via coupling of the SPH model with an underlying grid.

Droplet drying simulations have been carried out in two dimensions. Exten-
sion to three dimensions is possible in principle at substantially higher compu-
tational cost.

5.1 Mathematical Derivation

5.1.1 SPH Interpolation

Smoothed Particle Hydrodynamics can be derived from statistical interpolation
theory (Lucy 1977). A quantity f at a position ~x within the domain Ω can be
expressed using the following identity

〈 f (~x)〉=
∫

Ω

f
(
~x′
)

δ
(∣∣~x′−~x∣∣)d~x′. (5.1)
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Approximation of δ , the Dirac delta function, by a kernel function W (r,h) with
a length scale h and lim

h→0
W (r,h) = δ (r) leads to

〈 f (~x)〉=
∫

Ω

f
(
~x′
)

lim
h→0

W
(∣∣~x′−~x∣∣ ,h)d~x′ (5.2)

or, applying a finite smoothing length h,

〈 f (~x)〉=
∫

Ω

f
(
~x′
)

W
(∣∣~x′−~x∣∣ ,h)d~x′+O

(
h2) . (5.3)

The interpolation error is of second order as long as W is an even function (Co-
lagrossi 2005, p. 23), which generally is the case in Smoothed Particle Hydro-
dynamics. In the SPH approximation, the integral is changed into a summation
over a finite number of values associated to discrete volumes. Neglecting the
error term the interpolated value at a position~xi becomes

f (~xi) = ∑
j

Vj f (~x j)W
(∣∣~x j−~xi

∣∣ ,h) , (5.4)

with j running over the entirety of all interpolation points including i itself. In
doing so, the infinitesimally small volume d~x′ is converted into the discrete vol-
ume Vj. This is the basic equation of the SPH method, employing a discreti-
sation by a finite number of particles, each with a certain dedicated volume or
mass. Considering the derivation, standard SPH is first order accurate. How-
ever, this statement about accuracy can rather be regarded as a rule of thumb or
the average behaviour of the method, whereas numerical consistency in a strict
manner is even not ensured for zero order functions (interpolation of a constant
value does not necessarily yield this value again).

SPH particles may possess other physical quantities like temperature, pres-
sure etc. as well. Despite the fact, that they typically represent a certain mass
of the continuum, such particles may not be considered as granular objects (like
billard balls), which is one of the great differences with respect to the discrete el-
ement method (DEM). SPH particles truly are interpolation points and the SPH
discretisation truly approximates the continuum. This is depicted in Figure 5.2,
in which the left frame shows the particle representation of the continuum via
smooth, blurred interpolation points. In the SPH literature, particles are typi-
cally drawn as circles without blurring, which makes graphs easier to compre-
hend and will be used hereafter. In this way, the right frame shows the confined
neighbourhood around a particle of interest (black) with a bell shaped kernel.
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Figure 5.2: Particle representation of the continuum, left: smooth interpolation
points, right: confined neighbourhood around a particle of interest (black).

For reasons of clarity and comprehensibility, the following, short expres-
sions will be used hereafter: Values f (~xi) at a point i are expressed by fi, the
distance vector between point i and j by~ri j =~xi−~x j (this is reverse to the typical
mathematical notation of distance vectors, but corresponds with common SPH
literature) with an absolute value of ri j =

∣∣~ri j
∣∣ and kernel values with respect to

ri j by Wi j. If the volume is expressed by mass m and density ρ , the following,
common SPH interpolation form is obtained

fi = ∑
j

m j

ρ j
f jWi j. (5.5)

The kernel function W has to fulfil several requirements:

• Its limit value for the smoothing length tending to zero has to be the Dirac
delta function: lim

h→0
W (r,h) = δ (r).

• The integral over the kernel is normalised:
∫

W (|~x′−~x| ,h)d~x′ = 1.

• The kernel is symmetric: W (−r,h) =W (r,h).

• W (r,h) has to be continuously differentiable for at least one time.

• The kernel has a compact support, so that it becomes zero if the distance
exceeds a certain cut-off radius.

The first three requirements concern the approximation itself, whereas the fourth
condition affects the calculation of spatial derivatives, i. e. the discretisation of
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the nabla operator. In a pure theoretical sense, the fifth demand is not necessary,
as SPH is derived by an interpolation over the complete domain. However, the
number of interacting neighbouring nodes is to be limited in order to keep the
computational effort reasonable. Hence, the summations are only performed
with respect to a restricted neighbourhood, which is determined by the kernel’s
cut-off radius. The Gaussian with very good approximation properties is there-
fore seldomly used, as it only becomes zero for r = ∞ and has to be truncated
beyond the cut-off radius. Very common are spline approximation of the Gaus-
sian, namely the cubic (M4) spline and the quintic (M6) spline, which has been
applied throughout this work:

W (r,h) = wd



(
3− r

h

)5−6
(
2− r

h

)5
+15

(
1− r

h

)5 0≤ r
h < 1(

3− r
h

)5−6
(
2− r

h

)5 1≤ r
h < 2(

3− r
h

)5 2≤ r
h ≤ 3

0 r
h > 3

(5.6)

The normalisation constant wd is 1
120h , 7

478πh2 and 1
120πh3 in one-, two- and three-

dimensional approximations, respectively (Price 2012).
It has to be clarified that mass and volume of SPH particles are only identical

to a physical mass and a physical volume for threedimensional approximations.
In a two-dimensional derivation d~x denotes an infinitesimal small area element
and just a scalar infinitesimal small distance if only one spatial dimension is
considered. The corresponding "volume" of an SPH particle is hence a finite
area or length, respectively, and the particle mass has the unit of measure

[
kg

m3−d

]
with d being the number of spatial dimensions. Though this notation appears
unusual at first glance, it allows for general SPH expressions of model equations
without distinguishing between approximations of different spatial order.

5.1.2 Integral Approximations

Typically the SPH approximation 5.5 is derived in the above-mentioned proce-
dure and, by differentiation and some further manipulation, used in order to
derive spatial derivative operators. Alternatively, an integral approximation is
frequently employed. This concerns both operators for second order derivatives
and the derivation of corrected SPH operators. The Taylor approximation in one
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spatial dimension x

f j = fi +
∂ fi

∂x
(~x j−~xi)+

1
2

∂ 2 fi

∂x2 (~x j−~xi)
2 + ... (5.7)

is multiplied by the kernel Wi j or its derivative ∂Wi j
∂x and integrated over the

domain Ω ∫
Ω

f jWi jdx j = fi

∫
Ω

Wi jdx j +
∂ fi

∂x

∫
Ω

(~x j−~xi)Wi jdx j

+
1
2

∂ 2 fi

∂x2

∫
Ω

(~x j−~xi)
2Wi jdx j + ... (5.8)∫

Ω

f j
∂Wi j

∂x
dx j = fi

∫
Ω

∂Wi j

∂x
dx j +

∂ fi

∂x

∫
Ω

(~x j−~xi)
∂Wi j

∂x
dx j

+
1
2

∂ 2 fi

∂x2

∫
Ω

(~x j−~xi)
2 ∂Wi j

∂x
dx j + ... (5.9)

The desired operator is then obtained by truncating the Taylor approximation at
a certain term and by employing kernel properties like the anti-symmetry of the
kernel derivative.

5.1.3 First Derivatives

Differentiation of equation 5.3 yields

〈∇ f (~x)〉=
∫

Ω

∇ f
(
~x′
)

W
(∣∣~x′−~x∣∣ ,h)d~x′, (5.10)

which after integration by parts results in (Colagrossi 2005, p. 22)

〈∇ f (~x)〉=
∫

∂Ω

f
(
~x′
)

W
(∣∣~x′−~x∣∣ ,h)~ndS′−

∫
Ω

f
(
~x′
)

∇~x′W
(∣∣~x′−~x∣∣ ,h)d~x′.

(5.11)
Inside the domain the contribution of the surface integral is negligible. Using the
antisymmetry of the kernel derivative ∇~x′W (|~x′−~x| ,h) =−∇~xW (|~x′−~x| ,h), or
in short ∇ jWi j =−∇iWi j, the basic SPH gradient operator follows:

∇i f = ∑
j

m j

ρ j
f j∇iWi j. (5.12)

∇iWi j is the kernel gradient with respect to particle i

∇iWi j =
dW
dr

~ei j =
dW
dr

~ri j

ri j
, (5.13)
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where~ei j is the unit vector between particles i and j and dW
dr is the kernel deriva-

tive with respect to the inter-particle distance, which can be obtained analytically
from the kernel function itself. Monaghan (e. g. 2005) introduced an additional
function Fi j =

1
ri j

dW
dr to provide

∇iWi j =~ri jFi j, (5.14)

which may be numerically advantageous, if 1
ri j

dW
dr is well defined for ri j becom-

ing zero in order to avoid divisions by zero. Divergence or gradient oparators of
vectorial values ~f are simply obtained by applying the scalar or tensor product
between ~f and the kernel gradient ∇Wi j, respectively.

Equation 5.12 indeed is the simplest SPH derivative operator, but the one
with the least desirable properties. It is not even zeroth order consistent, be-
cause gradients of a constant function will not necessarily be computed to zero
due to the distortion of the symmetry within a particle’s neighbourhood using
arbitrarily distributed particles. Moreover, it does not provide anti-symmetry
concerning the transfer of conserved quantities within a particle pair, so that
for instance the momentum transferred between two particles will be different
depending on which particle is on the left and on the right hand side of the equa-
tion. Different operators can be obtained as follows. Introducing an arbitrary,
differentiable function Φ and using the product rule ∇ f = 1

Φ
(∇( f Φ)− f ∇Φ),

equation 5.12 can be rewritten to (Monaghan 2005)

〈∇i f 〉= 1
Φi

∑
j

m j

ρ j
Φ j ( f j− fi)∇iWi j. (5.15)

As can be simply seen from the term inside the brackets, operators modified in
such a way are zeroth order consistent. The most common modifications are
Φ = 1 and Φ = ρ:

〈∇i f 〉= ∑
j

m j

ρ j
( f j− fi)∇iWi j (5.16)

〈∇i f 〉= 1
ρi

∑
j

m j ( f j− fi)∇iWi j. (5.17)

The latter operator follows Monaghan’s "second golden rule of SPH" (Mon-
aghan 1992), rewriting formulae such that the density is inside the operators
(typically the nabla operator). Still, both operators are not conservative. This
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desirable property can be obtained by ∇ f = Φ′
(

∇

(
f

Φ′

)
+ f

Φ′2 ∇Φ′
)

, again with

an arbitrary, differentiable function Φ′ and applying the chain rule. Φ′ = 1 and
Φ′ = 1/ρ yield

〈∇i f 〉= ∑
j

m j

ρ j
( f j + fi)∇iWi j (5.18)

〈∇i f 〉= ρi ∑
j

m j

(
f j

ρ2
j
+

fi

ρ2
i

)
∇iWi j, (5.19)

both being anti-symmetric and conservative within a particle pair as will be
shown later concerning the discretisation of the momentum balance. On the
other hand, these operators are not zeroth order consistent for obvious rea-
sons. Depending on the application, appropriate discretisation operators there-
fore have to be carefully chosen. Still, the approximation quality of SPH is
comparably poor, anyway, and conservation is one of the remarkable and desir-
able properties of this method. As a rule of thumb, one should therefore rather
decide in favour of conservative operators than of zeroth order consistency.

5.1.4 Laplace-Operator and Divergence of Diffusive Fluxes

In principle, a Laplacian can be expressed by differentiating equation 5.12

∆i f = ∑
j

m j

ρ j
f j∇

2
i Wi j = ∑

j

m j

ρ j
f j

d2Wi j

dr2 . (5.20)

Such formulations based on the second kernel derivative have turned out to be
very sensitive to particle disorder. Moreover, depending on ri j, the sign of the
kernel’s second derivative changes, which may cause unphysical effects like a
heat flux from cold to warm regions (Monaghan 2005). Brookshaw (1985) ob-
tained an alternative formulation by an integral approximation similar to equa-
tion 5.9, where the Taylor series is divided by x j− xi before integration:∫

Ω

f j− fi

x j− xi

∂Wi j

∂x
dx j =

∂ fi

∂x

∫
Ω

∂Wi j

∂x
dx j +

1
2

∂ 2 fi

∂x2

∫
Ω

(x j− xi)
∂Wi j

∂x
dx j +O

(
h2)

(5.21)

∂ 2 fi

∂x2 = 2∑
j

m j

ρ j

fi− f j

xi− x j

∂Wi j

∂x
= 2∑

j

m j

ρ j

fi− f j

ri j

∂Wi j

∂x
. (5.22)
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Due to the anti-symmetry of the kernel derivative, the first integral term on the
right hand side is zero. The second integral reduces to unity, as it contains the
SPH derivative in integral form of a linear function with gradient one. Brook-
shaw (1985, 1994) points out the interesting fact, that, using the cubic spline
kernel and a uniform particle distance equal to the smoothing length h, this
onedimensional Laplacian reduces to the well-known finite difference formula-
tion ∂ 2 fi

∂x2 =
fi+1− fi+ fi−1

h2 . This equality, however, only holds in one spatial dimen-
sion and for this special particle / smoothing length configuration. The Laplace
operator can be generalised to arbitrary spatial dimensions to (Brookshaw 1994;
Jubelgas, Springel, and Dolag 2004)

∇
2
i f = ∑

j
2

m j

ρ j

fi− f j

ri j

dWi j

dr
= ∑

j
2

m j

ρ j
( fi− f j)

~ri j∇iWi j

r2
i j

(5.23)

∇
2
i f = ∑

j
2

m j

ρ j
( fi− f j)Fi j. (5.24)

The expression 1
ri j

∂Wi j
∂ r

(
=

~ri j∇iWi j

r2
i j

)
is well behaved (Brookshaw 1994). How-

ever, in a numerical computation the denominator becomes singular for two par-
ticles approaching the same position, so that often a formulation like 1

ri j+ηdiv

∂Wi j
∂ r

or ~ri j∇iWi j

r2
i j+η2

div
is applied (e. g. Morris, Fox, and Zhu 1997), with a small con-

stant ηdiv preventing division by zero. Apart from the pairing instability (see
section 5.1.6), particles should not coincide in an incompressible liquid. The
present numerical model drops the additional constant in order to use a precom-
puted inverse of ri j without division by zero problems. Alternatively, equation
5.24 may be applied, where Fi j can be easily evaluated at ri j = 0 for most kernel
functions. Concerning numerical efficiency, this avoids divisions and is there-
fore advisable (cmp. appendix C).

Despite the Taylor series has been truncated before the third derivative, the
approximation is only first order accurate, as the SPH kernel integral / summa-
tion is involved (cmp. section 5.1.1). Many physical effects necessitate the
divergence of a diffusive flux rather than the Laplace operator. Such a flux is
proportional to the gradient of a quantity f and a coefficient like the heat conduc-
tiviy, diffusion coefficient or viscosity in diffusive heat, mass or viscous fluxes,
respectively. In that case, Brookshaw obtained the form

〈∇(K∇ f )〉i = ∑
j

2
m j

ρ j

Ki +K j

2
fi− f j

ri j

dWi j

dr
= ∑

j
2

m j

ρ j
K̄i j

fi− f j

ri j

dWi j

dr
. (5.25)
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Ki+K j
2 is the average coefficient K̄i j in the flux relation. This arithmetic aver-

aging follows directly from the Taylor approximation. As an alternative, the
harmonic mean K̄i j = 2 KiK j

Ki+K j
is frequently applied, particular for heat conduc-

tion phenomena, where it was justified by Cleary and Monaghan (1999) from
considerations with finite differences. Generally, a harmonic average is more
advantageous at strongly discontinuous coefficients K, as for K tending to zero
at one of both particles the average coefficient and hence the flux become zero,
whereas an arithmetic mean has the limit value of dividing the larger K in half.

The Laplace operator and equation 5.25 can be regarded as the SPH di-
vergence of a finite differences flux. The flux ~j = −K∇ f between particles
i and j in a finite difference approximation is ~ji j = −K̄i j

fi− f j
ri j

~ri j
ri j

. Taking this
expression as a central difference operator, the flux is located at the midpoint
~xi j = 0.5(~xi +~x j) =~xi− 0.5~ri j. The typical diffusive contribution in transport
equations is calculated according to the negative divergence of such a flux. An
SPH divergence over these fluxes between i and its neighbours has to be taken
with respect to the midpoints ~xi j. However, this does not require a completely
new SPH approximation, but can be derived with respect to the original neigh-
bours j. The cut-off radius and the smoothing length are divided in half for
this SPH divergence because of the midpoint positions. The volumes of the
midpoint particles correspond with those of the original neighbouring particles
j multiplied by

( 1
2

)d
. The associated kernel derivatives are the original values

∇iWi j multiplied by 2d+1. The divergence of the fluxes is hence ∑ j 2 m j
ρ j
~ji j∇iWi j,

which yields the Brookshaw approximation for the Laplace operator (cmp. equa-
tions 5.23 and 5.25). This may appear as an academic consideration, but in fact
allows for an easy implementation of zero flux Neumann conditions at open/free
surface boundaries. Such conditions are required in various applications like dif-
fusion in a liquid or adiabatic boundaries. Demanding the flux ~j over a discon-
tinuity to be zero implies for SPH particles i and j of different phases ~ji j = 0 or
fi = f j. As a zero flux does not contribute to the SPH summation in the Brook-
shaw operator, this is equivalent to the particle j not existing at all. In other
words, this kind of Neumann condition is automatically achieved, if the sum-
mation is only carried out over neighbours with a non-zero flux, i. e. particles
within the same phase as i. A free surface therefore naturally employs a zero
flux condition like an adiabatic boundary without consideration of the gas phase.
This will be of further importance, when heat and mass transfer over an interface
are considered by averaged linear driving force approaches (section 5.7.2).
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The alternative approach of applying first order SPH derivatives twice, an
SPH divergence of an SPH gradient, involves the same deficiencies like numer-
ical oscillations as in grid based methods when enforcing the same operator on
the same set of nodes twice (a second derivative by taking two times a centred
finite difference will only refer to every other node). Cummins and Rudman
(1999) tested both variants and observed numerical oscillations when solving
a Poisson equation discretised by subsequent SPH differentiations, whereas a
smooth solution was be obtained by the combined operator 5.25. A second is-
sue is sensitivity to particle disorder (Cleary and Monaghan 1999).

5.1.5 General Second Derivatives

Arbitrary second derivatives can again be obtained by integral approximations
(Español and Revenga 2003; Monaghan 2005) with the final SPH operator〈

∂ 2 f
∂xα ∂xβ

〉
i
= ∑

j

m j

ρ j

[
κ∂2

∆xα ∆xβ

r2
i j
−δαβ

]
fi− f j

r2
i j

~ri j∇iWi j. (5.26)

The factor κ∂2 is determined by the dimensionality of the problem and set to 4
(two-dimensional approximation) or 5 (three dimensions).

5.1.6 Choice of Kernel, Smoothing Length and Cut-off Ra-
dius

The SPH derivations, e. g. equation 5.3, provide an approximation error cou-
pled with the smoothing length, not with the particle size. Introducing smaller
particles (decreasing l0) at constant smoothing length does not change the error
term in principle. Yet, the larger number of particles will refine the resolution
and introduce a smoother representation of the field variables. Vector directions,
e.g. surface normals are more accurate, if a larger number of particles has been
taken into account. Two different kernel functions, each with the same smooth-
ing length, but a different neighbourhood radius, will therefore exhibit different
accuracies in practice. These smoothing effects may be less prominent when the
neighbourhood is further enlarged. Yet, in practice one aims to limit the amount
of neighbouring particles for computational reasons (and in order to avoid the
pairing instability, see below).
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The SPH approximation strongly relies on the kernel function and its proper-
ties. From a mathematical point of view, a Gaussian exhibits excellent approxi-
mation features (Price 2012). However, it does not provide compact support and
has to be truncated at a certain cut-off radius, which offsets its theoretical advan-
tages. Typical kernel functions are spline approximations of a Gaussian within
a certain cut-off radius or other kernels with compact support like the Wendland
ones. One issue concerning SPH is its lack of mathematical understanding and
formalism (the first of the SPH "Grand Challenges", defined by the SPHERIC
communtiy, Vacondio et al. 2020), especially when particles become disordered.
Many comments on kernel functions and the choice of the smoothing length h
are therefore not based on exact mathematical derivation but rather on experi-
ence with respect to various applications. One example is the definiteion of h
and its ratio to the cut-off radius. The smoothing length provides a scale, on
which a quantity is smoothed out when using the interpolation formula 5.3, and
determines the accuracy. Moreover, the particle spacing/size l0 cannot be chosen
independently from this value. Nevertheless, as Dehnen and Aly (2012) pointed
out, there is no appropriate definition of h in terms of the smoothing kernel. It
may be either a kernel’s standard deviation σ , the inflection point (maximum
of |∇W |) or the ratio W

|∇W | at the inflection point. Besides the Gaussian, where
all these values coincide, these various definitions of h are not unique for arbi-
trary kernel functions. A sound determination of the smoothing length would
be subject to advanced studies by itself and shall not be discussed further. Still,
this kernel property appears in practically every SPH publication, whereas its
implications and even the definition remain partly unclear.

Especially if a kernel with mostly Gaussian behaviour is desired, higher or-
der function have superior properties. Still, h cannot be chosen independently
from the particle spacing l0. Monaghan (2005) states that the smoothing length
is typically chosen close to the particle spacing and points out that approxi-
mations were more accurate in case of h = l0 or h = 2l0 instead of h = 1.5l0
(Monaghan 1992). Yet, the variety of kernels being employed in SPH was small
at that time and these remarks will mostly apply to spline kernels, in particu-
lar the cubic spline. Another issue is the so called pairing instability, which
especially occurs at high h/l0 ratios. According to Price (2012) the cubic and
other B-spline kernels are prone to complete merging in case of h & 1.5l0 and
exhibit an intermediate behaviour for 1.5 & h/l0 & 1.225. The reason for this is
that spline kernels were designed with the primary intention to provide a good
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density estimate, whereas the calculation of a derivative was of minor interest.
As the derivative of bell shaped kernels approaches zero for ri j → 0, repulsive
terms will also become zero in case of coinciding particles.

In this work a cut-off radius of 3.1 times the particle spacing was chosen.
This appeared as a lower limit for simulations of surface tension and wetting
effects and for the calculation of surface normals in the CSF approach (at least
with the implementations being used in the present model so far). A cut-off
radius smaller than 3l0 reduces the number of neighbouring particles signifi-
cantly so that orientation and length of surface normals may be erroneous. For
rcut ≈ 3l0 the cubic spline 2h = rcut yields the unfavourable smoothing length
of h≈ 1.5l0. Hence, the quintic spline (3h = rcut , hence h≈ l0 in this case) was
chosen throughout the simulations in this study.

The situation is somewhat different, if corrected SPH operators are applied.
As they enforce a distinct order of accuracy and modify the original kernel and
its derivative, the theoretical implications for ordinary SPH kernels do not apply.
For instance, Bilotta et al. (2011) pointed out, that in theory three or four neigh-
bouring particles are sufficient in order to provide a moving least squares (MLS)
approximation, with an adequate number of about ten neighbours in practice.

Variable Smoothing Length vs. Constant Resolution

In grid-based methods the mesh size is often varied throughout the domain in
order to adapt to local geometries and the intensity of physical effects. In SPH
this can be done by a variable smoothing length. In doing so, regions with little
motion and interactions can be discretised in a coarse way and other parts of
the domain can be refined, when particle motion has to be calculated very accu-
rately there. In the original field of SPH, astrophysics, this is a very reasonable
approach. Engineering applications of SPH scarcely employ this procedure as it
introduces additional dependencies - calculation of h and definition of appropri-
ate averaged kernels etc. As drying is to be calculated in this work, a reduction
of particle size due to evaporation and an adaption of the spatial resolution at
the droplet’s outer rim appears reasonable on first sight. Yet, arbitrary jumps
in the resolution are not possible (like in grid-based methods, which only allow
local variations of the mesh size to a certain degree). A particle undergoing
evaporation may be much smaller than neighbouring ones, especially those of
the solid phase. Just considering momentum transfer between two particles of
individual mass differing by an order of magnitude, the light particle will un-
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dergo an acceleration ten times higher than the larger one. Stability criteria in
time-integration would hence become too severe that a simulation could be un-
dertaken within a reasonable time-scale. Accordingly, the topic of a variable
resolution was dropped after first, instable tests and not followed further.

5.1.7 Correction of the SPH Approximation

The derivations of SPH operators are based on the assumption that the neigh-
bourhood of an SPH particle is full and symmetric so that there are no inhomo-
geneities in the kernel approximation using neighbouring particles. In practice,
both pre-requisites can be violated. At a free surface or a boundary, the par-
ticle distribution is neither complete nor symmetric. Consequently, the kernel
summation is no longer normalised due to this particle deficiency. Moreover, the
derivation of first order derivative operators as stated above is not valid anymore,
because the surface integral in equation 5.11 does not vanish. This strongly af-
fects the implementation of boundary conditions. The same errors can, in a
minor intensity, be observed for the fluid bulk, if the symmetry is deteriorated
due to particle disorder.

There are numerous remedies for the problem of particle deficiency at free
surfaces in the literature. In general, two different, main approaches can be dis-
tinguished. For one thing, the neighbourhood of particles near the free surface
can be artificially filled by the use of additional, virtual or ghost particles. This
procedure approximately restores the normalisation of the kernel summation, if
the void regions are filled appropriately, which can become a cumbersome task
for arbitrarily shaped boundaries/surfaces. This procedure is further discussed
in section 5.2. On the other hand the SPH approximation can be corrected in
several mathematical ways. Modified SPH kernels and derivatives can either be
obtained by some constraining conditions, which are related to the desired order
of accuracy (for instance Bonet and Lok 1999), or by considering and correct-
ing the terms, which are normally cancelled out in the derivation of derivative
operators (like in the CSPM method of Chen, Beraun, and Carney 1999). Al-
ternatively, new operators can be introduced, which are applied in a similar way
to their SPH counterpart, but have a different mathematical foundation (for ex-
ample MLS operators, Bilotta et al. 2011). Such approaches have not been
introduced into the present model, but are an interesting option for further de-
velopment, especially concerning the equations of motion at the free surface.
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5.2 Implementation of Boundary Conditions

In finite differences, points may be located directly on the interface so that a con-
dition like a gradient or a Dirichlet value can directly be imposed on a boundary
node. The finite volumes method is based on cells and influxes can be imposed
directly on the cell boundary. SPH particles are neither of both. They bear a
mass and volume and thus represent a certain part of the continuum, which is
attributed to a specific phase and not to the boundary, but do not exhibit a clear,
individual cell interface. The issue of implementing boundary conditions appro-
priately without losing some of SPH’s desirable properties has not been solved
in general up to now and remains as the second of the "Grand Challenges" of
SPH (Vacondio et al. 2020). The implementation of boundary conditions of-
ten corresponds with the question of particle deficiency and corrections applied
there. An exhaustive overview on the subject of boundary conditions in SPH
cannot be provided here, so that rather the basic concepts, which are relevant
within this work, will be explained in the following. For further informations
the interested reader is referred to the standard SPH literature and the aformen-
tioned paper by Vacondio et al. (2020).

5.2.1 Ghost Particles

Artificial (ghost) particles re-establish full occupation of a boundary particle’s
neighbourhood and therefore overcome the particle deficiency. In the most
straightforward case, a surface or boundary is flat and the virtual particles can
easily be obtained by a reflection of inner particles at the boundary plane. Prop-
erties of these ghost particles are set according to the ones of original particles
while taking the respective boundary conditions into account.

Depending on the surface/boundary geometry, the generation of ghost par-
ticles may become difficult as simple mirroring at curved surfaces will lead
to dense or diluted particle distributions. In such cases an advanced boundary
treatment might be necessary. However, for flat boundaries the ghost particle
technique is an easy and robust method, which restores neighbourhood com-
pleteness and consistency of the SPH method at the same time.
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Periodic Boundaries

The easiest implementation of periodic boundary conditions assumes an infinte
domain by just setting a lower xα,L and an upper value xα,H for the respective
cartesian coordinate α and copying the particles in the vicinity of one of these
bounding values to the void region outside the corresponding other one

xα,mirr
i = xα

i +nα
i
(
xα,H − xα,L) . (5.27)

nα
i is the normal towards the periodic boundary and points towards the fluid bulk

(nα
i = 1 for i being in the vicinity of xα,L and -1 otherwise for i being near xα,H).

Particles trespassing one of these domain boundaries will be inserted at the other
side according to the same rule. Depending on the intended application, single
particle properties are modified so that either an infinite domain is achieved or
influx and outflux conditions, for instance for a pipe.

Dirichlet Conditions

A Dirichlet implementation can be applied by mirroring particles at the bound-
ary plane. Ghost particles’ values are obtained by point reflection of correspond-
ing values around the desired boundary value

f mirr
i = f wall +

(
f wall− fi

)
= 2 f wall− fi. (5.28)

The particle-averaged value at the boundary is then the desired value f wall .
One very frequent application of this rule concerns no-slip velocity boundaries,
where f equals the velocity component tangential to the boundary plane~vt and
f wall =~vwall . The same applies to the velocity component in normal direction.
In case of a spatially fixed wall, the no-slip conditions simplifies to~vmirr

i =−~vi.
Commonly, zero velocities/fluxes across the boundary are realised by invertion
of normal vector components.

Alternatively, the Dirichlet value can be assigned directly to all mirrored par-
ticles. As this enforces discontinuous profiles in normal direction, this method
is generally inferior.

Neumann Conditions

Similarly to Dirichlet conditions, a zero flux Neumann boundary condition works
with mirrored ghost particles and is implemented most easily by directily copy-
ing the respective values from the original particle to its ghost counterpart. Due
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to symmetry, their corresponding gradients become zero directly at the surface
and the Neumann condition is satisfied. One example would be a free slip
boundary, where the velocity component tangential to the wall has to remain
unchanged, whereas a Dirichelt condition is applied to its normal part.

5.2.2 Insertion of Boundary Conditions into SPH Equations

In some cases a boundary condition can be directly inserted into the SPH dis-
cretisation. This is the case for the ∇(K∇ f )-operator 5.25, which calculates
the negative divergence of a flux ~ji j =−K̄ f j− fi

ri j
. If the flux between particles i

and j is determined by a boundary condition, it should be possible in principle
to exchange the term −K̄ f j− fi

ri j
in formula 5.25 for the boundary particle pair

i↔ j by the corresponding boundary flux. This has not been tested for general
flux values throughout this work, but works for the special case of zero fluxes
as described in section 5.1.4. Alternatively - or in combination with a zero-flux
condition - fluxes can be imposed as additional source terms.

Implementing Boundaries by the Use of a Source Term

Interfacial fluxes can be considered as an additional source term in the differen-
tial equations of particles in the vicinity of a discontinuity. Area based fluxes
need to be reformulated according to the mass-/volume based discretisation of
particles. Such a volume reformulation can be undertaken in analogy to the
CSF approach (Brackbill, Kothe, and Zemach 1992), the common procedure in
computational fluid dynamics to account for surface tension forces. In principle,
the transformation of area to volume based values is as a rule undertaken by ap-
proximating a sharp surface delta function with a smooth kernel, corresponding
with a conversion of a sharp interface area into a diffuse interfacial volume. If
an interfacial flux is considered by a source term, the flux over the interface in
the ordinary diffusive SPH operators (typically the Brookshaw div grad oper-
ator) has to be zero. This procedure will be discussed in section 5.7.2 for the
implementation of linear driving forces based heat and mass transfer.

Besides the novel approach for heat and mass transfer in this work, this prin-
ciple course of action can be found considering point sources in heat conduction
problems (Monaghan, Huppert, and Worster 2005), sorption of a surfactant at an
interface (Adami, Hu, and Adams 2010a) or heterogeneous chemical reactions
at a surface (Ryan, Tartakovsky, and Amon 2010).
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Implementation into Corrected Operators

Chen, Beraun, and Carney (1999) derived their corrected second order CSPM
derivatives from a Taylor series, in which the first order terms do not cancel out
and have to be taken into account for reasons of consistency. Considering an
SPH particle placed on the discontinuity, a Neumann boundary condition can
hence be implemented into such a corrected operator by replacing the first order
term with the appropriate boundary condition, as Chen, Beraun, and Carney
have shown for a onedimensional heat conduction problem.

It might be possible to extend this procedure to the first order term in the
Brookshaw operator, which vanishes within the bulk, but is erroneously ignored
for surface particles. However, to the author’s knowledge such an approach has
not been undertaken yet.

5.2.3 Repulsive Forces as Hard Sphere Boundaries

In fluid dynamic problems, penetration of particles into a wall has to be avoided.
Nevertheless, such issues may occur for several reasons like an incomplete
neighbourhood of the particles being involved and therefore erroneous SPH cal-
culations of fluid pressure. A simple way in order to avoid such undesired effects
lies in the introduction of repulsive forces, comparable to a hard sphere poten-
tial (Monaghan 1994, 2005). Two particles getting very close will experience a
strong repulsion, preventing penetration. With respect to incompressible liquids
and e.g. simulation of sloshing in a basin, these forces are not necessary in the
ISPH approach used in this work. Moreover, such forces are somewhat "parti-
clish" and not based on transport equations. Forces from the atomic scale are
transfered to the continuum scale. Still, this approach is very easy to implement.
As the charm of particle methods is often connected to their ability to give a
good approximation for a problem on which other methods fail, such boundary
conditions may be applied as long as they do not alter the representation of the
continuum. However, one has to be sure about the implications of introducing
additional forces on the overall flow behaviour.

In fact, a strong repulsive part is present in the current implementation of
surface tension forces, which employs an atomistic approach as well. Inter-
particle forces are prone to penetration of solids and therefore demand some
repulsive contribution. This will be discussed in section 5.5 in more detail.
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5.3 Hydrodynamics of an Incompressible Liquid
in SPH

5.3.1 Continuity Equation, Density Evaluation

The continuity equation in Lagrangian based frame of reference

Dρ

Dt
=−ρ∇~v (5.29)

is typically discretised using an SPH derivative, like operator 5.16

dρi

dt
=−ρi ∑

j

m j

ρ j
(~v j−~vi)∇iWi j (5.30)

or, following Monaghan (1989, 1994), operator 5.17

dρi

dt
=−∑

j
m j (~v j−~vi)∇iWi j. (5.31)

The latter equation has the advantage, that the densities of particles i and j,
whose values may be erroneous, do not have to be considered and only the (typ-
ically constant) mass of particles j has to be taken into account. Besides these
standard discretisations some authors enforce reformulations of the continuity
equation 5.29, such as using the natural logarithm of the density 1

ρ

Dρ

Dt = Dlnρ

Dt =

−∇~v or the ratio of the reference density to the current density
Dln ρ0

ρ

Dt = ∇~v
(Grenier et al. 2009).

Whilst solving the continuity equation in differential form leads to an initial
value problem, which is integrated over time, the current density can be directly
evaluated by the simplest use of the interpolation operator 5.5 with f = ρ

ρi = ∑
j

m jWi j. (5.32)

Equation 5.32 can be considered as an integral form of mass conservation and
hence a discretisation of the continuity equation as well. Provided that the parti-
cle masses are constant, the continuity equation is automatically fulfilled (Benz
1990). In fact, the derivative of equation 5.32 with respect to time directly yields
Monaghan’s discretisation of the continuity equation 5.31, as the temporal ker-
nel derivative is dWi j

dt

∣∣∣
i
=−(~v j−~vi)∇iWi j. Equation 5.32 can be considered as
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the traditional way of calculating the density in SPH in astrophysics. Moreover,
in the context of incompressible SPH (see section 5.4) it is the standard form of
density evaluation, albeit there exist ISPH implementations using a differential
form of the continuity equation as well.

The particle deficiency at boundaries and free surfaces introduces a density
error in equation 5.5/5.32. A correction of this equation by use of a zeroth
order consistent kernel, like the Shepard one (W̃i j =

Wi j

∑k
mk
ρk

Wik
), will flatten the

interpolated density to a constant value. This restores the particles volume mi
ρi

,
but a flat density cannot be used in an incompressible scheme for the pressure
evaluation. Corrective schemes therefore employ the derivative/divergence for-
mulations above in combination with corrected kernel derivatives, see Bonet
and Lok (1999) for WCSPH and Keller (2015) for ISPH. Yet, despite the parti-
cle deficiency at the surface, these schemes are seldomly applied. The impact
of particle deficiency in the divergence operator acts as if the neighbourhood of
a surface particle was filled with ghost particles of identical velocity. At least
in lateral direction this conforms with a free slip boundary, which is appropriate
for the free surface.

In multiphase problems with strongly varying (physical) densities, the masses
m j of equally spaced particles assigned to various phases differ the same way.
With the neighbourhood of an interphase particle consisting of particles of dif-
ferent kind, equation 5.32 yields a smeared density field near a discontinuity,
resulting in greatly varying particles volumes m j

ρ j
in SPH operators. In order to

retain consistent SPH operators, the density evaluation by summation can be
modified in the sense that only the particle alignment in the neighbourhood is
taken into account by ρi =

mi
V ∗i

and 1
V ∗i

= ∑ j
m j
ρ j

ρ j
m j

Wi j = ∑ j Wi j (Hu and Adams
2006)

ρi = mi ∑
j

Wi j. (5.33)

Comparing both principle methods of density evaluation, the continuity equa-
tion and the summation over the kernel values, the second one exhibits the
above-mentioned edge effects, whereas the first one bears the disadvantage, that
the particle number density and the fluid density or the volume occupied by par-
ticles are no longer coupled and equation 5.32 is violated (Benz 1990). This has
to be kept in mind, when the density is evaluated as an initial value problem.
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5.3.2 Momentum Balance

The momentum balance 2.5 in a Lagrangian reference frame is

D~v
Dt

=−∇p
ρ

+
∇τ

ρ
+

~f
ρ
. (5.34)

Depending on the application, different kinds of external forces ~f have to be
considered with gravity and surface tension being the most common effects.
These forces are considered in a volume specific way in units of N/m3, i. e. in
case of gravity ~f equals~gρ .

Pressure Forces

A trivial SPH discretisation of the pressure-related acceleration D~v
Dt

∣∣∣
p
=−∇p

ρ
us-

ing operator 5.12 is neither symmetric nor even zeroth order consistent. One of
the main advantages of SPH relies in its conservation properties so that typically
the symmetric operators 5.18 and 5.19 are employed:〈

−∇p
ρ

〉
i
=− 1

ρi
∑

j

m j

ρ j
(p j + pi)∇iWi j, (5.35)

〈
−∇p

ρ

〉
i
=−∑

j
m j

(
p j

ρ2
j
+

pi

ρ2
i

)
∇iWi j. (5.36)

Summation of the transferred momentum for both particles i and j using equa-
tion 5.35 yields:

mi
D~vi

Dt

∣∣∣∣
p,i
+m j

D~v j

Dt

∣∣∣∣
p, j

=
mi

ρi

m j

ρ j
(p j + pi)(∇iWi j +∇ jWi j︸ ︷︷ ︸

−∇iWi j

) = 0. (5.37)

Due to the antisymmetry of the kernel gradient the momentum transferred within
a particle pair is conserved. Thus, the total linear and angular momenta are con-
served as well. Albeit these symmetric operators do not provide zeroth order
consistency (a constant pressure field may not yield a zero pressure force as
m
ρ
6= const.), conservation of momentum is typically considered as being more

important in SPH applications. Discretisations 5.35 and 5.36 are hence com-
monly used in non-corrected SPH schemes. Bonet and Lok (1999) investigated
the consistency of different implementations of the continuity equation and the
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pressure term with respect to the variational principle. They found that both the
density evaluation by SPH summation / interpolation 5.32 combined with the
pressure gradient 5.36 as well as the combination of the continuity equation in
differential form 5.29 with the pressure term 5.35 are variationally consistent.
Mixed combinations or the non-conservative zeroth order consistent operators
cannot be justified from their variational considerations. It remains, though, un-
clear, how severe the impact of non-consistent combinations on the simulation
result is, which after all are frequently used in the SPH literature. The present
model combines the typical ISPH density calculation according to the summa-
tion equation 5.32 with the conservative formulation 5.36 and is therefore varia-
tionally consistent according to Bonet and Lok.

Corrected operators like the ones of Randles and Libersky (1996) or Chen,
Beraun, and Carney (1999) are not symmetric in pairwise particle interactions,
which may affect the conservation properties. This could be a reason for their
rare application in flow problems. Yet, Bonet and Lok (1999) were able to show
from the variational principle, that the total linear and angular momenta are
preserved in their corrective scheme despite the loss of pairwise symmetry.

Last to mention, pressure forces are linked to the tensile instability in SPH.
As pointed out by Adami, Hu, and Adams (2013), the lack of zeroth order con-
sistency leads to spurious pressure gradients within a constant pressure field
and numerical results change with different background pressures. In case of a
very low background pressure, particle clumping because of attraction between
neighbouring particles with effectively negative pressures leads to the tensile
instability.

Discretisation of the Dissipative Term

Stress forces in general are expressed by the divergence of the deviatoric stress
tensor (or the Cauchy stress tensor, if the pressure term is not considered seper-
ately). The SPH implementation can be performed in analogy to the pressure
term by the operators 5.18 and (which is the more common discretisation) 5.19:〈

∇τ

ρ

〉
i
=

1
ρi

∑
j

m j

ρ j
(τ j + τi)∇iWi j =

1
ρi

∑
j

m j

ρ j

(
τ

αβ

j + τ
αβ

i

)
∂Wi j

∂xα
. (5.38)

〈
∇τ

ρ

〉
i
= ∑

j
m j

(
τ j

ρ2
j
+

τi

ρ2
i

)
∇iWi j = ∑

j
m j

(
τ

αβ

j

ρ2
j
+

τ
αβ

i

ρ2
i

)
∂Wi j

∂xα
. (5.39)

176



5.3. HYDRODYNAMICS OF AN INCOMPRESSIBLE LIQUID IN SPH

With respect to conservation properties and consistency the same considerations
hold as for the pressure term discretisation. Generally, the stress tensor is cal-
culated beforehand according to the rheology of the medium. In case of an
incompressible, Newtonian liquid the stress term simply is ∇τ

ρ
= ∇(η∇~v)

ρ
. Using

the operator 5.25, Morris, Fox, and Zhu (1997) derived the form〈
∇τ

ρ

〉Newt

i
=

1
ρi

∑
j

m j (ηi +η j)~ri j∇iWi j

ρ j

(
r2

i j +η2
div

) (~vi−~v j) (5.40)

with ηdiv set to 0.1h. As mentioned above (section 5.1.4), it is advisable to
replace the term ~ri j∇iWi j

r2
i j+η2

div
by 1

ri j+ηdiv

∂Wi j
∂ r or Fi j. It can be easily shown, that the

linear momentum transferred within a particle pair i↔ j is conserved. However,
the corresponding momentum vector and the inter-particle distance vector are
not collinear, as the former one is determined by the velocity difference (~vi−~v j).
Angular momentum within a particle pair and the overall domain is hence not
conserved.

An alternative formula for the Newtonian viscous term is based on the arti-
ficial viscosity, which was originally implemented by Monaghan and Gingold
(1983) in order to dissipate numerical instabilities in astrophysical simulations.
An adaptiation to Newtonian viscosity has been provided by Monaghan (2005)
and Colagrossi et al. (2011)〈

∇τ

ρ

〉Newt

i
= ∑

j
m jκη

2ηiη j

ρiρ j (ηi +η j)

~vi j~ri j

r2
i j +η2

div
∇iWi j, (5.41)

with κη depending on the dimensionality (8 in 2D and 10 in 3D). It has the
desirable properties of vanishing for rigid body rotation and conserving linear
as well as angular momentum. Nevertheless, the formulation of Morris, Fox,
and Zhu is much more popular in the published SPH models of viscous, incom-
pressible free surface flow. Its lack of conserving angular momentum seems
not to be troublesome in industrial fluid dynamic problems (Monaghan 2005).
The present model also employs the "traditional" equation 5.40. Equation 5.41
would be an alternative for further model development.

The various sub-formulations of the aforementioned discretisations in the lit-
erature involve different averaging procedures for the viscosity and the density
(e. g. Shao and Lo 2003; Szewc, Pozorski, and Minier 2012) and do not apply
to the present model, in which a constant viscosity is applied. Even implemen-
tations using a second order kernel derivative (Takeda, Miyama, and Sekiya
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1994; Chaniotis, Poulikakos, and Koumoutsakos 2002) or subsequently employ-
ing first derivative SPH operators twice (Watkins et al. 1996) have been pub-
lished. These formulations bear the shortcomings, which have been discussed
in section 5.1.4, and should not be applied.

5.3.3 Weakly Compressible SPH (WCSPH)

The first application of SPH to incompressible liquid flows was performed by
Monaghan (1994), who allowed a slight compression of the liquid and coupled
pressure and density by the Tait equation

p =
c2

s ρ0

γ

((
ρ

ρ0

)γ

−1
)
= p0

((
ρ

ρ0

)γ

−1
)
. (5.42)

The reference pressure p0 in this relation depends on the adiabatic exponent γ

(for water ≈ 7), the reference density ρ0 and the speed of sound cs (Adami, Hu,
and Adams 2013). The adiabatic exponent needs not to be chosen by means
of physics and can be smaller in order to avoid large pressure peaks due to
density errors. The density itself is typically evaluated in WCSPH using the
continuity equation in differential form 5.31. The pressure is different from
zero, if the current density differs from its reference value. As a consequence of
a non-divergence-free velocity field, the density changes and a pressure is built
up which counteracts the violation of incompressibility. The speed of sound is
adjusted such that density variations are kept in a low range. With (Monaghan
2005)

|∂ρ|
ρ
∼ v2

c2
s
= Ma2 (5.43)

the density deviations in a compressible flow depend on the Mach number Ma=
v
c . Typically, a maximum density variation of 1 % is allowed, corresponding to

cs = 0.1 · vmax, (5.44)

with vmax typically being the maximum velocity throughout the computation.
Due to the decoupling of fluid density and particle number density, solution of
the initial value problem is prone to large density errors. As a remedy, density fil-
tering after each n-th time step by Shepard interpolation (Dalrymple and Rogers
2006) or a first order MLS kernel (e. g. Colagrossi 2005) or an additional diffu-
sive term in the continuity equation (Antuono, Colagrossi, and Marrone 2012)
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are usually employed in order to smear out density peaks. Additional procedures
in order to enhance the numerical stability of WCSPH are an artificial viscosity
(Monaghan and Gingold 1983) and the so called XSPH method in order to avoid
particle penetration (Monaghan 1989).

During model development, WCSPH had been tested as well. Yet, the matu-
rity of the ISPH implementation as depicted in the next section was not achieved
easily and would have required additional effort concerning a proper initialisa-
tion of the particle setup and the abovementioned stabilising procedures. Start-
ing with a reliable WCSPH implementation, it is surely possible to implement
the slurry drying model likewise at reasonable invest.

5.4 Incompressible SPH (ISPH)

The incompressible SPH enforces the well-known procedures of projection meth-
ods, which have been established by Chorin (1968). In short, the pressure is
used in order to project an intermediate velocity, which is not divergence-free,
onto a space of a divergence-free velocity field. A general classification of such
implementations has been provided by Guermond, Minev, and Shen (2006). In
the context of SPH, Cummins and Rudman (1999) were the first to enforce a
projection method for pressure calculation instead of weakly compressible SPH.
Shao and Lo (2003) adapted their approach for free surface flows in the applica-
tion of coastal engineering and introduced the term Incompressible SPH (ISPH).
The principle algorithm is the same for both, as well as for most of the published
ISPH models, and consists in a modified predictor-corrector scheme. Firstly, all
known right hand side values (viscous and external forces) in the momentum
balance will be evaluated in order to obtain an intermediate velocity field ~v∗ at
intermediate positions~x∗ (predictor)

~v∗ =~vn +∆t

(
∇τ +~f

ρ

)
(5.45)

~x∗ =~xn +∆t~v∗. (5.46)

The superscript n denotes the values at the formerly finished time-step n. In the
corrector step this intermediate velocity is modified by the pressure term and the
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final particle positions are obtained (in this case by the trapezoidal rule)

~vn+1 =~v∗+∆t
∇p
ρ

(5.47)

~xn+1 =~xn +0.5∆t
(
~vn +~vn+1) . (5.48)

Under the condition that the velocity at time-step n+1 has to be divergence free
(∇~vn+1 = 0), a pressure Poisson equation (PPE) can be derived

∇

(
∇p
ρ

)
=−∇~v∗

∆t
. (5.49)

Either equation 5.49 is directly used in conjunction with an SPH discretisation
in order to obtain the pressure (like in Cummins and Rudman 1999) or the con-
tinuity equation 5.29 is enforced to rest the incompressibility constraint on the
density difference (Shao and Lo 2003)

ρ∗−ρre f

ρre f ∆t
=−∇~v∗. (5.50)

The reference density can be either the physical density ρ0, the initial density of
a particle or the density from the previous time-step ρn. The latter is more fre-
quently used and can be employed without further ado. If the physical density is
used as reference and the density is calculated by the summation equation 5.32,
this sum must match the physical density well at the initialisation of a calcula-
tion. A high initial density deviation can enforce a high pressure peak, which
bursts the particles apart right at the beginning. Moreover, surface particles will
always exhibit a lowered density according to the summation equation, which
does not comply with the physical density. Yet, referring to the density of the
previous time step does not prevent accumulation of density errors. Frequently,
the divergence free criterion and the density deviation are mixed - either by sum-
mation (Aly, Asai, and Sonda 2013; Hu and Adams 2009) or in subsequent steps
(Hu and Adams 2007).

Various discretisations of the pressure term in the PPE can be found in the
SPH literature, which primarily differ with respect to the averaging of the den-
sity and possibly a symmetrisation of the resulting system of equations. Typi-
cally, the Brookshaw formulation 5.25 of the second derivative is employed in
a form like 〈

∇

(
∇pt+∆t

ρ

)〉
i
= ∑

j

m j

ρ j

4
ρi +ρ j

pi− p j

ri j

dWi j

dr
(5.51)
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The discretised PPE is a system of linear equations A~p =~b, which contains the
pressures pi and right hand sides of the PPE bi (either based on the divergence
of the velocity field or the density error 5.50) for all particles i. The coefficient
matrix A is set as follows

Aii = ∑
j

m j

ρ j

4
ρi +ρ j

1
ri j

dWi j

dr
(5.52)

Ai j =−
m j

ρ j

4
ρi +ρ j

1
ri j

dWi j

dr
. (5.53)

The system of linear equations can be treated efficiently by iterative solvers, typ-
ically preconditioned Krylov subspace solvers (Meister and Vömel 2008). Shao
and Lo (2003) symmetrised the matrix A by a slight modification of the Brook-
shaw formulation in order to use the conjugate gradient (CG) method, which is
restricted to symmetric, positive definite coefficient matrices. Nevertheless, the
asymmetrical system in the formulation of Cummins and Rudman (1999) can
be evaluated by other Krylov subspace methods, such as GMRES or BiCGStab
(Meister and Vömel 2008). Generally, these solvers are known for very effi-
ciently damping oscillations on a small scale in the mathematical solution and
therefore to converge very quickly. In case of a bigger computational domain,
oscillations may also occur on larger scales, and Krylov subspace methods be-
come less efficient (the number of iterations grows with the size of the domain).
This issue can be solved by adaptive multigrid solvers, which treat a problem on
different spatial levels with varying resolution and therefore damp oscillations
on various scales very efficiently. The PPE of large scale SPH calculations with
many particles is therefore more efficiently treated by a multigrid method either
for direct solution or alternatively as a preconditioner for a Krylov subspace
method.

Unlike in grid-based methods, the pressure correction is typically applied
only once and not iterated until the density error falls below a certain threshold
value. An exception is provided by Hu and Adams (2007). One reason for this is
the large computational effort for the solution of the PPE in SPH discretisation.
Moreover, SPH is often used in free surface flow applications, where surface
particles always exhibit a density error as their neighbourhood in equation 5.32
is incomplete. Another SPH peculiarity is that negative pressures may cause sta-
bility problems and are either avoided by clipping negative values after pressure
correction to zero (Keller 2015) or superimposition of a reference pressure (Hu
and Adams 2007).
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5.4.1 Boundary Conditions in ISPH

One of the pleasant features of weakly compressible SPH is the fact, that one
is not necessarily concerned with boundary conditions. As long as the density
is evaluated in a sensible way, the pressure field relaxes to reasonable values
as well. Solution of the linear system of equations in ISPH requires distinct,
application-dependent boundary conditions. This subject is not given as much
regard as one might expect in the SPH literature. Actually, Cummins and Rud-
man (1999) recommended the development of a more general boundary treat-
ment in their pioneering work and not all of these issues have been solved. Many
ISPH applications mainly refer to free surface flow and sloshing and are mostly
concerned with wall boundary treatment and the free surface condition. It lies
not in the focus of this work to resolve the issue of general boundary considera-
tion within incompressible SPH, so that the interested reader may be referred to
the ISPH literature. One possible start is the work of Hosseini and Feng (2011),
who seize on the investigations of Guermond, Minev, and Shen (2006) and de-
rive consistent pressure boundary conditions for incompressible SPH. Consider-
ing droplet drying, indeed the treatment of free surfaces is of particular interest.

5.4.2 Boundaries by the Ghost Technique, Wall Boundaries

Periodic boundaries can be represented by simply copying particles (see sec-
tion 5.2). When PPE matrix entries of ghost particles are added to the positions
of their reference particles and ghost entries are deleted from the matrix, the do-
main consists of a closed loop in direction of the periodic boundary. Similarly
mirror boundary conditions can be applied, which was used by Cummins and
Rudman (1999) in order to calculate inner flow problems bounded by a no-slip
condition.

A different implementation of solid walls was undertaken by Shao and Lo
(2003), who adapted an easy approach from the moving-particle semi-implicit
(MPS) method (Koshizuka, Nobe, and Oka 1998). Solid boundaries are imple-
mented by several layers of solid particles. The layer closest to the moving
liquid is included into the pressure Poisson equation and their pressure values
are copied to the layers being farther away from the liquid. In doing so, the
neighbourhood of liquid particles on the wall side is completely filled and the
pressure gradient within the wall is set to zero. This technique can easily be
used in sloshing problems, like the dam break in a basin.
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5.4.3 Free Surface Boundaries in ISPH

Most ISPH implementations treat the free surface boundary condition in a rather
simple manner. Particles in direct contact with the free surface are detected
by an appropriate method and then exposed to the Dirichlet pressure condition
psur f = 0 (Shao and Lo 2003; Lee et al. 2008). Corresponding publications
hardly mention the detailed way of implementation, however, it is commonly
stated that these particles are given pi∈sur f = 0. This implies a modification of
the PPE such that this condition is directly imposed on such particles, setting
the pressure of those particles zero "the hard way".

Keller (2015) proposes a different kind of free surface treatment based on
ghost particles. For each free surface particle i all neighbouring inner fluid par-
ticles j are mirrored into the void region via a point deflection at this particle’s
centre (surface particles are left out). By this, completeness of the neighbour-
hood is mostly restored. Ghost particles have to be taken into account within
the system of linear equations. Their virtual matrix entry Ai j∗ is identical to the
one of the original particle Ai j, because equation 5.53 does not depend on the
direction of the particle distance but solely on its absolute value. Likewise, the
contribution of ghost particle j∗ to the main diagonal entry of the surface parti-
cle i is the same as from its original particle j. The sum of equation 5.52 needs
just to be counted twice for all neighbours, which were mirrored. Imposing the
condition that virtual particles have zero pressure p j∗ = 0, the PPE matrix needs
not to be extended. Hence, simply doubling inner neighbours’ contributions to
the entries Aii provides the condition of zero pressure at the free surface

Aii,i∈sur f = ∑
j

m j

ρ j

4
ρi +ρ j

1
ri j

dWi j

dr
+ ∑

j/∈sur f

m j

ρ j

4
ρi +ρ j

1
ri j

dWi j

dr
. (5.54)

Bøckmann, Shipilova, and Skeie (2012) derive a very similar boundary treat-
ment by multiplying the Dirichlet condition pi∈sur f = 0 with Aii and a weighting
constant C. Addition to the i-th line of the PPE leads to the modified entry

A∗ii = (1+C)Aii. (5.55)

Bøckmann, Shipilova, and Skeie (2012) set C = 1, which matches Keller’s ap-
proach, apart from inclusion of neighbouring particles belonging to the surface.
An (effectively) similar condition is derived by Nair and Tomar (2014).

The detection of surface particles is typically performed by a property, which
differs between surface and bulk, and some threshold value. Typical properties
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are the density (Keller 2015; Shao and Lo 2003) and the divergence of the par-
ticle positions (Bøckmann, Shipilova, and Skeie 2012; Keller 2015; Lee et al.
2008). Additionally, the absolute value of the surface normal (see section 5.7.2)
was tested throughout this work.

This way of free surface treatment involves some issues. Detection criteria
may fail, for instance if surface layers are compressed due to surface tension
forces. Moreover, due to their switching-type behaviour, a particle may be con-
sidered differently within following time steps - once as a zero pressure surface
particle, then as a bulk particle, some steps later again as being part of the free
surface. Thirdly, just imposing p = 0 on surface particles does not allow for any
pressure correction between surface particles and does not take into account,
that these particles still belong to the liquid and do not represent the infinites-
imally thin interface. This mainly applies to the direct imposition on surface
particles and not to the more relaxed modification of the PPE matrix of Bøck-
mann, Shipilova, and Skeie (2012) and Keller (2015).

5.4.4 Modifications to ISPH in This Work

Free Surface Condition

The zero pressure boundary implementations of Keller, Bøckmann, Shipilova,
and Skeie and Nair and Tomar are considerable improvements in comparison to
the naive implementation of strictly enforcing p = 0 for surface particles. They
differ in detail, but can be considered as a variant of a more general concept, the
use of penalty functions in order to restrict a degree of freedom (Bathe 1996, p.
143ff; Askes and Ilanko 2006). The linear system of equations is modified in
such a way, that A~p =~b becomes

(
A+AP

)
~p =~b+~bP, in which the superscript

P denotes the contribution of the penalty function. In a continuum formulation
this can be expressed as (Escobar-Vargas, Diamessis, and Loan 2011)

∇

(
∇p
ρ

)
+ τ

P [condition] =−∇~v∗

∆t
. (5.56)

τP is the penalty coefficient and the (boundary) condition is placed inside the
brackets. With growing τP the system is dominated by the constraining condi-
tion and the conventional part of the equation becomes negligible. Typically,
τP � Aii is set for equation i in the system of linear equations (Bathe 1996, p.
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144). The weak imposition of the boundary condition with finite τP improves nu-
merical stability (Escobar-Vargas, Diamessis, and Loan 2011). Imposing pi = 0
in ISPH simply results in addition of τP to the diagonal entry Aii, with pi→ 0
for τP→ ∞ (~bP

i = 0 in this case). The above-mentioned approaches utilise this
method by adding a value of τP ≈ Aii, a rather small penalty coefficient. Due
to the relaxed penalty procedure, the pressure distribution at the surface is im-
proved in comparison to strictly setting p = 0.

This observation allows for a more general and smooth imposition of the
free surface boundary condition without the need of a switch function. The un-
derlying idea is that for all particles a penalty function is introduced with τP

depending on a quantity which becomes large in the vicinity of a free surface
and vanishes for bulk particles (in a mathematical sense τP

i ∼ f sur f
(
ri↔sur f

)
with ri↔sur f being the distance of particle i to the surface and f sur f

(
ri↔sur f

)
a positive function monotonically decreasing to zero). The benefit of such an
approach is that all particles moving towards or away from a surface will experi-
ence a gradual change of τP. Thus, the zero pressure condition is smoothly im-
posed without undesirable side-effects of a switch function. Suitable quantities
for such a condition are identical to the properties, which are used for surface de-
tection in established schemes. The divergence of the particle position~x is equal
to the number of spatial dimensions d in the fluid bulk. For a particle directly
located at a flat surface, it tends to d/2, as half of the neighbours’ contribution
in the discretisation formula is missing due to the particle deficit. The measure
1− ∇~x

d provides therefore the desired properties of the above-mentioned function
f sur f

(
ri↔sur f

)
without the need of evaluating ri↔sur f . The penalty coefficient

used in this work is

τ
P
i = Aii

(
1− ∇~x

d

)2

·Cτ . (5.57)

Cτ chosen to 4 provides a similar kind of penalty to particles at a flat surface
as the approach of Keller (2015). Due to the power of two, its contribution
vanishes fast towards the liquid bulk. Within this work, Cτ = 5 was used. If
outer particle layers of the liquid become compressed - which was an issue
during model development of the surface tension and wetting approach (see
section 5.5) -, ∇~x stays at comparably high values at the surface. Imposition
of the zero pressure condition may necessitate Cτ values in the order of 100 in
such cases. The penalty is only applied when ∇~x≤ d. Otherwise, particles with
an erroneously high ∇~x will experience a "negative penalty". This can be the
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case for subsurface layers, when the aforementioned layer compression occurs.
The SPH term for evaluating the divergence of particle positions is (according
to operator 5.16)

∇i~x = ∑
j

m j

ρ j
(~x j−~xi) ·∇iWi j (5.58)

=−∑
j

m j

ρ j
~ri j ·∇iWi j. (5.59)

The second formulation is easy and efficient, when interparticle distances~ri j are
stored in a Verlet list anyway (appendix C).

Incompressibility Constraint

Under surface tension forces outer fluid layers are compressed, which can cause
significant density errors. This is not only true if the divergence of the inter-
mediate velocity field (equation 5.49) is used as the right hand side of the PPE,
but as well when the density deviation 5.50 is employed, with the density of
the previous time step as reference. The physical density as reference cannot be
applied to free surface particles, which exhibit a "natural" deficiency of density
according formula 5.32. This issue can be circumvened when this density devi-
ation is weighted with a function f bulk, which is very low at a free surface and
approaches one for bulk particles - just the opposite to the function f sur f of the
penalty coefficient before. The PPE is then written as follows:

∇

(
∇p
ρ

)
=−∇ ·~v∗

∆t
−CP f bulk ρn−ρ0

ρ0∆t2 . (5.60)

Other than in equation 5.50, the density ρn is not evaluated at the intermediate
position ∗ but taken from the previous time step n. This modified PPE can thus
be interpreted like this:

• The first term based on the divergence of the intermediate velocity ~v∗ ac-
counts for the incompressibility violation of the flow field at the predictor
position.

• The second term does not refer to the intermediate values, but to the den-
sity error accumulated over prior time steps.
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In this respect, the incompressibility constraint is not "counted twice", but the
errors from previous time steps are removed additionally to the correction of
the predicted velocity field. A similar concept is proposed by Aly, Asai, and
Sonda (2013) and Hu and Adams (2009). The constant CP determines the ra-
tio or rate at which accumulated density errors are to be corrected in the bulk
(where f bulk = 1) per time step. Hence, the last term can be considered as the
proportional contribution within a numerical density control loop. This concept
can be extended to a numerical PI controller, if the density error is integrated
over each time step. Whereas this proved to work for a flow with little particle
motion, the integral contribution is prone to cause crashes when particles move
within the particle collective. In such a case a particle might carry an accumu-
lated integral density deficit to a flow region with perfect incompressibility. An
implementation is however straightforward and can be investigated further by
the interested reader. In the current model, the function f bulk is set depending
on the divergence of~x

f bulk =

{
1+∇~x−d, d−∇~x < 1

0 otherwise.
(5.61)

The alterations to the standard ISPH procedure are easy to implement. The
modified free surface condition only necessitates a modification of the PPE ma-
trix Aii entries based on ∇~x values. The proportional contribution contains val-
ues, which are present anyway, and is just added to the typical velocity diver-
gence RHS. An integral term demands storage of an additional property (the
integral density deviation), but is not more complicated than the proportional
term otherwise.

Parameterisation in this Work

Drying simulations in this work were carried out with a proportional factor
CP = 1. This is necessary for modelling the receding of the liquid after crust
formation correctly. Moreover, capillary pumping inside the crust can involve
negative pressures inside the liquid. Other than often observed this did not cause
instabilities in the droplet model, which may be linked to the addition of sur-
face tension forces, but was not further investigated. Solution of the PPE was
performed either by a preconditioned Krylov subspace solver from the PETSc
library (Balay et al. 2019) or the BoomerAMG multigrid solver (Henson and
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Yang 2002) of the Hypre library 1. The AMG solver can work as a precondi-
tioner to PETSc Krylov subspace solvers or stand alone. Throughout this work,
it was applied as the single solver, when particle numbers were above about
20000. Below this value, Krylov subspace methods were more efficient.

Possible Further Development

The abovementioned improvements are reasonable and provide a stable model
for slurry drying, especially with regard to the surface tension model depicted in
the next section. Yet, the parameters should be further analysed and compared to
standard ISPH in standard applications. The pressure calculation and evaluation
of pressure forces near the boundary could be improved by the use of corrected
SPH operators. To the author’s knowledge, this has only been introduced into
ISPH so far by Keller (2015) using the corrections of Bonet and Kulasegaram
(2000).

Throughout this work a one step scheme was tested instead of the predictor
corrector approach. Assuming that the velocity field at step n is divergence free,
the right hand side of equation 5.49 equals −∇·~v∗

∆t =−∇·(~vn+~an∆t)
∆t =−∇~an. The

divergence of the acceleration due to viscous, surface tension and gravitational
forces therefore should yield the pressure, if inserted into the PPE, without the
necessity of evaluating intermediate particle positions. Using this as the single
incompressibility constraint, this method diverges after a number of time steps,
as the effect of particle motion on the divergence of the velocity field cannot be
neglected. However adding proportional terms with respect to the accumulated
density error as above and the divergence of the velocity field~vn a stable solution
was obtained with proportional factors of 0.2 for each term. This approach was
able to finish a small scale drying simulation and appeared to consume 10 %
less runtime on a scale of 27500 particles. It requires further validation and
development and was therefore not used in productive simulations. Moreover,
this is just an ISPH equivalent of the explicit Euler method, which provides
only poor accuracy. Further development to a higher order method as leap-frog,
velocity verlet or multi-step methods should be possible though. This appears
attractive insofar that standard ISPH itself only employs a first order scheme
(Cummins and Rudman 1999).

1https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
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5.5 Surface Tension and Wetting

There are two common literature approaches for the implementation of sur-
face tension and wetting phenomena into SPH. The first one is the Continuum
Surface Force (CSF, also called Continuous Surface Force) method (Brackbill,
Kothe, and Zemach 1992; Morris 2000), which basically is a continuous refor-
mulation of the surface tension force on a singular interface. The second ap-
proach enforces a molecular point of view, in which the effect of surface tension
and wetting is implemented by pairwise forces between SPH particles. Whereas
the first method is sound and consistent and the standard procedure in CFD, it re-
quires the consideration of both phases besides an interface and implies several
demandings with respect to the particle setup near the surface (a free surface
implementation was presented in the master thesis of Woog 2011, but involv-
ing strong smoothing, large neighbourhood radii and no wetting effects). The
second one is very intuitive, easy to implement and can be applied in a free
surface implementation as well. Nevertheless, it’s theoretical foundation in the
literature is mediocre and lacks a thorough discussion.

Drying of a slurry involves many three phase boundaries. Accounting for
wetting phenomena using the CSF approach is possible (Hu and Adams 2006;
Huber et al. 2016) when the gas phase is represented by SPH as well. In the
current application, this would lead to a much higher computational overhead.
Moreover, the CSF approach is based on a colour functions’ values, which
change between different phases and need to be differentiated by SPH opera-
tors. Due to drying, solid SPH particles will at some point be covered only by
a thin layer of liquid ones, which makes the application of SPH operators on
the colour function a very difficult task. SPH operators require smooth field
variables, but this is not provided when the fluid phase consists of a thin layer.
This holds all the more for a two-dimensional approximation of slurry drying
as in the present model. When two solid primary particles approach each other
during crust formation, the small channel between both particles becomes more
and more narrow until it is closed, which will interfere with the calculation of a
colour function. For these reasons, the CSF approach was not further pursued
and interparticle forces were applied in all drying calculations within this work.
It is, however, a weak spot in the current model and needs further development.
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Possible Further Model Development to a CSF Approach

The matter of thin particle layers as a result of drying becomes less severe in
three dimensions. The points of contact between primary particles are small
so that a continuous colour field could be calculated within the remaining pore
space. The above-mentioned overhead when implementing the gas phase could
be alleviated by using an underlying grid instead of gas particles, which is
solely used for the colour function’s evaluation in the different phases (cmp.
section 5.7.5). Still, narrow sections of the geometry will become challenging,
when gaps are in the particle scale.

5.5.1 The Interparticle Force Approach

From a molecular point of view, surface tension results from the attractions
between molecules (or atoms), which are often expressed by a Lennard-Jones
potential. Indeed the surface tension coefficient can be derived from molecular
dynamics simulation. Due to its simplicity, this concept has been adopted in
particle methods on a much coarser scale in order to model surface tension and
wetting forces. The basic features are depicted in Figure 5.3. Attractive forces
between atoms or molecules in a liquid will cancel out in the fluid bulk (frame
a), whereas the net force at the fluid surface will point towards the inner part of
the droplet (frame b). This models a surface tension like behaviour. Yet, this
force does not vanish on flat surfaces (frame c), whilst surface tension forces
only appear on curved surfaces. The reason for this is that the interface is not
sharp on the molecular scale, but provides a smooth transition with a diluted
fluid density (frame d). This leads to pressure forces towards the interface (the
bold arrow in frame d), which cancel out the normal component of the net force
obtained by inter-atomic/inter-molecular attraction (Marchand et al. 2011).

An SPH implementation of this approach was provided by Nugent and Posch
(2000) for a van der Waals fluid. The attractive (surface tension) forces evolve
naturally from the cohesive pressure−aρ2 in a modified van der Waals equation
of state

p =
ρ k̄T

1−ρ b̄
− āρ

2, (5.62)

in which the reduced quantities k̄ = kB
m , ā = a

m2 and b̄ = b
m rely on Boltzmann’s

constant kB and the parameters a and b from the common van der Waals EOS.
Whilst Nugent and Posch obtained results in good agreement to the theory, their
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approach appears numerically demanding. The cut-off radius was considerably
high (five times the particle spacing) and the cohesive pressure needed to be cal-
culated seperately from the EOS with a neighbourhood of even doubled size.
Moreover, this approach naturally involves the gas phase. Tartakovsky and
Meakin (2005) took up the ideas of Nugent and Posch and mixed a van der
Waals equation of state for pressure calculation in WCSPH with an artificial
interparticle force

~fi j =

si jcos
(

1.5π
ri j

rcuto f f

)
~ri j
ri j
, ri j ≤ 3

~0, ri j > 3
(5.63)

D~vi

Dt

∣∣∣∣
σ

=
∑ j

~fi j

ρi

using a cut-off radius of three times the particle spacing (the original work uses
1.5π

3 within the cosine, which does not provide the proposed attractive and re-
pulsive behaviour). Despite the reduced neighbourhood they obtained stable
and reliable results. In comparison to the work of Nugent and Posch (2000),
the surface tension coefficient is not related to the cohesive pressure but to the
pre-factor si j, which can be used as an independent parameter in formula 5.63.
Dynamic simulations with oscillating drops showed a good agreement of the
periodicity with the surface tension coefficient obtained by the Young-Laplace
equation p = σ

R from an equilibrated drop. The pressure could however not di-
rectly been taken from the equation of state, but needed to be obtained by sum-
ming up all pressure and interparticle forces within a "virial radius" (a centred,
circular area within the droplet’s bulk).

(a) (b) (c) (d)

Figure 5.3: Surface tension by isotropic attractive forces between SPH particles:
fluid bulk (a), curved surface (b), flat surface (c) and molecular scale (d), only
interaction between nearest neighbours drawn.
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Figure 5.4: Detaching of a par-
ticle column from a flat sub-
strate and surfaces being cre-
ated (after Kondo et al. 2007).

When liquid-liquid (parameter sLL) and
liquid-solid (sLS) interactions are parame-
terised with different strength, wetting effects
can be simulated. Non-wetting behaviour cor-
responds with sLS being much lower than sLL

ones with the limit value of zero attraction for
a contact angle of 180 ◦. If, on the other
hand, both values are equal, the solid is virtu-
ally treated as a liquid and the behaviour should
be fully wetting. Kondo et al. (2007) derived
both the magnitude of the interaction parameter
inside a liquid as well as the liquid-solid param-
eter from an energy consideration. Supposing
an energy potential P(r) for the pairwise parti-
cle interactions, the surface tension force is the derivative f = dP

dr . The surface
tension coefficient is equal to the energy which is necessary to create one single
surface from a fluid bulk. First of all, a flat surface discretised by particles is
considered. A fluid column of one particle extent rests on this surface. This par-
ticle chain shares an interface area of l2

0 with the surface. Separating the particle
column from the surface (see Figure 5.4), the energy for generating two surfaces
2l2

0σ is hence equal to the summation over all interactions between the particles
in the column and the particles within the plane

2σ l2
0 = ∑

i∈I, j∈II
P(ri j,sLL) . (5.64)

An interaction parameter sLL for liquid-liquid interactions in the potential P
could hence in principle be calibrated by summation over the potential (not the
force!) using an artificial geometry of such a fluid column. The potential pro-
vided by Kondo et al. (2007) yields, same as with Tartakovsky and Meakin, an
attractive force for distances greater than l0 and repulsion for smaller separations.
The idea of a single particle column can be extended to wetting phenomena. If
the surface does not consist of liquid, but solid particles, separation of both will
generate a liquid and a solid surface at the cost of destroying a liquid-solid inter-
face. The left hand side of equation 5.64 becomes (σl +σs−σLS) l2

0 , whereas
in the right part sLL is exchanged by sLS as interactions between liquid and solid
particles are involved. A comparison of both formulae with Young’s equation

σL−σLS−σLcosθ = 0 (5.65)
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yields

sLS = sLL
1+ cosθ

2
. (5.66)

Liquid-solid interactions can thus be calculated from the liquid-liquid ones and
the contact angle θ with the limit values of sLS being sLL for 0° contact angle
and sLS = 0 in case of 180°.

Simulations of Kondo et al. showed partly the intended wetting behaviour,
but were unsatisfactory concerning the surface tension effect. Relaxation of an
initially square drop does neither provide the intended oscillation period nor a
relaxed state of a round droplet. Pictures of drops resting on a surface exhibit
distorted surfaces. Kondo et al. attribute this to the differences of a regular parti-
cle chain resting on a flat surface to particles near a curved droplet surface with
reduced interparticle distances in their simulations. An additional reason may
be that the MPS method they used is similar to ISPH and hence does not employ
an equation of state. The present ISPH model exhibits unwanted surficial par-
ticle alignments if the same force is used as by Tartakovsky and Meakin (cmp.
section 6.4.3).

Discussion

Respresenting surface tension and wetting phenomena by simple, pairwise forces
is very appealing. The implementation is easy to undertake and efficient. How-
ever, employing a molecular point of view on a continuum scale introduces
some problems. The first issue is concerned with the parameterisation. The sur-
face tension force or its prefactor si j needs to be calibrated with respect to the
resolution and to the neighbourhood radius, as either a larger number of total
particles or increase of neighbours per particle will result in a higher net force
per unit area. The force is depending on the particle size and Adami, Hu, and
Adams (2010b) pointed out that it does not converge to a limit value with the res-
olution being refined. This has not been addressed by the respective literature,
so far. However, this issue can be partly circumvened, if the particle spacing
l0 is considered within the parameterisation. The net force per unit area grows
with the number of particles per unit area, which is proportional to 1

ld−1
0

(d being

the spatial dimensions in the simulation). The parameter si j can be therefore be
calculated from a resolution independent interaction parameter s0

i j upon

si j = s0
i jl

d−1
0 . (5.67)
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This is easily understood considering a surface in three dimensions. Doubling l0
leads to a quarter of the total particle number contributing to the net force. The
individual force per particle thus needs to be four times higher. In other words,
the individual interaction parameter is the independent parameter times the in-
dividual surface area of the particle in a flat, Cartesian configuration (which is
a line of length l0 in 2D). This approach recalibrates surface tension forces, yet
it fails at wetting phenomena, where the number of interacting particles in the
vicinity of the contact line remains constant.

The second issue is of general nature. These forces also apply to the liquid
bulk. As repulsive forces are applied below a distance of l0, the particle align-
ment within the bulk is affected by pairwise forces, even if the net force just
acts on surfaces. To the author’s knowledge, the impact of innerparticle forces
on flow properties of the bulk has not been studied, yet.

Thirdly, a particle located at a concave surface still experiences a net force
towards the fluid bulk, whereas the real surface tension force points into the
opposite direction due to the negative curvature. On the molecular scale, it
is the pressure contribution from the decreasing density, which turns the net
force away from the liquid bulk. This pressure contribution must be provided
either from an equation of state (WCSPH) or from the ISPH pressure calcula-
tion. The calculated fluid pressure is therefore unphysically high, which is the
reason why Tartakovsky and Meakin (2005) needed to sum up particle forces
within a "virial radius" in order to relate the simulated pressure with the Young-
Laplace equation. Also, the net force on a flat surface does not vanish. As long
as the pressure field is only shifted to high values and pressure differences and
accelerations are calculated the same as without the additional pressure, com-
putational results remain unchanged. Yet, simulations may be dependent on the
background pressure (Adami, Hu, and Adams 2013). Moreover, these unnatural
forces can alter the surficial particle alignment and may not be compensated by
opposite pressure contributions on the small scale near the free surface. As the
approximation errors due to the particle deficiency at the surface worsen such
effects, a fully corrected ISPH approach as introduced by Keller (2015) might
alleviate the problem. Moreover, particles tend to penetrate into a solid wall, if
the incompressibility constraint is based on ∇~v = 0 and not the deviation from
the reference density is taken into account or a stronger repulsive contribution
is introduced. Finally, resting drops do not exhibit the contact angles as set via
equation 5.66.
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5.5.2 The Concept of Surface-Lateral Particle Forces

The idea of pairwise forces will work better, if attractive forces are only act-
ing lateral to a surface, i. e. only particles having the same distance from the
surface encounter attraction. Within a flat plane, the net force becomes zero.
Curved surfaces will experience a net particle force depending on the curvature
and point towards the correct direction. The basic principle is depicted in Fig-
ure 5.5 for a force solely acting on the outmost particle layer. Such lateral forces
represent the net forces from the atomic scale. While the idea is appealing, an
SPH implementation is challenging, as a clear measure of the distance from the
free surface is needed and the method must be robust when particles move to-
wards the surface or the fluid bulk. The first of both questions is a similar task as
the identification of surface particles in ISPH (see section 5.4.3), but with more
inner particles taken into account. "Natural" values, which exhibit a strong gra-
dient near the surface, are the density or the particle number density, the length
of the surface normal from the colour function |~n| =

∣∣∣∇c
[c]

∣∣∣ (see section 5.7.2)
and the divergence of particle position ∇~x (equation 5.58 or 5.59). Numerical
experiments with the density and the surface normal failed, as distortions of the
density field alter these values and a continuous transition of particles between
bulk and surface was not possible.

The basic idea of an surface-lateral force based on the divergence of ~x is
as follows. As ∇~x is equal to the number of dimensions, d−∇~x is a measure
for the distance to the surface. If a particle is located directly on a flat surface,
∇~x should yield d/2. Attractive forces can therefore be concentrated on the
outmost particle layer, if each particle gets an intensity factor ki depending on
its proximity to the surface. Multiplication of both factors yields the overall

(a) (b) (c)

Figure 5.5: Basic concept of surface-lateral forces, attractive forces on a convex
(a), concave (b) and flat (c) surface, only interaction between nearest neighbours
drawn.
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interaction intensity ki j

ki = 1− ∇~x
d

∣∣∣∣
i

(5.68)

ki j = ki · k j. (5.69)

Attractive interactions within the liquid bulk are thus inhibited and attraction of
surficial particles with near bulk particles is strongly decreased. This approach
yields the desired net force and is smooth enough to allow for a transition be-
tween bulk and surface. Yet, the force between the outmost layer and parti-
cles within the next inner layer is not zero, so that the second layer is wrongly
attracted towards the liquid surface. The consequence is an accumulation of
particles at the outmost layer. This effect can be diminished by strongly increas-
ing the repulsive force for particles approaching each other. If this repulsion
is restricted to particles interacting in the vicinity of the surface, bulk motion
remains unaffected. While particle accumulation can be effectively prevented,
this remains a solution of minor elegance and the net force of the second layer
towards the surface still is a weak spot of this approach.

The procedure of calculating wetting effects can be derived by balancing the
forces a liquid particle experiences in the vicinity of a three phase boundary, see
Figure 5.6. A droplet resting on a plane is depicted on the left. The right frame
shows the SPH representation in the vicinity of the contact line. The first force
~fLL is simply the one within the liquid, parallel to its surface, directing away
from the contact line (gray particles in SPH representation). The second one ~f ‖LS
is directed along the free surface of the solid, likewise away from the contact
line (interactions of a surficial liquid particle with the solids with horizontal
stripes). The third force ~f⊥LS is pointed in normal direction towards the solid
(liquid particles interacting with both horizontally and vertically striped solids).
By simple trigonometry, a liquid of contact angle θ remains at rest, if these

θ

Figure 5.6: Forces acting at the contact line, left: continuum, right: particle
representation.
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forces cancel out by ∣∣∣~f ‖LS

∣∣∣cosθ +
∣∣∣~f⊥LS

∣∣∣sinθ =
∣∣∣~fLL

∣∣∣ . (5.70)

The interaction intensities ki,LL and k‖i,FL are both calculated according to equa-
tion 5.68. The contribution normal to the solid surface needs to take the overall
surface of the solid into account, including the part covered by liquid. It is
therefore calculated according to

k⊥i,LS =
1− ∇~xS

d

∣∣∣
i

2
, ~xS ∈ S. (5.71)

The factor 1
2 needs to be applied as the influencing area of the solid stretches to

both sides of the contact line and thus exhibits double the contribution compared
to the other two forces. Interparticle forces are finally calculated according to

ki =

1− ∇~x
d

∣∣∣
i
, i ∈ L

cosθ

(
1− ∇~x

d

∣∣∣
i

)
+0.5sin

(
1− ∇~xS

d

∣∣∣
i

)
, i ∈ S,~xS ∈ S

(5.72)

f att (r) = cos
(

1
2

π
2r− (rcut + l0)

rcut − l0

)
(5.73)

f rep (r) = (r < l0) · f att (r) · krep l0− r
l0

(5.74)

~fi j = l0s0
i j · kik j ·

(
f att (ri j)+ f rep (ri j)

)~ri j

ri j
. (5.75)

The distance dependence of the attractive interparticle force f att is similar to
formula 5.63 by Tartakovsky and Meakin, but extended to arbitrary cut-off radii
so that at r = l0 and at r = rcut the force becomes zero. A factor krep = 500 in the
additional repulsive term was adjusted by numerical experiments and showed a
satisfactory particle distribution. This repulsion becomes the stronger, the closer
two particles get. One might consider a more hard-sphere-like behaviour with
higher powers of l0−r

l0
, but this only provides stiff, strongly increasing forces

at certain particle distances. A power of two led to a "pulsating" behaviour
when particles were attracted, experienced strong, sudden repulsion and were
attracted again. Repulsion needs to be stronger than attraction within a single
particle pair as the latter acts on a larger number of long range neighbours and
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the particles of at least two outmost layers are "pressed" into a single layer. "Re-
pairing" this behaviour by single pair repulsion requires strong forces in compar-
ison to attraction. In numerical experiments with ISPH this holds for both the
proposed surface-lateral force approach as well as the isotropic force suggested
by Tartakovsky and Meakin. In WCSPH it may depend on the equation of state.

Implications on ISPH

A pairwise force approach is prone to spurious particle fluctuations which lead
to a constant in- and outflux of particles to/from the surface, irregularly or in vor-
tices. In such regions the density error is comparably high in the fluid bulk so
that ∇~x may be calculated wrongly. Particle penetration can occur at the liquid-
solid interface if the ∇~x field is distorted there. An additional incompressibility
constraint based on the remaining density error (the proportional contribution
discussed in section 5.4.4) alleviates this problem. The additional contribution
can be relatively small. A proportional factor CP = 0.1 for the density correc-
tion in the incompressibility constraint prevents unwanted effects. The over-
all density and pressure fields are satisfactory, yet with local peaks due to the
"particlish" nature of pairwise forces which do not provide completely smooth
values. "Traditional" isotropic forces necessitate a stronger additional density
correction via higher CP values when wetting phenomena need to be calculated.
These observations are in accordance with Aly, Asai, and Sonda (2013), who
implemented an alternative isotropic force into ISPH and provided an additional
density contribution to the ∇~v constraint with a pre-factor of 0.25.

Interim Conclusion, Possible Further Model Development

The proposed new approach of in-plane tension forces is not fully developed yet.
Net forces per particle are not completely lateral to the surface due to remaining
attraction to inner layers. This disturbs the proper formation of a surface tension
force. The current implemention lacks the ability to provide the same dynamic
behaviour, when the particle size is altered. Moreover, scaling the force with
the particle size normalises the net force on a free surface, but introduces an
unwanted scaling of forces at contact lines. This will be shown for the validation
test of wetting in section 6.4.4. Still, this approach yields a better droplet shape
and representation of the wetting behaviour than the isotropic pairwise force
method. The new approach is capable of approaching a correct (quasi-)static
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surface to a larger degree, which was a preliminary requirement for modelling
drying. Due to the lack of scaling, the dynamic behaviour and capillary pumping
will however be not represented equally on every particle scale.

One possible starting point for further investigations concerns the force. Both
attractive and repulsive contributions are not entirely smooth. As Tartakovsky
and Meakin (2005) pointed out, the force function can be arbitrarily chosen.
Basic requirements are a long range attraction confined within the neighbour-
hood and repulsion for short distances. Further demand - at least according to
the ISPH experience in this work - is that repulsive forces need to be signifi-
cantly stronger than attractive ones. Aly, Asai, and Sonda (2013) smoothed the
force from Tartakovsky and Meakin by multiplication with the kernel function
Wi j. Besides smoothing, this strongly deminishes attractive forces due the bell
shaped kernel, which can be an advantage concerning particle alignment.

As the anisotropic force exhibits a strong locality - the present approach
mainly affects the outmost particle layer -, it violates the SPH necessity of
smoothness to some degree. Smoothing the force field with a shepard kernel

~f ∗i j =
∑ j

~fi jWi j

∑ j Wi j
(5.76)

provides a more regular force distribution and may improve particle alignment.
The reduced locality takes away dynamics and disturbs contact line motion to
some degree. Yet, this alteration is easy to implement and can be adjusted by
blending the localised force with its smoothed version.

The (at least partly) unwanted attraction between the outmost and the nex-
tinner particle layer could be reduced, if the value ∇~x was calculated within a
more restricted neighbourhood radius of e.g. two particles length. This would
increase the locality of ki and k j values and concentrate the forces on the surface.
Subsequent smoothing as mentioned before could then distribute this local force
over neighbouring particles. The downside of such an approach is that the in-
crease in locality goes along with a decrease of possible interaction partners.

Finally, the large repulsive part is yet necessary to prevent particles from
forming "dense chains", but introduces additional artefacts. If particles are close
enough, it can even flip the direction of the force on the outmost particles. An
implementation of corrective terms, which restore the approximation capabili-
ties of SPH at the droplet’s surface, could alleviate the need for strong repulsion.
Such an approach has been introduced by Keller (2015).
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5.6 Representation of the Solid Phase

5.6.1 Primary Particles in the Slurry

Solid primary particles within a slurry are represented by SPH particles as well
and need to be incorporated in a physically correct and at the same time effi-
cient way. Implementation of the detailed material behaviour of the solid phase,
e. g. as an elastic material, would introduce considerable computative overhead.
Moreover, this is not necessary as material deformations of primary particles
within a liquid are negligible. The solid phase is thus sufficiently represented by
rigid bodies, which are allowed to move as collectives of single SPH particles in
a translational or rotational way, but may not deform. The algorithm is simple
and consists of two steps (Koshizuka, Nobe, and Oka 1998):

• SPH particles within a rigid body are treated as if they were belonging to
the normal liquid. Their velocities are updated to temporary values accord-
ing to pressure, viscous, surface tension and gravitational accelerations.

• Subsequently, linear and angular momenta of the whole body are summed
up from the single SPH particles temporary velocities. These total mo-
menta are redistributed amongst the particles to their final velocities such
that the particle alignment is maintained.

The correction in detail is performed as follows:

~xM
b =

∑ j∈b m j~x j

∑ j∈b m j
(5.77)

~qb, j =~x j−~xM
b (5.78)

Ib = ∑
j∈b

m j
∣∣~qb, j

∣∣ (5.79)

~Tb =
∑ j∈b m j~v j

∑ j∈b m j
(5.80)

~Rb =
∑ j∈b m j~v j×~qb, j

I
(5.81)

~vb, j = ~Tb +~qb, j×~Rb. (5.82)

~xM
b is the rigid body b’s centre of mass. ~qb, j is the displacement vector of a

particle j belonging to body b with respect to its centre of mass and Ib the
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body’s moment of inertia. ~Tb and ~Rb are the translatorial and rotational velocity
vectors of body b, respectively. Within the ISPH calculation, this procedure is
performed twice, once on the intermediate velocities ~v∗ in the predictor and a
second time after the final velocities have been obtained in the corrector step.
In principle, the correction can be skipped, as the bodies shape is preserved
after the corrector step. The additional rigid body evaluation should modify the
pressure evaluation such that it is closer to the final rigid body motion. The
benefit of the extra step is however not evaluated yet. As Koshizuka, Nobe, and
Oka noted, the rigid body correction violates incompressibility to some (small)
degree and is taken into account within the next pressure correction step.

Despite the abovementioned corrections, rigid body "blow-up" was observed
when primary particles were undergoing rotation. The procedure only corrects
rotational displacement for an infinitesimally small rotation. Within a finite time
step, SPH particles are displaced with~v∆t in a translational way, not on a circu-
lar orbit around the rigid bodies’ centres of mass. Rotation therefore naturally
leads to an enlarged distance of SPH particles from their respective centre. As a
remedy, an additional correction was introduced after time integration:

• Calculation of new centre of mass~xM,new
b and displacement vectors~qnew

b, j

• If the ratio of
∣∣∣~qnew

b, j

∣∣∣ to
∣∣~qb, j

∣∣ exceeds a certain threshold value, particle
positions are corrected according to

~xcorr
b, j =~xM,new

b +

∣∣~qb, j
∣∣∣∣∣~qnew

b, j

∣∣∣~qnew
b, j . (5.83)

This procedure is applied in each time step. It is not necessary to test all displace-
ment vectors. As the "blow-up" happens isotropically, each pair of before/after
displacement vectors yields, if the rigid body expanded unphysically. It just
should be made sure, that the tested particle does not coincide with the centre
of mass, which may occur in simple geometries. The present model allows a
maximum expansion throughout the overall simulation time, with the condition∣∣∣~qnew

b, j

∣∣∣∣∣~qb, j
∣∣ −1 >CRB,exp ∆t

tmax
, (5.84)

above which the aforementioned correction is applied. Present simulations used
a CRB,exp value of 1 % expansion over the total computation.
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Attraction between rigid bodies is calculated using the same pairwise force
approach as for the surface tension calculation. Therefore, the factor s0

i j in equa-
tion 5.75 is multiplied with a prefactor fSS, which calibrates the solid↔solid
interaction in relation to the liquid attraction. Values ki and k j are calculated
as if both particles belonged to the liquid as there is no contact angle between
two solids. Due to the surface-lateral force approach, primary particles do only
attract when they are not covered. This is physical insofar as the model is based
on a macroscopic point of view, in which the attraction between two bodies is
much smaller when separated by a liquid.

All rigid bodies bear an individual ID and can thus be distinguished. This
ID is introduced as an additional particle property so that particle assignment to
bodies is clear. In principle, this is sufficient for the execution of basic rigid body
equations, if a very small number of bodies is to be evaluated. For an efficient
treatment of a larger collective of bodies, a respective class was introduced so
that each rigid body is represented as an object containing relevant data like the
list of particles, their displacements to the centre of mass etc.

Possible Further Model Development

Rigid bodies are represented solely by SPH particles. Interactions between bod-
ies are hence calculated on the scale of the involved SPH particles and depend on
their local "degree of free surface" depending on ∇~x. In the current implementa-
tion net forces between primary particles are resolution dependent. Rigid body
interactions in the sense of discrete element (DEM) particles would improve
their physical behaviour. The "blow up" correction could be avoided by direct
calculation of particles’ position from angular motion and the time step size.
Still, the current correction may not be most elegant, but it works efficiently.

5.6.2 Calculation of Crust Formation

When the droplet’s surface falls short of liquid, primary particles accumulate
at the outer rim. At some point the droplet is covered by a solid crust. The
basic principles of the implemented algorithms of crust formation are depicted
in Figure 5.7. If no further treatment is appointed to the primary particles, the
whole structure will shrink to a dense cluster of primary particles during further
drying (frame a). The reason for this is that the forces between the solids are not
strong enough to provide sufficient "stickiness" in order to form a stable crust.
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The attraction between primary particles is relatively low in comparison to the
drag exerted by the incompressible liquid. Additionally, attractive forces do not
prevent rolling or sliding of primary particles. In order to simulate formation of
a solid crust, primary particles are allowed to merge.

Caught on First Touch Method

The easiest implementation is to define a threshold distance, below which two
primary particles merge (frame b in Figure 5.7). By this, primary particles ag-
glomerate to a crust. The algorithm just involves a search over all particles
within a rigid body whether their neighbours belong to a different body and
undercut the limit distance. Sensible threshold values are in the order of the par-
ticle spacing l0 or slightly below and could be used as an adjustable parameter.

Rigid body merging means that the SPH particles of both bodies get the same
body ID and are collected within the one, single body object. The centre of mass,
displacement vectors and the moment of inertia need to be recalculated for the
newly created body. In order to track primary particle growth, it is reasonable
to preserve the ID of the larger body.

Rigid Body Merging Depending on the Particle Environment

When bodies merge just depending on their distance, this is not necessarily re-
lated to drying. If two primary particles get close enough to each other within
the droplet bulk, they will cluster according to the "caught on first touch" ap-
proach. Drying can be included, if the minimum distance condition is combined

a) b) c)

Figure 5.7: Mechanisms of crust formation depending on primary particles’ in-
teractions, left: initial state, compaction without primary particle merging (a),
"caught on first touch" (b), merging only when liquid fraction is low near the
touching point (c).
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with a minimum liquid content, below which merging may happen (see frame c
in Figure 5.7). The liquid fraction of a particle i is obtained by SPH interpolation

ϕL,i = ∑
j∈L

m j

ρ j
Wi j. (5.85)

The more liquid neighbours are in the vicinity of a solid SPH particle and the
closer their distance is, the higher is the liquid fraction ϕL. Therewith a certain
degree of drying in the vicinity of a solid particle is necessary to allow merging.
It needs to be stressed that this is a local property of an SPH particle and does not
account for the water content elsewhere at the rigid body. The threshold value
ϕ lim

L,merge controls the amount of local drying being necessary for crust formation.
This concept can be extended to the solid content. It can occur that a spiky

primary particle gets close to another solid in a comparably dry region. Both
bodies will merge immediately, if the water fraction small enough, which acts
as if the spike of one particle was glued on the other particle’s surface. It appears
reasonable that a certain solid content should be exceeded before merging takes
place. The solid fraction ϕS is calculated the same way as above

ϕS,i = ∑
j∈S

m j

ρ j
Wi j. (5.86)

Whereas the liquid fraction needs to undercut a value, the limit value ϕ lim
S,merge

needs to be exceeded in order to allow body merging.
A high limit value of solid content and a low water threshold decrease the ten-

dency to form stable solid clusters and delay or prevent crust formation. More re-
laxed limits involve earlier crust formation. In a physical sense these adjustable
parameters be interpreted as the effect of a binder which increases the cohesion
within a structure, which will be further explained in section 7.3.

Possible Further Development

A binder concentration as an additional particle property could relate primary
particle merging directly to a physical value. Evaporation of liquid would lead to
an increase in binder concentration. Transport of binder within the liquid could
be modelled by diffusion. The stickiness of two primary particles could then
be determined by their binder content. Additionally, the rigid body interaction
might be investigated deeper and, as already mentioned above, be enhanced by
DEM like mechanisms.
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5.7 Modelling of Drying Phenomena in SPH

5.7.1 Heat Conduction

Heat conduction involves a term alike other diffusive effects, ∇(λ∇T ), which
can be discretised by the Brookshaw div grad operator 5.25. Brookshaw (1985)
was also the first to introduce heat conduction into SPH. The corresponding
energy balance in temperature notation is (Brookshaw 1985; Cleary and Mon-
aghan 1999)

DTi

Dt
=

2
ρicp

∑
j

m j

ρ j
λ̄

Ti−Tj

ri j +ηdiv

∂Wi j

∂ r
. (5.87)

The averaged heat conductivity λ̄ is an arithmetic mean, if derived from the inte-
gral approximation employing Taylor series (see section 5.1.4). In comparison,
a harmonic mean provides the desirable feature that in case one particle has a
heat conductivity of zero the transferred heat flux becomes zero as well (Cleary
and Monaghan 1999). This allows for treating jumps of heat conductivities of
three orders of magnitude accros three particle spacings (Monaghan 2005).

5.7.2 Implementation of Linear Driving Force based Heat and
Mass Transfer into SPH

Linear driving force equations based on Nusselt and Sherwood numbers yield
area specific heat and mass fluxes ~̇qΓ and ~Ω j (equations 2.120 and 2.121). As
has been stated before, a general course of implementation as in finite differ-
ences or finite volumes is not yet developed for the SPH method (section 5.2.2).
Rather these area specific fluxes have to be implemented as additional source
terms into the volume specific SPH discretisation. Hence, the individual surface
area to volume ratio A

V of a particle needs to be derived. This is an analogous
problem to the consideration of surface tension forces, which are defined like-
wise on the interface between two phases and not in the fluid bulk. Typical
treatment of surface tension in computational fluid dynamics is the continuous
surface force (CSF) approach of Brackbill, Kothe, and Zemach (1992). The
discontinuity of the interface is transfered into an interfacial volume of finite
thickness dΓ. Forces or fluxes, being interface area specific, are redistributed
amongst this interfacial volume. The method is similar to the SPH derivation in
section 5.1.1, in which the delta function around infinitesimally small points in
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the continuum is approximated by the finite kernel. The interface is infinitesi-
mally thin in normal direction. Therefore, the CSF approach expresses the force
acting on an interface area ∆A in a volume reformulation using an interface delta
function δ Γ ∫

∆A
~f A (~xΓ

)
d2x =

∫
∆V

~f A
δ

Γ

(
~̂n
(
~xΓ
)(
~x−~xΓ

))
d3x. (5.88)

The surface delta function is approximated by a weighting function℘(limdΓ→0℘=

δ Γ), which only changes in normal direction to the interface. Brackbill, Kothe,
and Zemach define ℘ as the modulus of the gradient of a so called colour func-
tion c with a unit change over the interface. It is a smooth, gradually changing
value within the interfacial volume of the CSF method and converges to a unit
jump for a decreasing thickness of the interface. Likewise, ℘ converges to the
delta function:

lim
dΓ→0

℘= lim
dΓ→0

∣∣∣∣∇c
[c]

∣∣∣∣= δ
Γ (5.89)

[c] denotes the difference in the colour function over the interface. Division by
this value guarantees that only a unit jump is considered and that the weighting
function is normalised, independently from the choice of c. In principle, the
colour function can be any value which changes between both phases, for in-
stance the density (Brackbill, Kothe, and Zemach 1992). The surface tension
force in a volume reformulation according to the CSF approach is then

~f σ ,V = ~f σ ,A
∣∣∣∣∇c
[c]

∣∣∣∣ (5.90)

Application to heat and mass fluxes at the interface requires only exchanging
the surface tension force with ~̇qΓ and ~ΩN

j . The interfacial volume of the CSF
concept stretches on both sides of the interface. As the (normalised) colour
function has a value of 0.5 directly at the discontinuity, ℘ contributes to the
gas phase as well. If the gas was also considered by SPH particles, their share
of heat and mass fluxes would need to be transferred to liquid neighbours. On
the other hand, just half of the interfacial volume lies on the liquid side so that
doubling their contribution makes this procedure obsolete

Q̇V =
∣∣~̇qΓ
∣∣2 ∣∣∣∣∇c

[c]

∣∣∣∣ (5.91)

ṁV =
∣∣∣~Ω∣∣∣2 ∣∣∣∣∇c

[c]

∣∣∣∣ . (5.92)
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The gradient of the colour function can be calculated in abscence of the gas
phase by the SPH approximation of a property being one within the liquid phase
and zero in the gas phase. The most simple SPH derivative operator 5.12 yields
for a full neighbourhood including particles of the gas G (Woog 2011)

∇ic = ∑
j/∈G

m j

ρ j
1∇iWi j + ∑

j∈G

m j

ρ j
0∇iWi j. (5.93)

With the second summation being zero, the colour function’s gradient is calcu-
lated exactly the same if only liquid (in the slurry drying model liquid and solid)
particles are taken into account

∇ic = ∑
j

m j

ρ j
∇iWi j. (5.94)

The individual surface area to volume ratio of a particle in a free surface model
is then

A
V

∣∣∣∣
i
= 2

∣∣∣∣∣∑j

m j

ρ j
∇iWi j

∣∣∣∣∣ . (5.95)

Disturbances of the SPH particle alignment will lead to small fluctuations of
this value within the liquid bulk. Therefore, this value is only taken into account
if it exceeds a certain threshold value. Morris (2000) was the first to introduce
the CSF approach into SPH for surface tension effects and applied a limit of∣∣∣∇c
[c]

∣∣∣ > 0.01/h. Smaller values are set to zero. The vector ~n = ∇c
[c] provides

the surface normal, which is further employed when surface tension forces are
calculated, but not necessary here.

The additional source term in the temperature balance equation due to a lin-
ear driving force heat flux is finally

DTi

Dt

∣∣∣∣
LDF

=− α

ρicp,i
(Ti−T ∞)

A
V

∣∣∣∣
i
. (5.96)

The mass loss of a particle is

dmi

dt

∣∣∣∣
LDF

=Vi
MWL

ℜT̄
β (pv,i− p∞

v )
A
V

∣∣∣∣
i
. (5.97)

The interface is not sharp anymore, but stretches over particle layers of one
cut-off radius. Drying will hence not only affect the outmost particle layer,
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but also to a lesser degree the second and, slightly, the third layer for rcut =

3.1l0. Similarly the heat flux is distributed. The cooling effect by evaporation is
considered as an additional source term in the temperature equation

DTi

Dt

∣∣∣∣
evap

=
∆hv

Viρicp,i

dmi

dt

∣∣∣∣
LDF

. (5.98)

With Nusselt and Sherwood numbers provided, heat and mass transfer coeffi-
cients are calculated based on the characteristic length of 2R (equations 2.122
and 2.123). The droplet radius is detected at the beginning of each drying eval-
uation as the largest particle distance from the droplet’s centre of mass.

5.7.3 Extension to the Second Drying Period

After accumulation of primary particles at the droplet’s outer rim, only a small
number of liquid particles is left at the droplet’s surface and undergoes evapora-
tion according to equation 5.97. Subsequently the droplet is heated up. Vapour
transport through the porous crust is currently not considered in the model. An
implementation of further evaporation in case of gas temperatures above the
boiling point is however straightforward. When the liquid approaches the boil-
ing temperature, additional heat being transferred to the droplet will directly be
used for evaporation. This can be easily modelled by reversing equation 5.98

dmi

dt

∣∣∣∣
boil

=
Viρicp,i

∆hv

T boil−T ∗i
∆t

. Ti
!
> T boil (5.99)

This is calculated in two steps. First the temperature equation is solved normally
with respect to heat conduction and the linear driving force contributions (the
implicit scheme is described in section 5.8.3). If the intermediate temperature
T ∗ exceeds the boiling temperature, equation 5.99 is applied and the particle
mass reduced likewise. Finally, T is set to T boil .

As the crust falls dry, the droplet will exhibit free surfaces not only at its
outer rim, but throughout the crust and at the surface of the receding liquid. In
a naive implementation all these surfaces will exhibit a gradient of the colour
function and experience heat transfer according to equation 5.96, which will
exaggerate the heat input from the gas substantially. As a remedy, only particles
at the outer surface are taken into account. The detection works as follows:
The droplet is cut into wedges. Each particle can be unambiguously assigned
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to one wedge. The outmost particle of a wedge is considered as an interface
particle. Subsequently, all neighbours of these outer rim particles are attributed
as interface particles as well. The interface is thereby limited to at most four
particle layers at the outer rim. The number of wedges must be chosen such that
their outer arc length does not exceed the particle spacing l0

nwedge =
2πR

l0
(5.100)

in order to include inner layers completely in the second step.

Possible Further Model Development

For temperatures below the boiling point, a crust at the droplet’s surface pre-
vents further evaporation in the current implementation, as the mass loss is only
dedicated to liquid particles. By implementation of vapour transport through the
porous crust, further drying below the boiling point could be modelled and the
transition to the boiling regime would become more gradual. The SPH formula-
tion of diffusion is provided by equation 5.102. The diffusion coefficient needs
to be chosen according to the effective permeability of the crust in this case.

5.7.4 Treatment of Evaporation Concerning Particle Mass and
Deletion

Shrinking particles by reducing their mass mi would effectively provide a col-
lective of very small and comparably large particles, especially when a liquid
particle is neighbouring a solid one. The matter of a variable resolution was
shortly discussed in section 5.1.6 and is not a feasible approach to overcome
this challenge. The SPH particle mass thus needs to remain unchanged. Evap-
oration is calculated on an additional particle property, an "evaporative" mass
mevap. This property is only attributed to drying and reduced until it approaches
zero.

Particles of zero inner mass are deleted from the collective. The remaining
gap in the particle configuration is closed by neighbouring particles within the
following time steps due to incompressibility and surface tension effects. For
reasons of conservation, the momentum of a deleted particle i is distributed
amongst its neighbours j according to a Shepard interpolation

~v j =~vold
j +~vi

miWi j

m j ∑k 6=i Wik
. (5.101)
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By this, linear momentum is preserved. Conservation of angular momentum is
however slightly violated, but this is not visible in present simulation results.

Due to this stepwise drying behaviour of particle removal, a system at a
relaxed state needs to equilibrate, again. In other words, energy conservation
within the system is violated in such respect, that the potential energy is sud-
denly increased when the surface shape is altered by deletion of particles. As a
result, the droplet is continuously relaxing from potential energy being locally
introduced due to the discrete drying dynamics. This effect is less pronounced
with decreasing particle size, as deletion of particles then occurs more often and
the effects are more local. Still, some wobbling of suspended primary particles
can be observed in simulations.

5.7.5 Modelling of Diffusion Driven Drying Involving the Gas
Phase

Linear driving forces incorporate the interplay of diffusion and convection into
an averaged transfer coefficient acting on a virtually linear profile over the
boundary layer. Alternatively, mass and heat transport within the gas can be
calculated directly by diffusion. In the following, a concept for diffusion driven
drying will be laid out. Within this work, the approach was applied to drying of
a flat, porous geometry.

Addition of the Gas Phase as SPH Particles

Evaporation due to diffusive transport between liquid and gas can be modelled
directly, if the gas phase is modelled by an additional set of SPH particles. The
diffusion terms can be implemented in a straightforward manner using equation
5.87 for the temperature derivation and, similarly, for the vapour pressure pv

Dpv,i

Dt
= 2∑

j

m j

ρ j
D̄

pi− p j

ri j

dWi j

dr
. (5.102)

This is just an SPH discretisation of Fickian diffusion in the gas phase apply-
ing equation 3.13 to the vapour pressure ( ∂ pv

∂ t = ∇(D∇pv), which is possible
if c ≈ const. D̄ denotes the average diffusion coefficient of vapour in the gas
phase, calculated by a harmonic or arithmetic mean (see section 5.1.4). The
diffusion induced velocity contribution is already considered in the diffusive
operator (cmp. equations 3.7 and 3.13), so that the material derivative of this
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transport equation equals its Eulerian counterpart. The vapour pressure of liq-
uid surface particles in equation 5.102 is set according to its local composition
and the respective vapour-liquid equilibrium, for pure liquid the saturation pres-
sure ps

v. During time integration, liquid particles will encounter a virtual change
in their vapour pressure. By use of the ideal gas law the corresponding vapour
mass mv

j,i = c j,iMWjVi =
p j,iMW j

ℜTi
Vi corresponds with the particle volume ( j de-

noting the component and i the particle). The local mass loss due to vapour
diffusion can be calculated from equation 5.102

Dmi

Dt
= 2

MWj

ℜTi
Vi ∑

j∈G

m j

ρ j
D̄

pi− p j

ri j

dWi j

dr
. (5.103)

Neighbouring liquid particles need to be left out in the summation, as diffusive
transport occurs in interaction with the gas phase. It needs to be mentioned,
that the Stefan flow (Baehr and Stephan 2010, p. 82) is not considered in this
approach and mass transfer therefore underestimated.

As the gas density is three orders of magnitude lower than the liquid one, di-
rect doupling of the equations of motion is challenging, if physically true values
are applied. This will not be treated further, as calculation of gas motion is of
major interest when surface tension and wetting effects shall be calculated with
the CSF approach rather than by pairwise forces. If only diffusion in the gas
phase is to be considered, implementation as an underlying grid is much more
efficient.

Diffusion Driven Drying Employing Particle Grid Coupling

A full consideration of the gas just for sake of calculating diffusive transport is
very inefficient. As an alternative, the gas can be represented by an underlying
grid, in which the single nodes are activated depending on their coverage by SPH
particles. The easiest grid configuration consists of a regular, quadratic/cubic
node distribution with a mesh size of the particle spacing l0. A natural way of
evaluating a grid node’s coverage consists in an SPH summation

ϕ
SPH
i∈Grid = ∑

j∈SPH

m j

ρ j
Wi j, (5.104)

in which i is a grid node and j runs over all SPH particles within the vicinity
of i. Grid points having a volume fraction ϕSPH

i of SPH particles lower than a
certain threshold are active. A sensible limit value is 0.5.
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Alternatively, the coverage can be calculated in treating both kinds of compu-
tational nodes as geometrical objects, for instance squares/cubes or circles/spheres.
The intersecting volumes of a gas node with SPH particles in its vicinity are
summed up and compared with the volume of the gas point, which again yields
a volume fraction ϕ

geo
i . The first approach has in advantage, that it is moti-

vated by an SPH summation, which is consistent with the particle field. The
second method is computationally more efficient, as only very near SPH parti-
cles contribute (intersecting squares/cubes only share a volume for ri j < l0

√
d)

and unnecessary square-root and kernel evaluations are avoided. As coverage
is only interesting near the liquid-air interface, the numerical procedure could
be sped up by various advanced algorithms, though. Simulations in this work
employed the SPH summation for consistency reasons.

The coupling between SPH particles and neighbouring grid nodes at the
liquid-gas interphase can be simply achieved by applying equation 5.103 to the
liquid surface particles, with the grid nodes acting as virtual SPH neighbours
j. In the same way the contribution of interfacial mass flux to the gas nodes is
to be considered by equation 5.102 with neighbouring particles j ∈ SPH. The
grid is therefore treated as stationary SPH particles. In principle, the diffusion
equation 5.102 could be used in order to calculate diffusive vapour transport
within the gas phase. As gas nodes are aligned on a regular grid, it is however
more efficient to apply a simple finite volume approximation. Considering an
active control volume i in quadratic/cubic grid configuration, the vapour flux at
the interface Γ to a neighbouring active nodes j is

~JΓ
v =−D

pv, j− pv,i

l0
~ei j, (5.105)

when the mesh size is l0. The change in vapour pressure due to diffusion on the
grid is hence

d pv,i

dt
= ∑

j
D

pv, j− pv,i

l2
0

, (5.106)

with j denoting adjacent active volumes. This is just a centred difference op-
erator leaving out the contribution of inactive gas nodes. The contribution of
interfacial mass transfer by equation 5.102 is then simply added as a source
term.
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Possible Further Model Development

In the present implementation, heat transfer is not regarded. Addition of a tem-
perature equation to the gas grid is straightforward. Implementation of the Ste-
fan flow would yield a more realistic diffusion behaviour. The approach of the
gas grid could be applied to droplet drying by calculation of the gas flow around
the droplet with an appropriate method. This would allow for individual heat
and mass transfer and spatially inhomogeneous drying regimes at different drop-
let locations. Alternatively, the analytical solution of a potential flow around the
droplet could be imposed to account for the flow field in the gas.

5.8 Time Integration

Smoothed Particle Hydrodynamics is a spatial discretisation method. Integra-
tion with respect to time can be done by established methods, but needs to ac-
count for SPH peculiarities. Compared to grid-based methods, the discretisation
stamp is very large. If a neighbourhood radius of three times the particle size l0
is used - a lower boundary in many applications -, about 30 particles (π32) are
contained in a two-dimensional discretisation and more than 110 ( 4

3 π33) in three
dimensions. Evaluation of single terms is therefore very expensive. Particle mo-
tion continuously changes the discretisation stamp in terms of the neighbouring
particles to be included and the relations Wi j and ∇iWi j. The Jacobi matrix of
an implicit solver would therefore become very complicated, which makes a
fully implicit integration practically impossible. For the sake of numerical ef-
ficiency, lower-order methods are often preferred (Rosswog 2009) in order to
avoid multiple function evaluations during a time step. Traditional SPH solvers
are leap frog/Verlet or predictor-corrector schemes. The typical ISPH scheme
(section 5.4) employs a predictor-corrector approach as well, but only provides
first order accuracy (Cummins and Rudman 1999) because an explicit treatment
of accelerations in the predictor step is used. Bøckmann, Shipilova, and Skeie
(2012) introduce an ISPH integration based on a BDF-2 scheme with additional
function evaluations at half-steps. Their approach exhibits superior accuracy
compared to a WCSPH variant, but a comparison with traditional ISPH had not
been undertaken and it remains unclear whether the additional solution of the
pressure Poisson equation is of great advantage. Pressure solution is by far the
most costly part of ISPH so that the traditional scheme as depicted in section 5.4
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was applied to all calculations in this work.
If equations do not involve particle motion, an implicit solution is possible.

This can be advisable when different physical effects may be decoupled. An
equation with a very strict stability criterion for explicit integration either needs
to be calculated in a subloop or can be integrated employing much larger time
steps in an implicit way, if the overall solution shall not be slowed down by
reducing the general time step size. If the effect of particle displacement is small
compared to the other terms in an equation, the implicit time step size can be
chosen (to some degree) independent from particle motion time stepping. This
is applied to the energy balance in the current model, which is solved implicitly
in substantially larger time steps than the equations of motion.

5.8.1 Stability Criteria in Explicit Time Stepping

When integration is undertaken by explitid schemes, stability criteria need to
be satisfied depending on the implemented physical effects. Whereas in a grid-
based method an information should only be moved by a fraction of the distance
between nodes/the cell width, SPH particles should only advance by a fraction
of the smoothing length.

Convective Transport

Time stepping concerning particle motion is constrained by a typical CFL crite-
rion (Courant, Friedrichs, and Lewy 1928, Courant-Friedrichs-Levy). The time
step size in the ISPH method is calculated by (Cummins and Rudman 1999;
Shao and Lo 2003)

∆tv ≤ βv
h

vmax
. (5.107)

The limiting prefactor βv is chosen to 0.25 by Cummins and Rudman, whereas
Shao and Lo use a value of 0.1. The weakly compressible SPH employs an
equation of state, which additionally involves the propagation of sound waves.
The CFL criterion therefore needs to be based on the speed of sound c, which
typically is ten times larger than the maximum velocity in order to limit density
fluctuations

∆tc ≤ βc
h
c
. (5.108)

If an artificial viscosity is employed for the stabilisation of WCSPH, this needs
to be taken into account for the maximum time step size (Lattanzio et al. 1985;
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Monaghan 1992), see below for ∆t limitation with respect to viscous flow. These
CFL equations are overrestrictive in case of uniformly moving particle collec-
tives. It can therefore be sensible to employ the maximum velocity of particles
relative to their neighbours instead of the simple maximum of all velocities.
Still, the ISPH literature typically refers to vmax, whereas the WCSPH method
anyway necessitates the speed of sound, which is much higher than vmax.

Acceleration and External Forces

Condensing all right hand side terms of the momentum balance equation to
D~v
Dt =~a allows for a stability criterion

∆ta ≤ βa

√
h

amax
, (5.109)

which accounts for momentum change based on the maximum particle acceler-
ation (Lattanzio et al. 1985; Monaghan 1992; Morris, Fox, and Zhu 1997). βa

is typically chosen to 0.25. Surface tension forces, if calculated by the CSF
approach, additionally involve the propagation of capillary waves and require
a respective stability criterion. Further information on this topic can be found
for SPH in Morris (2000) and in general in the original CSF publication from
Brackbill, Kothe, and Zemach (1992). A corresponding criterion for the imple-
mentation using interparticle forces has not been discussed in the literature to the
author’s knowledge. The contribution of these forces is therefore considered by
the criterion for the acceleration in the present model. Yet, interparticle forces
can exhibit a behaviour similar to springs so that oscillations and their propaga-
tion are possible in principle. Future research might approach this point.

Diffusive Transport

Diffusive transport involves heat conduction, matter diffusion and viscous mo-
mentum transport. These effects are of similar form

D f
Dt

= ∇K∇ f

and therefore use the same type of stability criterion (K
[

m2

s

]
being a transport

coefficient). Morris, Fox, and Zhu (1997) adapt typical finite differences criteria
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in order to derive an SPH analogon for viscous transport within a Newtonian
medium by replacement of the node distance with the smoothing length to

∆tη ≤ βη

ρh2

η
, (5.110)

with βη = 0.125. Zhu and Fox (2001) rewrite this formula for matter diffusion

∆tD ≤ βD
h2

D
, (5.111)

again with βD = 0.125. The maximum time step size for heat conduction is
analogously (Cleary 1998; Cleary and Monaghan 1999)

∆tλ ≤ βλ

ρcvh2

λ
. (5.112)

Cleary (1998) and Cleary and Monaghan (1999) set βλ between 0.1 and 0.15.
In any case these criteria can become very restrictive if the smoothing length

/ particle spacing becomes very small (or the transport coefficient is high). This
can be a severe problem when refining the resolution. When diffusive trans-
port is limiting, doubling the resolution by taking half of the smoothing length
involves four or eight times the particles in 2D and 3D, respectively, and four
times as many time steps. One advantage of ISPH - that its minimum time step
size is one order of magnitude higher compared to WCSPH - vanishes, if the
viscous criterion limits the time steps to the magnitude of the WCSPH CFL
criterion. This "curse of a fine resolution" can only overcome by implicit calcu-
lation of the respective physical effects.

5.8.2 Time Stepping Criteria Employed in This Work and
Their Reference Length

As described in section 5.1.6, the definition of h is to some extend arbitrary,
which also affects the definition of stability criteria. In engineering applications
of incompressible liquids the fluid is represented by particles of constant size
l0, which are densely packed and fairly homogeneously distributed (at least this
is the ideal representation). It appears reasonable to restrict time stepping such
that particles move only part of an average particle distance (l0) rather than in
comparison to the smoothing length, which depends on the choice of the kernel
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and the cut-off radius. If the quintic spline (h = 1/3rcut) and the cubic spline
kernel (h = 1/2rcut) were used at the same cut-off radius, the latter would allow
for a 50 % higher time step size. Particles being exposed to the same attractive
forces would therefore be allowed to approach each other much farther in case
of the cubic spline, which does not appear reasonable concerning numerical
stability. This was also discussed shortly by Morris, Fox, and Zhu (1997), who
attributed the various splines a different "effective" resolution length for the
same value of h and suggested a modification of CFL coefficients in case of
the cubic spline. As already stated before, one of SPH’s deficiencies is the lack
of a comprehensive mathematical foundation and analysis, especially in case of
disordered particles, so that time stepping criteria are often chosen according to
numerical experiments and common experience.

In order to circumvent the uncertainties concerning the definition of h and
because the particle spacing appears a reasonable reference value, time stepping
criteria in this work have been based on l0. This might be over-restrictive, be-
cause the smoothing length should generally be chosen larger than the particle
spacing. As the quintic spline in combination with a cut-off radius of 3.1l0 was
applied throughout all simulations, the difference between smoothing length and
particle spacing values is not large, though, and both values nearly coincide.

The particle motion criterion 5.107 and the acceleration restriction 5.109
are used in the present model to limit the time step size. The diffusive crite-
ria would restrict the calculation such that an integration of the problem in a
feasible amount of time would scarcely be possible, especially when refining
the resolution. Heat conduction was therefore implemented in an implicit way
with much larger time steps than the equations of motion (see section 5.8.3 for
details). The viscous criterion was dropped without problems of numerical insta-
bility. A further analysis has not been carried out. Possible reasons may be that
the semi-implicit nature of the ISPH method improves the numerical stability,
that the superposition of interparticle forces dampens viscous oscillations or that
the presence of rigid bodies effectively limits the propagation of perturbations.
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5.8.3 Implicit Solution of Diffusive Equations

Matter transport involving Fickian diffusion is expressed in Lagrangian notation
as follows:

Dρ j

Dt
=−∇(ρ j~v)+∇(D∇ρ j)+ rF

j MWj +~v∇ρ j (5.113)

Dρ j

Dt
=−ρ j∇~v+∇(D∇ρ j)+ rF

j MWj = ∇(D∇ρ j)+ rF
j MWj. (5.114)

After application of the divergence free condition due to incompressibility only
the diffusive and source terms remain. The same holds for the energy balance
in form of a temperature equation

DT
Dt

=
1

ρcp
∇(λ∇T )+

DT
Dt

∣∣∣∣
LDF

+
DT
Dt

∣∣∣∣
evap

. (5.115)

The last two terms condense the contribution of linear driving force heat transfer
and cooling by evaporation as described in section 5.7.2. The following, sim-
ple implicit approaches for the temperature equation (Euler, trapezoidal rule /
Crank-Nicholson and BDF-2)

T n+1
i −∆t

DT n+1
i

Dt
= T n

i (5.116)

T n+1
i −0.5∆t

DT n+1
i

Dt
= T n

i +0.5∆t
DT n

i
Dt

(5.117)

3T n+1
i −2∆t

DT n+1
i

Dt
= 4T n

i −T n−1
i , (5.118)

can be expressed in a general way as

f n+1
v T n+1

i + f n+1
t ∆t

DT n+1
i

Dt
= f n

v T n
i + f n−1

v T n−1
i + f n

t ∆t
DT n

i
Dt

. (5.119)

The left hand sides of the equations contain the unknown values at time step
n+1, whereas the values on the right hand side are known.

The prefactor f n+1
v and f n+1

t depend on the desired method (see Table 5.1).
Equation 5.119 can be rewritten in matrix vector notation as

AT = b, (5.120)

in which all unknown particles’ temperatures are condensed in the vector T and
b is the constant right hand side vector. The matrix A is determined by the dis-
cretisation of the heat conduction equation and the contribution of the respective
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Table 5.1: Prefactors for the respective method within the generalised implicit
scheme

method f n
t f n+1

t f n+1
v f n

v f n−1
v

implicit Euler 0 -1 1 1 0
BDF-2 0 -2 3 4 -1
trapezoidal rule 0.5 -0.5 1 1 0

particles to heat transfer. In a wholly implicit scheme cooling by evaporation
would have to be calculated with respect to the current temperature T n+1. Due to
the non-linear dependency of the vapour pressure on the temperature, the prob-
lem would become non-linear as well and the solution much more elaborate.
Hence, the cooling by evaporation is calculated based upon the temperature of
the previous step T n and inserted into the constant right hand side vector. The
error is small, though, and the system is self-stabilising. If the temperature is
too high, evaporation will be stronger and thus limit the future temperature and
vice versa. This way the average temperature and cooling rates are calculated
correctly.

The detailed matrix and vector formulae are

Aii = f n+1
v +

f n+1
t

ρicp,i

(
∑

j
2

m j

ρ j
λ̄i j

1
ri j

dWi j

dr
−
∣∣∣∣∇ci

[c]

∣∣∣∣α
)

(5.121)

Ai j =−
f n+1
t

ρicp,i
2

m j

ρ j
λ̄i j

1
ri j

dWi j

dr
(5.122)

bi = f n
v T n

i + f n−1
v T n−1

i + f n
t

∂T n
i

∂ t
− f n+1

t

ρicp,i

(∣∣∣∣∇ci

[c]

∣∣∣∣αT ∞ +
∆hv

Vi

dmn+1
i

dt

)
.

(5.123)

The system of linear equations can be solved by the same kinds of numerical
methods as for the PPE solution in the ISPH method. As the matrix A is non-
symmetric, the conjugate-gradient method cannot be applied, but other solvers
of the Krylov subspace family as GMRES or BiCGStab are well-suited (Meister
and Vömel 2008). The calculations throughout this work have been conducted
using the GMRES solver from the PETSc package (Balay et al. 2019). Numeri-
cal tests have been performed using all three implicit methods mentioned above.
Productive simulations of drying were performed using the trapezoidal rule.
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5.8.4 Initialisation of an SPH Calculation

As SPH is integrated using explicit methods, the initial particle and value con-
figuration affects the outcome of the simulation and has to be carefully chosen.
This is especially true for the incompressible WCSPH method, which involves
oscillations of the pressure and velocity fields. Examples for initialisation pro-
cedures in WCSPH can for instance be found at Monaghan (1994) and Tar-
takovsky and Meakin (2005). In comparison, the ISPH method is significantly
more robust, as the calculated pressure field is already near to the correct solu-
tion within the first time step and converges throughout the following steps. Still,
the initial particle configuration will have an effect on boundaries and interfaces,
which can exhibit steps depending on the particle configuration. The overall
effect of a stepwise boundary discretisation will be diminished with a finer res-
olution. Typically, particles are initially not distributed randomly throughout
the domain, but in a regular alignment. The most simple configuration is a
quadratic or - in 3D - cubic particle distribution. Considering the regularity and
the number of nearest neighbours, a hexagonal or face-centred cubic alignment
are preferable. Setting the particles on the nodes of a regular triangular mesh for
a 2D simulation, each particle will have six nearest neighbours in a hexagonal
arrangement in comparison to four neighbours in a quadratic alignment. This
also improves the representation of curved interfaces. By way of contrast, a con-
sistent initialisation involving periodic boundary conditions is simpler using a
quadratic/cubic alignment due to its flat surfaces. Typically, particles are loaded
and the particle volume Vi is determined by ld

0 and the particle mass mi calcu-
lated by Viρ

0
i . If the continuity equation is treated as an initial value problem,

the particle density ρi is set according to the physical density ρ0
i as well. Oth-

erwise, and typically in ISPH, it is determined throught each simulation step by
summation (equation 5.32).

Drying calculations employed in this work do not necessitate a certain ini-
tialisation procedure. The ISPH solver in combination with rigid bodies and
surface tension forces relaxes quickly to a quasi steady state. The temperature
evaluation is done fully implicit and not prone to stability issues. Hence, a re-
laxation procedure was not necessary. Calculation examples with the surface
tension approach may need relaxation to a circular drop first.
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IMPLEMENTATION
The basic concept of ISPH free surface flow solvers in combination with a New-
tonian liquid has been widely applied. Despite some changes, the implementa-
tion is quite near to literature approaches. Therefore, not all standard test cases
will be stressed in the following. Special regard will be paid to the heat and mass
transfer by linear driving forces, as this is a new topic to SPH. Furthermore, the
flow solver will be tested with test cases on incompressibility solution. The
surface tension and wetting behaviour will be compared for both the isotropic
pairwise force and the surface-lateral forces approach.

6.1 Implicit Solution of Heat Conduction

A test case of Cleary and Monaghan (1999) consists of a domain of length L
with a sinusoidal temperature profile

T (x, t = 0) = sin
πx
L
. (6.1)

At the boundaries x = 0 and x = L the temperature is kept constant throughout
the computation. The analytical solution for this problem is

T (x, t) = T (x, t = 0) · exp
(
− λπ2

ρcpL2 t
)
. (6.2)

The SPH discretisation was performed two-dimensionally as in Cleary’s and
Monaghan’s work (1999) using a regular, Cartesian alignment. The problem
length L was set to 1 m, corresponding with 200 particles in x-direction for a
particle size l0 = 0.005m. In y-direction just 10 particle layers were used in
conjunction with periodic boundary conditions. The thermal conductivity was
set to λ =1 W/(mK), the heat capacity to cp =1 J/(kgK) and the density to
ρ =1 kg/m3.
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Figure 6.1: Temperature profiles for the sinusoidal test case at time instants from
0.1 s to 1 s in intervals of 0.1 s for the case of mirror boundaries. Time step sizes
were 0.05 s (left column) and 0.01 s (right).
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6.2. IMPLICIT SOLUTION OF HEAT CONDUCTION

Profiles over time are depicted in Figure 6.1. With a coarse time stepping
of 0.05 s, Euler and BDF-2 solvers exhibit large errors, whereas the trapezoidal
rule is fairly accurate. At the lower time step size of 0.01 s the results of the
two second order methods converge quickly. The Euler solution still displays
visible errors. The overall convergence behaviour is shown in Figure 6.2. The
convergence over time (left frame) is as expected of only first order for the
Euler method, whereas BDF-2 and the trapezoidal rule provide second order
convergence.

Convergence with decreasing particle size is depicted in the right frame for
two different implementations of the Dirichlet condition. The naive implemen-
tation of appointing fixed temperature values to a layer of boundary particles
(dotted lines) deteriorates the smoothness of the temperature field and hence
provides only first order convergence. If the particle value is mirrored at the
boundary, the SPH approximation yields a convergence rate of second order.
This example underlines that boundary treatment is a crucial point in SPH. If no
proper boundary treatment is possible, the method suffers from its approxima-
tion deficiency there.

In many cases the error approached a distinct minimum, with a locally very
high convergence rate. Further decrease of time step or particle size does not
reduce the error further but rather approaches a limit error above the observed
minimum, which cannot be undercut by a finer resolution.
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Figure 6.2: Convergence behaviour of the implicit SPH heat conductivity solu-
tion: Error at x = L/2 and t = 0.1s. Convergence concerning time (left) and
spatial resolution (right, only trapezoidal rule).
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6. VALIDATION OF THE SPH IMPLEMENTATION

6.2 Linear Driving Force Heat and Mass Transfer

6.2.1 Heat Transfer to a Unilaterally Heated Rod

Heat conduction in a rod clamped to a hot wall and cooled by the surrounding
medium is a classic example in heat and mass transfer. The problem is depicted
in Figure 6.3. Initially, a rod of length L has a constant temperature T0 anywhere.
At t = 0 the wall is abruptly raised to the temperature Tw. The surrounding gas
temperature T ∞ equals T0. Heat transport occurs inside the rod by conduction
and between the rod and the surrounding gas by conduction and convection
subsumed in the heat transfer coefficient α (equation 2.122). The steady state
solution for t→ ∞ is (Baehr and Stephan 2010, p. 125f) with k∗ =

√
2α

λRrod

T (x) = T ∞ +(Tw−T ∞)
cosh [k∗ (L− x)]+ α

k∗λ sinh [k∗ (L− x)]
cosh(k∗L)+ α

k∗λ sinh(k∗L)
. (6.3)

Three-dimensional SPH simulations of this problem have been carried out
for a rod of a length L = 0.25 m and diameters D of 0.05 and 0.10 m. Tw was
set to 1 °C, whereas T0 = T ∞ = 0 ◦C. The heat conduction coefficient in the
surrounding gas was λG = 0.025Wm−1K−1. Other material properties were
unity, as in the test case before. The rods were discretised with particles of
l0 = 2.5×10−3 m. Time stepping was ∆t = 0.1×10−3 s. The left boundary
was implemented by mirroring, the superior approach in the previous example.
Mass transfer was modelled according to equation 5.96 in the implicit solution
by the trapezoidal rule.

Profiles over time are compared to a simple one-dimensional finite differ-
ences solution in Figure 6.4. SPH solutions match the FDM references very
well for different rod diameters and Nusselt numbers. The temperature at the
rod’s end over time (Figure 6.5) is also very close to the FDM solution.

The CSF implementation of heat transfer applies the boundary condition in
the desired manner and can be further used for drying applications.

L
Tw

Figure 6.3: Geometry of a unilaterally heated rod.
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Figure 6.4: Temperature profiles within a unilaterally heated rod for different
Nusselt numbers and diameters (2, 4, 8, 12, 20, 200 s = steady state).
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Figure 6.5: Temperature at the rod’s end over time for various Nusselt numbers.
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6.2.2 Coupled Heat and Mass Transfer: Droplet Evaporation

Evaporation of a pure water drop in hot air is a problem of coupled heat and mass
transfer, which efficiently can be solved in a lumped manner with the equations
derived in chapter 3. Material parameters and initial and boundary conditions
are provided in Table 6.1. Nusselt and Sherwood numbers were both set to 10.
Simulations have again been carried out in three dimensions. Heat and mass
transfer between droplet and gas were implemented according to section 5.7.2,
heat conduction within the droplet corresponding with equation 5.87.

The course of the droplet radius over time is drawn for different particle
sizes in Figure 6.6. Results from the fine resolution match the 0D reference,
whereas the coarse resolution does not resolve the drying behaviour well. The
radius according to the outmost particle’s position ("SPH, part") exhibits a step-
wise drying behaviour. The size of an SPH particle cannot be altered easily
(section 5.7.4). While the evaporative mass is reduced, the ordinary mass and,
thus, the outer droplet shape remain unaltered until the SPH particle is deleted.
Then, suddenly, the droplet becomes smaller. By this, the surface area is over-
estimated, which explains why evaporation is too intense in the coarse example.
A better way of evaluating the droplet radius considers all SPH particles’ evapo-
rative mass as belonging to a perfectly shaped drop ("SPH, mass" in the graphs)

Rmass =

(
3∑mevap

i
4πρl

)1/3

. (6.4)

In doing so, the radius shrinks continuously and sub-surface particles are in-
cluded. This value is not only smooth (the solid line with dots), but matches
the reference significantly better. The right frame of Figure 6.7 shows the sur-

Table 6.1: Material properties and conditions for droplet evaporating.

material properties
∆hv −2.257×106 J/kg
ρL 1000 kg/m3

cL
p 4200 J/kg

λ L 0.6 W/(mK)

λ G 0.025 W/(mK)

DG 30×10−6 m2/s

initial and boundary conditions
T0 20 °C
T ∞ 180 °C
p∞

v 0 Pa

226



6.2. HEAT AND MASS TRANSFER BY LINEAR DRIVING FORCES
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Figure 6.6: Droplet drying calculated by SPH: Radii over time from the outmost
particle’s position ("part") or an equivalent sphere of the same mass ("mass").

face area calculated via the CSF approach in the SPH solution. It was obtained
by summing up all interface area to volume ratios according to equation 5.95
multiplied with the particle volume Vi. The CSF approximation is resolution de-
pendent. Using a larger number of particles, the droplet surface is less step-wise
and rather smooth and its area is not overestimated any more.

The droplet temperature over time is shown in Figure 6.7, left frame. SPH
and the 0D reference reach the same wet bulb temperature. Errors in the SPH
linear driving force calculation affect heat and mass the same way so that de-
viations cancel out in the balance of both effects. Due to perfect mixing and
intensified heat transfer, thermal equilibration is slightly faster in the 0D model.
The SPH result shows the same course over time, otherwise.
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Figure 6.7: Droplet temperature over time (left) and SPH/CSF surface area vs.
droplet radius (right).
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6.3 Diffusion Driven Drying by SPH-Grid Coupling

The following example considers a stagnant water column in an infinitely stretched
domain, which is covered by a layer of air. At a certain, fixed height h0 the
vapour pressure is fixed to pv = 0. At the surface of the water column the air is
saturated with pv = pS

v . Assuming an isothermal setup and neglecting the Stefan
blow, the height h of the water column will evolve according to

dh
dt

=−MWH2O

ρ0
H2O

DG

ℜTG

pS
v − pv (h0)

h0−h
. (6.5)

This problem can be treated by the approach depicted in section 5.7.5. The
liquid is represented as stationary SPH particles. An underlying grid is used
to discretise the gas in regions uncovered by SPH. Coupling of mass transfer
between grid and SPH particles is performed by equation 5.102. Mass loss
of SPH particles is calculated according to equation 5.103. Physical constants
are summed up in Table 6.2. Example calculations have been carried out for a
water layer of initial height h = 100µm and a fixed vapour pressure of 0 Pa at
h0 = 215µm. For reasons of simplicity, the grid discretisation was performed
with the same meshsize as the SPH particle spacing on a quadratic grid.

Figure 6.8 shows the setup on the left. Particles are depicted as blue circles.
The gas layer is coloured according to the vapour pressure. The graphs on the
right show the evolution of the water column height over time for three different
particle spacings l0. In order to avoid a stepwise profile over time, the water
level has been evaluated according to

ht
SPH = max(ySPH)−min(ySPH)+

mevap
iMx

miMx

· l0. (6.6)

Table 6.2: Material properties and conditions for the evaporating water column.

liquid properties
∆hv −2.257×106 Jkg−1

ρL 1000 kg/m3

cL
p 4200 J/(kgK)

T L 60 °C
DG 30×10−6 m2/s
pv (h0) 0 Pa
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Figure 6.8: Calculation of diffusion driven drying of a water column: liquid
particle and gas grid setup (left), evolution of water column height over time for
different resolutions (right).

iMx denotes the particle at the highest position in the water column. By taking
the mass loss within the upper particle layer into account, the curve is smoothed.
The overall results represent the correct physical behaviour and the SPH results
follow the reference line obtained by numerical solution of equation 6.5 with
a standard DoE solver1. The coarse discretisation shows the greatest deviation
(left). Yet, the convergence behaviour is not fully clear, as the smallest particle
size shows a slightly greater deviation from the reference than the particle size
in between. Time integration was performed by the explicit Euler method for
solution of the diffusion equation. As diffusion driven drying was not the main
focus of this work, implementation of a higher order scheme was not undertaken
and the diffusion equation was solved in a subloop at small time step sizes (∆t ≤
0.2 l2

0
D ) due to the explicit method. Implementation of a higher order implicit

scheme, as it is used for heat conduction, is surely advisable, when the coupled
approach of diffusion driven drying shall be used further. Still, the numerical
results are satisfactory when compared to the reference.

1Solution obtained with the standard explicit Runge-Kutta method of the Scipy package.
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6. VALIDATION OF THE SPH IMPLEMENTATION

6.4 SPH Flow Solver

In the following, the underlying flow solver used in the drying model is validated
by several test cases. As already stated, numerous validation cases can be found
in the literature (e.g. Colagrossi 2005; Keller 2015; Monaghan 1994) and not
all of them will be presented here as the current code is very near to a standard
ISPH implementation. All further tests have been conducted in two dimensions.

6.4.1 ISPH Solution of a Standing Water Column

The pressure profile of a stagnant water column is shown in Figure 6.9. The
height of the water column is 1 m. With a density of 1000 kg/m3 and gravita-
tional acceleration of 9.81 m/s2 the maximum pressure is ρgh = 9810Pa. The
profile was obtained after 100 time steps of 10×10−4 s. The SPH solution
matches this theoretical value and the linear profile very well. The second point
above the ground exhibits some deviation, which is caused by the boundary
condition. This implementation used the fairly simple approach of Shao and
Lo (2003), who just applied a Dirichlet condition by taking the upper boundary
row into the pressure Poisson matrix and copying this values to particles being
further away from the water column (see section 5.4.1). Hence, the pressure pro-
file is not continuous over the boundary, which slightly affects liquid particles
nearby. Concerning free surface flow in a droplet, this peculiarity of a certain
boundary condition is not relevant.
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Figure 6.9: Simulation of a stagnant water column, left: particle setup, right:
pressure profile.
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6.4.2 Free Surface Flow

A circular drop of incompressible liquid will be deformed by a velocity field

vx (x,y) =−A0x (6.7)

vy (x,y) = A0y, (6.8)

to an ellipse (Monaghan 1994; Colagrossi 2005; Keller 2015). With the function

A(t) =− ȧ
a
=

ḃ
b
, (6.9)

the evolution of the ellipse’s semiaxes a and b is known. A is defined as (Keller
2015)

dA
dt

=
A2
(
a4−a2b2

)
a4 +a2b2 . (6.10)

By this, the evolution of the ellipsis over time can be solved numerically as a
system of ordinary equations. The pressure within the drop is expressed as

p(x,y, t) =
ρ

2
(
Ȧ
(
x2− y2)− Ȧ

(
x2 + y2)−a2 (Ȧ−A2)) . (6.11)

Figure 6.10: Initial geometries with velocity fields: smooth (left) and step-wise
(right) drop surface, line widths indicate the velocity magnitude.

Figure 6.10 shows the initial geometries with the initial flow field, in the
left frame with a circular particle alignment and a smooth surface, in the right
frame the hexagonal case with a more irregular surface, in both cases with
l0 = 0.025m. The droplet radius was set to 1 m, the density to 1000 kg/m3 and
the initial value A0 = 1/s. The time step size was 0.01 s. Figure 6.11 contains
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6. VALIDATION OF THE SPH IMPLEMENTATION

calculations with both initial geometries. Two implementations of the free sur-
face condition have been tested. In the literature approach a density threshold
of 97 % was used in order to impose the boundary condition according to Keller
(2015) and Bøckmann, Shipilova, and Skeie (2012) within the PPE (see sec-
tion 5.4.3). The penalty approach does not use separate surface particle testing
and enforces a penalty function depending on the ∇~x value as described in sec-
tion 5.4.4. The final geometries after streching the drop are shown on the left. In
case of the very regular surface both approaches yield a virtually identical final
profile. Differences within the surface are comparably small so that the effect
of free surface switching becomes negligible. The evolution of the half-axes
and the pressure over time are drawn in the upper right graphs. The analytical
solution is matched very well concerning the geometry and for the most part for
the pressure. Initial pressure build-up is somewhat retarded, which may be due
to the geometry which is optimised for a smooth surface, but exhibits particle
disorder and a high density in the centre. Otherwise the course of the pressure
over time is reproduced very well with some small oscillations, which have also
been reported by Keller (2015).

Simulations of the more step-wise geometry exhibit visible deviations, first
for the pressure field, then - as a consequence - in the evolution of the semi-
minor axis a. This affects both implementations of the boundary condition, but
the penalty based approach keeps closer to the theoretical pressure so that the
final elliptic shape is matched significantly better. The middle picture shows the
final geometry in case of the penalty based approach, the right one the literature
solution. The penalty condition does not distinguish between free surface and
bulk particles in a hard way, but provides a smooth transition, which helps to
calculate a more regular pressure and flow field. This is visible in most cases
of non-ideal geometries for this test case. Additionally, the literature approach
demands zero pressure truncating, as simulations crashed otherwise when neg-
ative values occured. Pressures below zero were not a problem when using the
penalty based free surface condition, which again indicates that this boundary
treatment provides a smoother solution of the pressure field.

The problem of the deforming drop is a special case which is very sensitive
to disturbances of the surface and the particle order there. When in other cases
a droplet needs to be initialised, the hexagonal alignment is typically a good
start and involves only minor re-organisation of particles for instance under sur-
face tension. The smooth droplet geometry performs worse in such cases, as it
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Figure 6.11: Simulation of eliptically deforming drop, on the left final geome-
tries, from left to right: smooth surface (both approaches), rough surface +
penalty and + literature approach; on the right: drop deformation and centri-
cal pressure over time for the smooth (upper graph) and rough surface (below).

involves a higher degree of inner particle reorganisation.
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6.4.3 Surface Tension Approach of Pairwise Forces

In order to study the surface tension behaviour, a test case of Adami, Hu, and
Adams (2010b) was employed. Imposing the flow field

vx = v0
x

R0

(
1− y2

rl0

)
exp
(
− r

R0

)
(6.12)

vy =−v0
y

R0

(
1− x2

rl0

)
exp
(
− r

R0

)
(6.13)

on a circular drop will enforce a deformation, which leads to droplet oscilla-

tion. The period of oscillation τ = 2π

√
R3

0ρ

6σ
depends on the droplet radius, the

density and the surface tension coefficient. Figure 6.12 shows the evolution of
the droplet shape on the left at different instants of time. The initial radius was
0.4 m and v0 was set to 5 m/s. Density and particle spacing were 1000 kg/m3

and 0.02 m, respectively. The interaction parameter s0
i j in equation 5.75 was

set to 1000. The graphs on the right side of Figure 6.12 show the maximum
elongation of the droplet from its centre of mass throughout the calculation.
The droplet exhibits an oscillating behaviour with decreasing amplitude due to
viscous dissipation. If this behaviour was invariant from scaling, the surface
tension coefficient could be correlated to the s0

i j in order to tune this value.
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Figure 6.12: Oscillating droplet of 0.4 m radius: The pictures on the left depict
droplet shapes at 0,0.058,0.173 and 0.230 s. On the right: elongation in y (solid)
and x (dashed) direction.
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Figure 6.13: Oscillating calculations with radii of 0.2 (left) and 0.1 m (right).

This was the one test case in which the geometry had been relaxed before.
A hexagonal drop was exposed to surface tension forces and after equilibration
the velocity field was imposed and the calculation restarted. Figure 6.13 shows
the oscillations for droplets of the same particle setup, but for radii of 0.2 and
0.1 m. As the relaxed geometry had been reused, the particle sizes l0 had been
adapted accordingly to 0.01 and 0.005 m.

The principle behaviour is according to physics with smaller droplets oscil-
lating faster. The oscillation periods τ had been measured in the postprocessing
as the time between every other incident in which xmax and ymax cross each
other. The right frame of Figure 6.14 shows that this value changes over time,
especially in case of the larger droplet.

√
R3 yields values of about 0.03, 0.09

and 0.25 m1.5, which are very roughly matched by the oscillation periods in the

graph, if 2π

√
ρ

6σ
= 1s/m1.5. The scaling of oscillations for different radii is

mediocre, as the simulated oscillation periods are closer to each other than im-
plied by their radii. Moreover, the pressure inside the droplet is not scaling prop-
erly. According to the Young-Laplace equation, the pressure is proportional to
1
R . As can be seen in the middle frame, this is not represented well by the model.
In particular the small radius yields a pressure which is far too small, but also
the ratio between 0.2 and 0.4 m does not match. The evolution of pressures over
time is depicted in the left frame (the lowest curve corresponds - wrongly - with
the smallest radius, the highest with the radius in between).

Figure 6.15 contains calculations employing the original force from Tar-
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for different initial radii.
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Figure 6.15: Oscillating drops simulated with the isotropic surface tension force
of Tartakovsky and Meakin, evolution of elongations over time for different
prefactors s0

i j = 200 (left) and 20 (right).

takovsky and Meakin (2005) with s0
i j being 200 (left graph) and 20 (right). The

different parameterisation to the surface-lateral force approach are due to the
fact that the latter involves additional multiplications with 1− ∇~x

d so that equal-
ity of the forces is reached approximately for a ratio of 10 between both. The
droplet shows sort of an oscillating behaviour, but does not relax to its initial
position.

Finally, the problem of scaling is shown in Figure 6.16 for a droplet of 0.2 m
radius, but l0 = 0.005m being half the size of the previous calculation. Hence,
four times the particles were used in this example. The initial velocity profile
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6.4. SPH FLOW SOLVER

Figure 6.16: Oscillating drops, failure of the pairwise force approach: Initial
setup (left), surface-lateral force approach and isotropic force according to Tar-
takovsky and Meakin (right) after 0.08 s.

was the same as before. Now, neither the anisotropic nor the isotropic pairwise
force approach were able to stop the drop from elongating.

The pairwise force approach in its current implementation is in best case
mediocre in simulating dynamic processes involving large droplet deformations.
Moreover, the lack of scaling behaviour is a great deficiency. One reason for
this is the lack of orientation. It is challenging to obtain a value, which yields
the inplane force behaviour at all (the absolute value of the colour function’s gra-
dient/surface normal and the density ratio failed) and still these forces happen
between different particle layers due to the discrete nature of the SPH particles’
distribution. Moreover, the necessity of keeping particles apart requires a strong
repulsive contribution, which is one further weak point of this approach. How-
ever, the traditional isotropic approach does not provide any improvement in the
current ISPH implementation. Comparison with weakly compressible SPH and
an appropriate equation of state would be interesting in order to obtain the con-
tribution which is necessary for interparticle forces to work on an independent
scale.

6.4.4 Wetting Phenomena

Whereas the results of the surface-lateral force approach with respect to the
dynamic behaviour of surface tension are unsatisfactory, it exhibits an improve-
ment to traditional pairwise forces concerning the static wetting behaviour on
the micro scale. The following calculations have been performed for an initially
square drop of size 60× 60µm. The dimensions of the droplet have been cho-
sen such, because this is in the same order of magnitude as spray dried droplets.
The results can therefore serve as a test of the applicability of the surface-lateral
force approach to a droplet drying model. The particle size was 1.5 µm. The
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6. VALIDATION OF THE SPH IMPLEMENTATION

interaction coefficient of the force was set to 30 and time stepping size was 1 µs
or lower, if required by limit criteria. The other phyiscal values were those of
water as in the previous examples. Figure 6.17 shows the evolution of the drop-
let shape and the wetting behaviour over several instants of time. Whereas the
dynamic behaviour is very likely unsatisfactory (consider the previous example
of the oscillating drop), the overall behaviour is reasonable and dynamic. The
motion of the contact line slows down with the droplet becoming wider, which
is partly a physically reasonable behaviour, but may also be attributed to the
lack of dynamics in the approach. The last frame does not represent the end of
the process. Final droplet shapes for various contact angles are drawn in Fig-
ure 6.18. The approach of surface-lateral forces matches the predefined contact
angle remarkably well. There is yet a lower limit, below which the wetting be-
haviour is not further covered. This is due to the discrete nature of the particle
approach. It becomes more and more difficult to represent a small angle with
discrete particles of a distinct size. From this perspective, this can be considered
as a limit of the numerical method and not of the new approach.

Yet, there are some shortcomings. The particle collective does not in every
case come to rest. In the test configuration this is the case for a contact angle
of 120°. Particles from the droplet’s bulk are dragged towards the surface in the

Figure 6.17: Evolution of an initially square drop on a plate, contact angle 30 ◦,
instants of time: 0,80,160,320,480,640,960,1920, 3840 µs, calculation with
the surface-lateral force approach.
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Figure 6.18: Final geometry of sessile drops at contact angles of
0,30,60,90,120 and 150° calculated with the surface-lateral force approach.

vicinity of the contact line and move upwards in an ongoing swirl. In drying
simulations, particles are continuously taken out of the system so that this is a
minor issue, but it means that unphysical forces introduce continually kinetic
energy into the system. Secondly, the scaling behaviour is again mediocre. The
same geometry with a contact angle of 30 ◦ has been calculated in Figure 6.19
with a smaller and a larger particle size. Both cases do not relax to the final
geometry. In case of smaller particles the force particle is scaled down. Con-
cerning the pressure within the droplet, this makes sense as otherwise the force
per unit area would grow with decreasing particle size (see the discussion in
section 5.5.1). As the neighbourhood in the vicinity of the contact line remains
at the same number of particles, the final force is scaled down and too small
to drag the liquid bulk further. This issue of scaling has not been solved up to

Figure 6.19: Partial failures of the surface-lateral force approach in reaching a
contact angle of 30°: Same Geometry as before, but with greater l0 = 2µm (left)
and smaller l0 = 1µm (right).
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6. VALIDATION OF THE SPH IMPLEMENTATION

Figure 6.20: Failures of the surface-lateral force approach, contact angle 30°:
Calculation without the additional repulsive force (left) and without adding an
additional density constraint (right).

now. The example with enlarged particle size exhibits a "snap in" behaviour of
the outmost liquid particles into the surface between two solid particles, which
prevents further motion of the contact line. This effect is to some degree wanted
and caused by the repulsive contribution, but does not scale properly as well.
The repulsive force is not only necessary to provide a better particle distribu-
tion, but also in order to prevent an ongoing stream of a single particle layer
from the contact line along the top of the solid surface. Otherwise, one obtains
exactly the opposite behaviour to snapping in as in the left frame of Figure 6.20,
in which the additional repulsive force was switched off. Whereas the droplet
bulk exhibits a reasonable shape according to the appointed contact angle of
30°, ongoing motion of the outmost liquid particles leads to unphysical cover-
ing of the solid. The drag forces of these particles lateral to the solid surface
are not canceled out completely by surface tension forces. Moreover, the at-
tractive forces induce a bad particle distribution. Without additional repulsion
and only the small negative contribution of equation 5.73 for distances below l0,
effectively a dense particle double layer is formed at the outer rim.

Wetting phenomena can only be modelled, if an additional degree of density
constraint with respect to the physical density is appointed (equation 5.60). A
proportional factor CP = 0.1 is however sufficient. Without this constraint, the
simulation crashed shortly after the picture in the right frame of Figure 6.20.
Clustering of particles both in the fluid bulk and at the interface to the solid
phase occurs, if only the divergence of the velocity field is used as incompress-
ibility constraint. The new approach therefore does not work without further
stabilisation.
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6.4. SPH FLOW SOLVER

As a last result, Figure 6.21 shows final droplet shapes, when the original
force of Tartakovsky and Meakin (2005) is used (with the same interaction co-
efficient of 30). The contact angle was set according to the potential based rela-
tion 5.66 of Kondo et al. (2007). The droplets are deformed and do not exhibit a
round shape. Likewise, the contact angle is only to some degree achieved. Addi-
tionally, particles penetrate into the solid surface (the left and middle frame, in
which there is a stronger attraction to the solid phase). Some of these shortcom-
ings can be avoided - penetration for instance by an additional repulsive term -,
but the wetting behaviour remains unrealistic. The new concept of anisotropic,
surface-lateral forces is therefore more suitable to calculate surface tension and
wetting behaviour on the micro scale despite its undoubted disadvantages.

Numerical results of the surface tension and wetting behaviour are sobering.
The standard approach of isotropic forces is insufficient in ISPH. The reported
results of Tartakovsky and Meakin (2005) appear better, which may be due to
the van-der-Waals equation of state in their WCSPH approach. Yet, the applica-
bility of different contact angles has not been shown and the scaling behaviour
remains uncertain. Moreover, they had to obtain the surface tension related
pressure inside the drops by a cumbersome routine, as the background pressure
is always very high when using isotropic forces. The surface-lateral approach
alleviates some of these shortcomings. However, there seems to be a "sweet
spot" concerning the combination of particle size and interaction strength, in
which it performs better than for other resolutions. It does not appear feasable
to adapt the force and its constituion of respulsion and attraction when changing
the resolution. A revision of the concept is therefore necessary. Generally, it is a
difficult task to make the net force per unit area independent from the resolution
and at the same time preserve the behaviour in the vicinity of discontinuities
which become more local when the resolution is refined.

Figure 6.21: Final geometry of sessile drops at contact angles of 30,60 and 90°
calculated with the literature approach of Tartakovsky and Meakin in conjunc-
tion with ISPH.

241





7. SIMULATION OF

STRUCTURE EVOLUTION

DURING DRYING

The SPH model presented in the previous chapters will be applied to single
droplet drying of a suspension in the following. A simulation of the first drying
period will be presented shortly. The second drying period will be simulated
using various implementations of crust formation. Thereafter, the outcome of
structure development will be investigated depending on adjustable parameters.
The applicability of the present model will be discussed further concerning vari-
ations of gas temperature and different spatial resolutions in the discretisation.
Finally, drying of a microporous structure will serve as an example for the dif-
fusion driven drying approach. All simulations were carried out in two dimen-
sions.

7.1 Simulation of the First Drying Period

After a short time of heat-up, a droplet reaches a quasi-equilibrium of heat trans-
fer and cooling by evaporation. The drop temperature stays constant and heat
transfer is directly converted into evaporation. During this constant rate pe-
riod, the squared droplet diameter decreases linearly as (comp. sections 2.5.2
and 3.2.1)

dR2

dt
= 2R

dR2

dt
=−R

DG

2R
Sh

psur f
v − p∞

v

ℜT̄
MWL

ρ0
L
≈ const. (7.1)

The radius cancels out and the other values are - in a quasi-steady-state - virtu-
ally constant. The first drying period was simulated for a droplet of 75 µm initial
radius and completely unsaturated gas of 100 °C at Nusselt and Sherwood values
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of 4. The droplet was discretised with 6925 particles of l0 = 1.6µm in hexagonal
alignment. Density and other specific values were those of water, for both the
liquid and the solid phase. The interaction parameter s0

i j was set to 20, less for
reasons of a physical derivation, but due to the increase in computational load,
when high values are chosen and the time step size needs to be decreased as a
consequence of large forces/accelerations. This remains as a challenge as the
course of drying runs over a much longer period of time than the typical scale
of effects like surface tension and wetting.

Figure 7.1 shows the initial geometry and the simulation at 0.4 and 1 s. The
graphs below show the droplet radius and its squared value over time. Drying
in the SPH model takes place according to the d2 law throughout the first 0.25 s.
After this, the droplet surface is more and more covered by solids and the liquid
is less exposed to the gas. The drying rate is diminished with the receding of
the liquid surface. After a complete layer of solid particles has accumulated at
the droplet surface, evaporation virtually stops, as the LDF mass transfer only
applies to liquid surface particles.
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Figure 7.1: Simulation of the first drying period at 0, 0.4 and 1.5 s (black: solid,
light grey: liquid) and evolution of droplet radius and squared radius over time.
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7.2 Simulation of Crust Formation and the Second
Drying Period

7.2.1 Simulation of the Second Drying Period without Crust
Formation

Accumulation of solids at the droplet’s outer rim and reduced evaporation rates
result in an increase of temperature up to the point that the drop is boiling. Ad-
ditional uptake of heat in the liquid phase will be recalculated to evaporation so
that all liquid particles remain at 100 °C (see section 5.7.3). This results in fur-
ther droplet shrinkage until full evaporation is achieved. The course of drying is
depicted in Figures 7.2 and 7.3, which show the evolution of the droplet and its
constitution along with the temperature distribution. The gas temperature was
set to 300 °C in this simulation, Nusselt and Sherwood numbers to 4. Initially,
the droplet was slightly below the wet bulb temperature so that it is heated up at
first. After partly accumulation of solid particles at the surface (second frame),
the free water surface has decreased so that cooling by evaporation is less pro-

Figure 7.2: Simulation of the second drying period without crust formation:
suspension (black: primary particles, grey: water) and temperature profile in
the drop at times 5,75 and 125 ms.
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Figure 7.3: Simulation of the second drying period without crust formation at
times 175,250 and 286.5 ms.

nounced and the overall temperature is higher. Larger local solid coverage of the
surface is partly visible by higher temperatures. In the third frame, the droplet
has partly exceeded the boiling temperature in regions where its surface is fully
covered by solids. This is the case for the overall surface in Figure 7.3, which
shows the progress of boiling up to a completely dry product. Figure 7.4 shows
the initial and final structure of the drop. Colours indicate the index of the rigid
bodies that represent the solid phase, which can be used in order to distinguish
between the different primary particles in the final geometry. It is well visible
that the final structure was obtained by shrinkage without internal mixing.

Figure 7.4: Initial and last constitution of the droplet without crust formation,
colours indicate the "body index" of the suspended primary particles.
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7.2.2 Crust Formation by Caught on First Touch

The previous simulation showed that solids are accumulating at the droplet’s
surface, but that without further stabilisation the structure is just densified. The
most simple approach of implementing crust formation is to merge primary par-
ticles as soon as their minimum distance undercuts a certain value. In Figure 7.5,
the particle spacing l0 was used. Colour coding indicates again the index of the
rigid bodies. The first frame shows the situation, when already some particles
have merged. Relatively large clusters of irregular structure consist of several
merged bodies. Throughout the first row, merging leads to a rigid crust covering
the whole droplet. Subsequent drying results in the formation of a bubble in-
side the solidified outer structure. After complete drying, a granule is obtained,
which consists of a microporous crust. Single solid particles remain unmerged
as their distance is slightly above the threshold value. In a productive simula-
tion suspended solids of one single particle size should be avoided, not only for
this kind of behaviour, but also in order to provide a rather continuous approx-

Figure 7.5: Crust formation by the caught on first touch algorithm: instants of
time: 125,150,175,200 and 311.5 ms. The colour coding shows the index of
the suspended solids.
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Figure 7.6: Crust formation by caugt on first touch: temperature distribution
(left) and artifacts of the algorithm with primary particle merging in presence of
surrounding liquid (right).

imation. The temperature distribution at the time of bubble growth is drawn in
Figure 7.6 on the left. The water within the crust has reached the boiling point,
whereas the solid outer structure is further heated up. The approach represents
production of a hollow granule by spray drying in a basic manner. Despite ex-
hibiting the process of structure formation in principle, the algorithm has its
drawbacks and leads to early primary particle merging. Artifacts of the algo-
rithm are depicted in the right graphs of Figure 7.6. Solids are merged, which are
fairly covered by liquid particles, especially in the vicinity of the merging point.
The caught on first touch algorithm therefore involves unphysical agglomera-
tion. This is also the reason, why the final structure is very porous. Compaction
of the solid layer is not possible. As soon as primary particles encounter each
other, they will merge if their distance undercuts the threshold value. Adaption
of the threshold to lower distances can partially act as a remedy, but local varia-
tions in the SPH particle distribution may still involve irregular primary particle
merging. Moreover, adaption of the threshold distance of SPH particles in order
to control the solid hull structure is not motivated by physics. It is therefore
advisable to control crust formation by properties with relevance to drying.
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7.2.3 Crust Formation Determined by the Water Content

Primary particles might be "caught on first touch" even in the liquid bulk. The
algorithm does not account for drying at all, but just merges solids based on a
coarse distance criterion. The local degree of drying can be evaluated according
to the local liquid content of a particle (see section 5.6.2). The simulations in
Figure 7.7 employed a limit value of zero, i. e. two solids do only merge if
the neighbourhood of their closest particle pair solely consists of other solid
particles. Compared to the previous result, primary particle merging is slowed
down and only sets in, when drying has advanced. The fourth frame shows the
last output before full merging of the crust with bubble formation starting little
later. This approach is much more physical than the naive caught on first touch
algorithm and provides at the same time a adjustable parameter which can be
used to simulate structure variations.

The point of bubble formation is different to the previous example. Gener-
ally, the inner bubble occurs reproducibly in repeated simulations, but randomly
concerning parameter or geometry variations.

Figure 7.7: Crust formation depending on the water content
(150,175,187.5,199.5 and 202.5 ms).
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7.2.4 Effect of the Density Correction

Figure 7.8 shows the density evolution within the droplet at the time of bubble
formation. The upper row refers to a simulation in which the additional density
constraint in equation 5.60 was considered with a proportional factor CP = 0.1.
It becomes visible that due to drying below the crust and due to interparticle
forces filling gaps, the fluid is "elongated" like a rubber. When finally at some
point the liquid bulk detaches from the solid crust - starting in the second frame
-, this process happens very suddenly. The liquid returns to its physical density
within 1 ms. Hence, the bubble expands very fast, just as "the rubber snaps
back". Further bubble growth is much slower, according to the drying rate. This
unphysical behaviour is avoided, if CP is set to one. The lower row shows that
bubble growth takes place in a physically correct way. Directly after bubble
initiation, water fills unoccupied pore space, when the bubble allows the liquid
to relax. Bubble growth is hence rapid for a very short, initial amount of time
and continuing more moderate thereupon. Without or with only a small density
correcting constraint in the PPE, unphysical liquid "stretching" retards bubble
formation. If finally a bubble has formed, it becomes large very quickly due to
the previous delay in its formation. For this reason, the density correction was
applied in other drying simulations involving a crust with a proportional factor
of one.

Figure 7.8: Effect of the density correction, upper row: proportional physical
density constraint of 0.1, lower row: full additional contribution of the physical
density constraint (CP = 1), times for each example: 0,0.5,1,1.5 and 3.5 ms
from the instant of bubble formation.
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7.3 Influence of Adjustable Parameters on the
Simulated Structure

With the maximum water content and the minimum solid content for merging,
ϕ

L,merge
lim and ϕ

S,merge
lim , and the parameter for solid-solid interaction compared to

liquid-liquid attraction, fSS, there are several options to adjust the simulation.
In the following the term "granule" will be used for the final structure in or-
der to distinguish it from SPH particles and primary particles. The setup was
resolved finer than in the previous simulations with l0 = 0.8µm and 27619 par-
ticles. Other parameters were chosen as before.

Figure 7.9 shows variations of ϕ
L,merge
lim and ϕ

S,merge
lim at constant solid↔solid

interaction strength. The limiting water content has an influence on the granule
size. The smaller the limit is, the smaller the final granule size. Moreover, the
final structure appears more dense for a small limit value. This can be well
understood from the model. A higher limit value will allow crust formation
in presence of remaining water, hence at an earlier instant of time. Also the
tendency to cluster two primary particles is higher. At a value of 0.15, one can
even observe some merging below the surface. This is similar to the caught at
first touch algorithm and 0.15 is not too far away from this kind of behaviour.

Increase of ϕ
S,merge
lim leads to a more dense structure. Also the granule size

appears smaller and less round / more deformed. This can also be explained
as a natural model behaviour. As it takes a higher solid content to combine,
primary particle merging is retarded. Suspended solids need to advance further
in order to cluster. Moreover, some larger clusters may first need to change their
orientation before they exhibit a point of contact at which the solvent content is
large enough. There is no distinction between ϕ

S,merge
lim = 0 and ϕ

S,merge
lim = 0.1 as

the regarded solid SPH particle itself contributes to the summation term so that
in additional neighbourhood of another solid this value is always exceeded.

It is desirable to find an equivalent from real structure generation to these
values. Eckhard et al. (2014) observed in spray drying experiments an increase
in microporosity at an elevated binder content. Furthermore, they proposed the
mechanism that droplet shrinkage will stop earlier, when the binder content is
increased so that larger granule sizes are obtained. In that respect, the limit
liquid content has a similar effect - a higher value allows earlier merging and
therefore acts the same way as an increased binder content. The increase in mi-
croporosity is visible from the graphs likewise. The solid threshold value may
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Figure 7.9: Different granule structures by model parameters: variation of
ϕ

L,merge
lim : 0.000, 0.075 and 0.150 (rows) and ϕ

S,merge
lim : 0.10, 0.25 0.40 (columns);

fSS = 0.5.

be regarded similarly, but in the other direction. A lower solid limit promotes
merging and thus the formation of stable clusters, whereas a larger number re-
tards this process. In a preliminary way, an increase in binder content could
therefore be reflected in the model as starting with a large limit value for the
solid content and zero for the water fraction, decreasing first the solid threshold
and, when this value is at its lower limit, afterwards increasing the limit for the
liquid threshold.

Figure 7.10 contains a variation of liquid fraction limit and the solid-solid
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Figure 7.10: Different granule structures by model parameters: variation of
ϕ

L,merge
lim : 0.000, 0.075 and 0.150 (rows) and fSS: 0.0, 0.5 and 1.0 (columns);

ϕ
S,merge
lim = 0.10.

attraction at constant ϕ
S,merge
lim . Besides the previously discussed relation con-

cerning the limit water content, structural differences are not visible. The in-
teraction between solids within the present surface-lateral force approach is too
low to play a role.

The proposed sequence of ϕ
L,merge
lim /ϕS,merge

lim combinations was applied to a
different initial geometry in the simulation in Figure 7.11. The succession of
parameters works fairly well in changing the structure from a porous to a dense
shell. ϕ

S,merge
lim = 0.60 leads to a dense structure, but folded to some degree.

For obvious reasons, particle merging will stop at some point, when the limit
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ϕ
L,merge
lim ↓, ϕ
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Figure 7.11: Different granule structures with decreasing ϕ
L,merge
lim and in-

creasing ϕ
S,merge
lim , upper row: ϕ

L,merge
lim = 0.150,0.075,0,ϕS,merge

lim = 0, below:
ϕ

L,merge
lim = 0,ϕS,merge

lim = 0.2,0.4,0.6.

is too high. Yet, a value of 0.6 still allows some primary particles to merge. A
completely dense structure is obtained for yet higher values. Indeed, the simu-
lation in section 7.2.1 of the second drying period without crust formation was
controlled by an impossible value of ϕ

S,merge
lim . This also supports the interpreta-

tion of both limit values as an analogon to the binder content, with absence of
a binder denoted by high values of ϕ

S,merge
lim . In a further advanced model, the

binder content could be implemented as an additional particle property, which
is subject to diffusion. By the local binder content, the stickiness of two primary
particles could be derived.

The final example in Figure 7.12 compares a suspension of small primary
particles (upper row, about 2 µm diameter) with structures obtained by large
primary particles (approx. 6 µm, below). Eckhard et al. (2014) observed higher
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microporosities for a larger primary particle size. According to their analysis,
this is caused by the flow behaviour and that large particles hinder each other
during drying so that the shell is rather loosely packed. This also appears within
the graphs, which show a reduced microporosity in case of the small particles.

50 µm

Figure 7.12: Variation of primary particle size: small (upper row), large (below),
ϕ

L,merge
lim /ϕS,merge

lim combinations of 0.1/0.0 (left) and 0.0/0.4 (right).
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7.4 Effect of the Temperature

Harsh drying conditions are expected to lead to an earlier crust formation. Cap-
illary forces are less able to pump liquid to the surface and to drag solid particles
into the droplet. A stable crust should be present at an earlier stage of drying,
at a larger droplet radius. In Figure 7.13, the drying gas temperature was varied
between 75 and 300 °C for different ϕ

L,merge
lim /ϕS,merge

lim settings. The previously
stated dependency of the final structure on the merging threshold parameters is
visible, but the granule size remains practically unchanged if the temperature
is varied. Approximation of the final diameter by the granule’s minimum and
maximum extent in x and y direction shows virtually identical values. Even at
very mild drying conditions with T G = 75°C, the droplet diameter appears sim-
ilar to those at elevated temperatures. Besides the otherwise promising results,
the outcome of this simulation shows that the major work package for further
model development lies in a proper representation of the surface tension and
wetting behaviour on the detailed scale. A small structural effect is visible in
the last row, in which the minimum solid content for merging was ϕ

S,merge
lim = 0.4.

This regime, which is prone to crumpling, provides a rather round shape for the
highest temperature in comparison to the lower ones. A second simulation ex-
hibit the similar tendency that higher temperatures may lead to a rather round
shape in the simulation, Figure 7.14. In the model, crumpling takes place at the
same time as crust development and is thus partially prevented by harsh drying
conditions inducing a slightly earlier crust formation.

As the effect of the drying gas temperature is practically invisible, a numeri-
cal experiment was undertaken, in which drying was strongly scaled by a mod-
ified d2 law only for the first drying stage. This was implemented by setting
a predetermined drying rate, referring to receding of a flat surface (in units of
m/s). Multiplication with the density yields a mass flux per unit area. This
value is scaled by R0

R so that the d2 law is fulfilled (fluxes in an LDF approach
also scale with 1

R due to the dependency of heat and mass transfer coefficients
on the droplet radius as characteristic length). Distribution amongst surficial
particles is again performed by the CSF approach (multiplication with

∣∣∣∇c
[c]

∣∣∣, sec-

tion 5.7.2). The different results are compared by the total mass m∗ = ∑i mevap,i

of liquid within the droplet in Figure 7.15. As the time to full evaporation is
very different, the instants of time of different curves have been scaled so that
the x-axis is normalised. After initially strong drying, surface coverage by pri-
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Figure 7.13: Effect of the drying gas temperature on the morphology in the
model: Within each row the temperature was varied in steps of 75,150,225,
300 °C (from left to right),
first to third row: ϕ
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S,merge
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Figure 7.14: Effect of the drying gas temperature for a different geometry:
In comparison to Figure 7.13 only the temperature is varied at constant
ϕ

L,merge
lim = 0.0, ϕ

S,merge
lim = 0.4.
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Figure 7.15: Strong variation of drying conditions by a modified d2 law at dif-
ferent receding rates of the surface.

mary particles hinders further evaporation, because only the first drying period is
modelled. With full surface coverage, the curves approach a horizontal tangent.
This happens the earlier, the higher the drying rate is. The principle physical
behaviour is hence represented by the modell, yet only for very extreme varia-
tions. The lowest and the highest curve differ in two orders of magnitude of the
drying rate, which corresponds with a temperature difference between droplet
and gas being 100 times higher (referring to the quasi-equilibrium of heat and
mass transfer, in which the heat flux from the gas directly determines the drying
rate).

The reason that this effect is so little covered lies in the current weak spot
of the model, the implementation of surface tension and wetting. This result
had been obtained in an intermediate model stage using isotropic forces, but the
outcome would not be improved with anisotropic, surface-lateral forces as the
temperature variation showed previously. The model not only suffers from a
lack of dynamics and scaling in wetting, which directly affects capillary pump-
ing, it is also a matter of resolution and the restriction to two dimensions. When
two suspended solids approach each other at the drop’s surface, the gap between
those primary particles becomes very narrow. At some point only a single layer
of liquid particles remains in between. This single particle is indeed pulled to-
wards the surface, but the force is not high enough to drag a chain of liquid
particles through the gap. This is also due to the reason that the wetting forces
along both curved primary particles forming the gap point to partly opposite di-
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rections. The liquid particle needs to "decide", on which solid’s surface it should
move along by a slight difference in attraction. Hence, the net capillary force
becomes small so that the particle is effectively stuck. Concerning such particle
alignments, it must be clearly stated that the setup runs out of the typical appli-
cability of SPH, which still is a continuum based method - the term "smooth" is
already indicated in its name. This issue will for some part be overcome by a
finer resolution, but remains in principle as long as surface tension and wetting
effects are not incorporated in a better way and as long as simulations are carried
out in 2D.

The problem of two-dimensionality could be treated by introducing an addi-
tional diffusivity through primary particles. By this, liquid might be transported
to the remaining particles in the gap so that evaporation of these particles is less
effective and they remain longer at the surface. This would retard crust forma-
tion. As a second variant, the diffusing liquid would not be attributed to other
particles but evaporate at the solids surface. In doing so, the temperature in the
vicinity of remaining liquid particles at the surface would become smaller and
thus diminish their drying rate. Mass loss would be transferred to the inner part
of the droplet so that shrinkage and on the other hand shell growth from the
inside would be more realistic.

7.5 Variation of the Resolution

The validation examples of wetting and surface tension showed a significant
effect of the SPH particle size on the physical effects. From Figure 7.16 this does
not appear to be such a distinct effect, when structure evolution is simulated.
One reason for this is that the influence of the wetting behaviour is generally
underestimated in the model as the previous example of temperature variation
showed. The final structures exhibit a similar shape and porosity and are mostly
equal in size. This is also indicated by the time of complete drying, which is
very close together for most structures and mostly scatters within less than two
percent (Table 7.1). As the amount of total heat transfer per time depends on the
surface, hence the radius, this is an indicator for a similar evolution of surface
over time. The three coarsest and the finest resolution exhibit a slightly longer
drying time, indicating random scatter in a fairly low range and not a systematic
behaviour. Whilst this kind of study has not been performed on a large number
of geometries, the outcome of this variation is yet promising.
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Table 7.1: Time until full evaporation

l0 [µm] particle nr. tdry [s]
0.9 21823 0.2840
1.0 17695 0.2780
1.1 14599 0.2755
1.2 12283 0.2765
1.3 10435 0.2830
1.4 9019 0.2750

l0 [µm] particle nr. tdry [s]
1.5 7861 0.2750
1.6 6925 0.2745
1.8 5461 0.2790
2.0 4429 0.2860
2.2 3643 0.2825
2.4 3067 0.2900

50 µm

Figure 7.16: Variation of the SPH particle resolution: particles’ length scale l0
varied from 0.9 to 1.8 µm in steps of 0.1 µm, additionally 2.0, 2.2 and 2.4 µm;
ϕ

L,merge
lim = 0.0, ϕ

S,merge
lim = 0.0.
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7.6 Drying of a Microporous Structure

The final examples concern drying driven by diffusion in the gas. The principle
has been laid out in section 5.7.5. The domain is flat and periodic in x-direction.
It is bounded below by a solid layer. Solid objects of different size are irregularly
distributed within the domain and spatially fixed. These solids are covered by a
water layer, which is exposed to air at its upper side. The upper air boundary is
set to a constant vapour pressure of zero. Discretisation of solids and liquid is
performed by SPH, the gas is implemented as an underlying grid.

Figure 7.17 shows the initial model state. The domain size was 160 times
80 µm. The particle spacing and the mesh size of the gas were set to 1.33 µm.
The temperature was 60 °C and the diffusion coefficient in the gas chosen to
3×10−5 m2/s. Values of the liquid phase were set to those of water. Gravity
was neglected, as surface tension and wetting dominate on the micro scale.

The course of a simulation is shown in Figure 7.18 for 0° contact angle. Af-
ter initial evaporation of the upper liquid layers, wetting effects begin to play a
role. The gap over the periodic boundary is depleted first, as the other distances
between solids are smaller. For a longer period of time, the liquid remains in
upper, rather narrow gaps. The evaporation rate is increased, as capillary pump-
ing constantly drags towards the upper solids, where the gradient for diffusive
vaporisation is higher. With receding water, evaporation is slowed down.

Figure 7.17: Initial setup for diffusive drying of a microstructure: fixed solid
particles (grey) and water (blue) discretised by SPH, the gas (blue layer) by an
underlying grid.
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Figure 7.18: Progress of diffusive drying over time in steps of 100 ms, except
for the first frame at 2 ms; colour coding of liquid particles: evaporation rate,
gas: vapour pressure.
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Figure 7.19: Detailed pictures of diffusive evaporation at 400 and 800 ms, colour
coding of liquid particles according to the evaporation rate, gas corresponding
to the partial pressure of water.

263
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Figure 7.19 shows the process in more detail for the frames of 200 and
400 ms. The colour coding of the liquid depicts the evaporation rate. It is well
visible that evaporation is mainly happening at the upper liquid surface. The
vapour pressure in the gas phase is higher in the lower regions and therefore the
driving force for evaporation diminished, especially, when the gas is partially
trapped in pores. As the diffusive distance is smallest at the upper water surface,
water is constantly removed there. This evokes a continuos flux of liquid from
below and the side to the upper region due to capillary pumping. The model is
quite capable of reflecting this behaviour, which in particular becomes visible
in an animated view showing continuous particle motion towards the surface.
Some minor issues remain. For one thing, there is a tendency to form long
chains of three particles width. If a particle within this chain is removed by
evaporation, pairwise forces and incompressibility exert a strong drag to close
the gap within this chain immediately. The thickness of such a filament is typ-
ically three particles, reflecting the neighbourhood radius. This appears as a
typical behaviour of pairwise forces (the same mechanism can be observed for
isotropic forces). As these forces are zero for the particle spacing of l0 and at-
tractive for larger distances (compare formula 5.73), removal of a particle will
suddenly leave open space so that long range attraction between both surficial
neighbours besides the newly formed gap is no longer outruled by a blocking
particle in between. A second peculiarity is visible in the lower picture. Along
the solid surface there is a chain of particles which covers this surface. Break-up
of the chain due to receding liquid is strongly retarded in the simulation. This
is in principle the analogon to the long liquid filament just with the solid phase
involved. It exhibits the same tendency to close a gap - or in this case rather
no to let the chain be opened. This observation may be helpful for the future
definition of pairwise forces and their dependency on the distance, as it displays
the effect of single particle pairs’ contributions.

The water position for different contact angles after 800 ms is drawn in Fig-
ure 7.20. It is not surprising that 0 and 30° contact angle come out similarly, as
the discrete particle structure is not able to resolve such low angles. The water
distribution at 90° wetting angle is however surprising. The picture shows again
a long and stable water filament in the upper middle. It is such an irregularity
which exerts a strong drag on the rest of the liquid. With the regime being only
partially wetting otherwise, such a filament continuously drags water out of the
rest of the pore structure. It is also visible that this really is an artefact as the
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Figure 7.20: Comparison of diffusive drying at 800 ms, contact angle in the
graphs (from upper left): 0,30,60,90, 120°.
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Figure 7.21: Time to full evaporation vs. contact angle for three different ge-
ometries.

curvature is unrealistically small at the point, at which the filament goes into
the liquid bulk. The liquid with 120° contact angle is rather pushed downwards
so that the diffusive length is effectively maximised. Comparing the times until
full evaporation for three different geometries (7.21), the model shows in av-
erage the behaviour that with smaller contact angles water is more likely to be
dragged towards the surface and evaporates faster. The dynamic at small contact
angles is however not satisfactory as already discussed.

The approach of a coupled SPH-grid model is an efficient way to integrate
a third phase, especially, when equations on the grid can be solved implicitly
at large time steps. To the author’s knowledge this is its first application to
vapour diffusion and evaporation. Besides the already discussed deficiencies of
the surface tension approach, the model represents the underlying physics very
well.

A further potential of SPH-grid coupling lies in the calculation of a smooth
colour function over both grid and particles for a CSF implementation of surface
tension forces in a free surface SPH solver. Even an extension to wetting phe-
nomena does not seem out of reach. This could be done by treating the grid as
SPH particles like in the diffusive coupling in the present model. Alternatively,
the SPH coverage of the grid could be used in order to determine the bound-
ary according to a volume of fluid (VOF, Hirt and Nichols 1981) reconstruction
for which the CSF approach is well established. The final forces might then be
backtransformed to SPH.
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7.7 Comments on numerical efficiency

SPH is a numerically demanding method. Simulations of finely resolved struc-
tures with initially more than 27000 particles took about two days in a serial
code on Core i7 machines. Parallelisation of the method is possible and has
been performed many times before. Calculation of rigid bodies over different
compute nodes is a bit tricky, but not an unresolvable task. Yet, an extension
to 3D will increase the computational load tremendously as it both involves a
much larger number of particles and a strongly englarged discretisation stamp.
Calculation of the complete drop in 3D is therefore out of the reach. Structure
simulations in three dimensions should rather be applied to representative parts
of the overal domain.

Moreover, the coupling of rather slow (drying) and fast (surface tension)
physical effects is challenging. Further development of the method should there-
fore concern ways of an increased computational efficiency.

267





8. CONCLUSION

Within this work two new single droplet drying models have been developed. In
the first part an enhanced model of solution drying has been derived for the cal-
culation of polymerisation in drops. Chemical reactions are either considered by
the method of moments or the simpler quasi-steady-state-assumption. Special
regard needs to be paid on conservation of mass in the reaction-diffusion system
and on the proper application of moments’ / polymer density diffusion. The liter-
ature approach converges to a uniform polymer of constant chain length. Based
on Maxwell-Stefan equations a new approach was derived, which retains spa-
tial gradients in polymer properties. The model reveals new insight into spray
polymerisation processes. The previously proposed concurrency of drying and
chemical reaction was not confirmed. Drying reduces the temperature within
the drop that much that chemical reactions scarcely take place. Polymerisation
therefore happens for the largest part in bulk, nearly independent from the sol-
vent content in the feed. Moreover, evaporation of monomer strongly decreases
the yield, if not countered by additional measures. If the monomer saturation
in the drying gas is elevated in order to circumvent this behaviour, reactive ab-
sorption of monomer takes place. Differently to drying, the process does not
require a high amount of energy as long as a certain level of polymer yield is
achieved. As the process happens for the largest part under (near) bulk condi-
tions, modelling becomes partly uncertain, because many literature kinetics are
measured within solvent. The simulation results are therefore to some degree
speculative and only qualitative statements about the process could be made
within this work.

A deeper analysis of process variants by means of numerical DoEs showed
that spray polymerisation in presence of a solvent is scarcely applicable, as the
solvent content within the drop is strongly lowered by evaporation. As the reac-
tions are performed in bulk anyway, it appears reasonable to leave out the sol-
vent as long as precipitation is not a concern. Two process variants for bulk poly-
merisation appear feasable. If the drying gas is just recirculated, the monomer
content within the gas will adapt, until the balance between monomer evapora-
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tion and uptake by reactive absorption in droplets is in an equilibrium. By this,
a yield of 100 % can be achieved theoretically. This, however, involves large
monomer saturations in the drying gas with additional challenges like the possi-
bility of thermal initiation or condensation at cold spots. Furthermore, reactive
absorption needs to be stopped before the droplets leave the dryer, which may
involve additional steps. The second alternative is to set the monomer satura-
tion in the gas to a lower value, thus avoiding unwanted side effects at the cost
of a significantly lower yield and an additional step of monomer recovery from
the gas. Slight pre-polymerisation before atomisation induces a skin of low per-
meability at the droplet’s surface, which reduces monomer evaporation and thus
increases the yield to some extent. This involves further challenges like atomisa-
tion of a polymer rich solution and prevention of clogging. The findings within
this work are of general nature and reveal most promising paths for further ex-
periments and research on spray polymerisation. Still, the conclusions need to
be confirmed experimentally.

In the second part, a novel approach of single droplet modelling of suspen-
sion drying has been derived, which aims at a direct calculation of structure
evolution during drying by incorporation of the underlying physics on a de-
tailed scale. This was realised by the meshfree SPH method, which has not
been applied to droplet drying applications until now. Therefore, basic concepts
like the incorporation of linear driving force-based heat and mass transfer into
the method have been derived. The final model takes the hydrodynamics of an
incompressible fluid consisting of a liquid phase and solid primary particles, sur-
face tension and wetting effects and heat and mass transfer into account. The
second drying stage has been implemented as droplet boiling. The evolution of
a crust at the drop’s surface has been considered by merging of primary particles
in close contact to larger crust segments. Whereas simple merging based on a
threshold distance between particles produces very porous structures, the model
behaviour can be adjusted with local conditions at the point of contact between
primary particles. Connecting crust solidification to a maximum local water
or a minimum solid content introduces drying related parameters, which adjust
the final structure obtained by simulations. The dependency of predicted prod-
uct morphologies on these parameters can be interpreted in a physical manner
by the binder content and reflects experimental findings. An additional example
showed the feasibility of the approach to model diffusive drying within a porous
structure. Diffusion in this case has been modelled by addition of the gas phase
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as an underlying grid. The combination of meshfree and meshbased methods
is efficient and enables the SPH method to model further problems. The weak
point in the current model proved to be the approach of surface tension and
wetting, which has been implemented by an atomistic view of attractive and re-
pulsive forces. While the literature approach involves net forces, which do not
add up to zero on flat surfaces, the newly developed method of surface-lateral
forces corrects this behaviour and leads to significantly improved results. Still,
scaling the forces over different numerical resolutions remains an issue and the
particlish nature of atomistic forces in a smooth continuum method is a general
drawback of this approach. This point needs to be concerned in further work
on this topic. Nevertheless, the presented model provides a novel approach in
single droplet drying models, which allows for a detailed simulation of structure
evolution and underlines the potential to simulate the morphogenesis of particu-
late powders in droplets from first principles.
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Appendix

A. NUMERICAL REGRESSION

BY GAUSSIAN PROCESSES

A Gaussian process is a generalisation of the Gaussian probability distribution
(Rasmussen and Williams 2006, p. 2), which covers features of functions. In
simple words, if a value y depending on x is predicted at a certain value xp, the
corresponding value yp can be considered as the mean of a Gaussian distribu-
tion in y direction with confidence bounds according to the model’s standard
deviation. Hence, with a probability according to a Gaussian distribution, y val-
ues different to yp are possible at xp as well. In the general view of a Gaussian
process, multivariate Gaussians are applied in which the average ~µ is a vector
and the standard deviation of the one dimensional distribution is replaced by
the covariance matrix Σ. In this covariance matrix the relation between neigh-
bouring points ~x and ~x′ is expressed as a function of their distance, the kernel
function k(~x,~x′). It appears reasonable that with increasing distance the linkage
between two points should become monotonically weaker, which is for instance
the case in the popular radial basis function (RBF) kernel. Problems with cycli-
cal phenomena may be approximated well using periodic kernels though. An
extension to regression on multiple input values just involves calculating the
distance between~x and~x′ in a multidimensional parameter space.

With onedimensional training data (Xt ,yt) provided, the covariance matrix
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Figure A.1: Example of Gaussian process approximation via RBF kernel with
varying length scale of the kernel function (no noise in the GP approximation).

K is calculated as Ki j = k (Xt,i−Xt, j). A predicted value at position xp is then
obtained by calculating the vector of the kernel function between xp and all
training points Xt (each vector row i contains k (xp,Xt,i)) and subsequent multi-
plication with the inverse of the covariance matrix and a vector containing all
training yt values:

yp = k
(

xp, ~Xt

)
K−1~yt . (A.1)

Figure A.1 provides simple Gaussian process approximations for a one di-
mensional distribution of a value with variation of the kernel’s length scale. The
solid line is the approximated function, whereas dashed and dashed-dotted lines
refer to the contributions of the single training points. These curves are cal-
culated with respect to the points Xt,i using k (x,Xt,i) multiplied with the i-th
element of K−1~yt . As the latter one solely consists of constant values - the co-
variance matrix K and the training data yt , the individual curves just depend on
k (x,Xt,i). Obviously, these single contributions have a Gaussian shape as well,
which is a kernel property and not a common feature of a Gaussian process. The
underlying RBF kernel is essentially a Gaussian itself, but other kernels would
provide different shapes. With a very short kernel length scale, only a small
vicinity around training points is approximated correctly whereas the predicted
values tend to zero for distant points in between. However, the training data is
predicted perfectly with R2 = 1 and the inadequacy of this approximation would
not be visible in a ypredicted over ytraining plot. The best kernel parameter(s) are
typically detected by optimisation/maximisation of the marginal likelihood of
the Gaussian process approximation.

Typical data contains errors which needs to be considered by additional noise
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Figure A.2: Example of Gaussian process regression: original function and sam-
pling points with errors (left), radial basis function approximation without (mid-
dle) and with noise (right).

in the kernel function. This is realised by addition of σ2
n to the diagonal elements

of K, when σn is the noise level. Figure A.2 shows automated fitting of Gaussian
processes to optimal kernel parameters with and without noise. The left frame
contains the original function, which is in fact a second order polynomical with
the sample points exhibiting some error. The fit in the middle frame without
noise matches the training points perfectly with R2 being one, but exhibits a dis-
torted shape. In the right frame, the predicted curve does not match the training
data in absolute perfection (thus R2 < 1), but the shape of the curve much more
resembles the original data. The gray areas around the curves denote the local
one sigma interval of the approximation in y direction. As the predicted values
are normally distributed, the solid line represents the most probable y values.
Other courses of the curves are possible based on the same Gaussian process
parameters, yet with a smaller probability. Two such sample curves are drawn
as dotted lines in each graph. The one sigma interval therefore contains ∼ 68%
of possible predicted data for the respective Gaussian process.

Whereas the necessity of error treatment is obvious for experimental data,
addition of noise in Gaussian process regression of numerical DoEs is also ad-
visable, even if the numerical data is smooth and without scatter. As the ex-
amples show, a perfect match to training data does not necessarily mean that
the approximation covers the course of a value between training points properly.
The more input variables are variated, the more difficult it becomes to cover the
complete parameter space. Just like in regressions using high order polynomi-
als, artificial extrema may result from overfitting. The regressed data therefore
needs to be cautiously evaluated with respect to physical meaningfulness.
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It is beneficial when the values in a regression are normally distributed. If
this is not the case, various transformations can be used to improve the data.
Regression is then applied on the transformed data. Prediction is also performed
in the transformed space with a backtransformation needed in order to obtain the
predicted values. Typical transformations are the Box-Cox (Box and Cox 1964)
and Yeo-Johnson (Yeo and Johnson 2000) formulae. Both follow a power law,
with the Box-Cox transformation being only applicable to positive data, whereas
the Yeo-Johnson approach modifies the Box-Cox formula to negative values.

The numerical DoEs in this work were prepared with the maximin construc-
tion from the diversipy package (Wessing 2015) and evaluated using the scikit-
learn (Pedregosa et al. 2011) package, which provides various regression and
transformation methods and automated parameter estimation. The following
workflow was applied in the regression of a value y on predictors x:

• Distribute x values via maximin construction.

• Simulate droplet polymerisation in 0D and 1D for all parameter combina-
tions with output provided each 0.1s. Postprocessing provides characteri-
cal values as training data for the regression.

• Apply x data (predictor) transformation on training data according to Yeo-
Johnson.

• If y values are strictly positive, apply Box-Cox, otherwise Yeo-Johnson
transformation on the y training data.

• Fit via a Gaussian process with an RBF kernel by the use of the standard
marginal likelihood optimisation of scikit-learn with following adjustable
values: RBF kernel length scale, constant prefactor before the RBF ("con-
stant kernel") and noise added to the RBF ("white noise kernel").

• Predict values using Yeo-Johnson transformation of desired x values and
backtransformation of the predicted y values.

• If desired, calculate model bounds (95%=̂ypredicted ± 1.96σ ) within the
transformed space and backtransform the obtained bounds.

Transformation of predictor values and fit/prediction can be performed within
one step using scikit-learn’s Pipeline objects, wheras transformation and back-
transformation of the predicted data needs to be undertaken seperately, if model
bounds are to be obtained, too.
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B. FINITE VOLUME (FVM)
IMPLEMENTATION OF THE

DROPLET POLYMERISATION

MODEL

The finite volume method utilises integral formulations of conservation laws
(Ferziger and Peric 2007, p. 43). Values are approximated inside discrete control
volumes. This enables the method, contrarily to the point approximation of
finite differences, to conserve physical properties such as mass or energy. The
principle course of action can be derived by considering a conserved extensive
quantity Y inside a control volume Vc with y = Y

Vc
being its intensive value. The

respective property changes by sources/sinks σy,c inside the volume c as well as
by fluxes f b

y,c over the volume’s boundaries b

dYc

dt
=Vcσy,c +∑

b
f b
y,cAb

c , (B.1)

where Ab
c is the area of a boundary b. If the volume changes due to grid adapta-

tion, an additional term needs to account for the interface motion vb
c

dYc

dt
=Vcσy,c +∑

b
f b
y,cAb

c−∑
b

yb
cvb

cAb
c . (B.2)

The change of an intensive property inside volume c follows from

dYc

dt
=

d (ycVc)

dt
=Vc

dyc

dt
+ yc

dVc

dt
(B.3)

dyc

dt
=

1
Vc

dYc

dt
− yc

Vc

dVc

dt
. (B.4)
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The droplet can be approximated by spherical shells around a small, centred
sphere as its innermost volume. A shell c is characterised by its inner and outer
radius Ri

c and Ro
c , expressed by the dimensionless coordinate ξ as

Ri
c = ξ

i
cR Ro

c = ξ
o
c R (B.5)

depending on the droplet radius R. Radii of adjacent shells are connected by

Ri
c = Ro

c−1. (B.6)

If the moving boundary problem is considered as a uniformly shrinking/expanding
mesh, the change of a cell volume dVc

dt can be expressed as a function of the drop-
let radius

dVc

dt
=
(

ξ
a
c

3−ξ
i
c

3
)

4πR2 dR
dt

(B.7)

1
Vc

dVc

dt
=

3
R

dR
dt

. (B.8)

The interface velocity at dimensionless position ξ is ξ
dR
dt . The change of a

concentration c j,c is therefore

dc j,c

dt
=

3
R

ξ i
c

2

ξ o
c

3−ξ i
c

3

[
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R
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.

(B.9)

The first two terms account for convective and diffusive transport across the
inner and outer shell boundaries. Values in the square brackets need to be cal-
culated at the boundary positions between volume c and its adjacent cells. The
third term is the source term due to chemical reactions. The second row accounts
for transport due to the moving mesh (matter is transported from an inner cell to
an outer one, if the mesh is shrinking) in the first two terms. ci

j,c and co
j,c denote

the concentration of species j at the inner and outer shell boundary of volume
c. The third term accounts for the droplet’s volume change / shrinkage (if one
species evaporates and the droplet shrinks, the concentrations of other species
will increase). The interface motion terms and the volume changing contribu-
tion in the second row are very similar and of opposite sign. In fact, for uniform
concentrations both expressions are equal and cancel out. Still, both contribu-
tions apply to different processes, as the first part accounts for cell motion across
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the numerical domain and the second one for cell shrinkage/expansion and its
effect on intensive properties.

The prefactors to inner and outer fluxes (bracket terms with superscript i/o)
and the interface motion terms in equation B.9 are constant except for the inverse

of the droplet radius. The coefficients ki
c = −3 ξ i

c
2

ξ o
c

3−ξ i
c

3 and ko
c = 3 ξ o

c
2

ξ o
c

3−ξ i
c

3 can

be condensed into a sparse n× (n + 1) divergence operator matrix KFV M
div in

which the rows apply to the finite volumes and the columns refer to the fluxes
over the volumes’ boundaries, if n volumes are used. With inter-cell fluxes and
the convective terms referring to interface motion being summarised in column
vectors of length n + 1 and rates of formation and concentrations in column
vectors of length n, the following vectorised notation is obtained(

dc j

dt

)
=

1
R

KFV M
div

(
cconv

j vN + JN
j
)
+
(
rF

j
)
− 1

R
KFV M

div

(
cmesh

j ξ

) dR
dt
− (c j)

1
R

dR
dt

.

(B.10)
The inter-cell concentrations concerning convection (superscript conv) and mesh-
motion (mesh) need to be evaluated seperately as discussed in section 3.5.3.

Based on this matrix, the reaction induced velocity can be solved in a loop
following

vR
i+1 =

(
−Kdiv

FV Mi,i
vR

i −R

(
∑

j
rF

ji
MWj

ρ0
j

))
1

Kdiv
FV Mi,i+1

. (B.11)

The zeroth element in the velocity vector refers to the droplet centre with the
boundary condition vR

0 = 0, the zeroth elements of the rate of formation vec-
tors to the innermost volume. The density changing reactions are considered
according to equation 3.105.

Likewise, an additional volume correction can be implemented based on the
constraints that ∑ j ϕ j

!
= 1 and ∑ j

∂ϕ j
∂ t

!
= 0:

vcorr
i+1 =

(
−Kdiv

FV Mi,i
vcorr

i −R

(
∑

j

∂ϕ j

∂ t
+ kcorr

(
∑

j
ϕ j−1

)))
1

Kdiv
FV Mi,i+1

.

(B.12)
Beforehand, the current volume fractions ϕ j are calculated from the present con-

centrations and their changes over time from ∂c j
∂ t after all differential equation

terms have been evaluated. The first summation term accounts for violations
of conservation in the currently calculated change of concentrations over time.
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This may be due to peculiarities in diffusive higher moment transport, which
is in fact of convective nature as explained in section 3.5.4. Ideally, ∑ j

∂ϕ j
∂ t

should become zero after application of this corrective contribution, apart from
discretisation errors. The second term corrects the accumulated violation of
conservation in the past. The prefactor kcorr acts as a proportional factor which
controls the ratio of correction over time. A value of 100 worked satisfactorily.
After calculation of vcorr, an additional convective term using this velocity is
added to the already evaluated ∂c j

∂ t . It needs to be stressed that such a correction
should be used as a "last measure", as it implicitly fixes hidden errors in the im-
plementation and thus makes it difficult to find and correct those. In most cases,
the proposed model equations along with the implementational considerations
in section 3.5 should provide good conservation without this correction.
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ASPECTS OF SPH
C.1 Neighbourhood Search

An SPH discretisation of a mathematical expression contains distance depen-
dent kernel values or derivatives for all neighbouring particles within the cut-
off/neighbourhood radius of a particle of interest. Due to the arbitrary particle
alignment and because of particle motion the discretisation stamp is individual
for each particle and not constant. Each function evaluation of a time integration
hence contains a neighbourhood search, which is one of the most time consum-
ing parts of an SPH simulation. The trivial algorithm, in which a neighbourhood
test is performed on each particle with all remaining particles, is only appropri-
ate for very low particle numbers, as its numerical effort scales by O

(
n2
)

with
the total number of particles n. If the smoothing-length and hence the cut-off
radius are (nearly) constant, linked lists are a very effective way to improve the
efficiency of the neighbourhood search. The case of a strongly varying smooth-
ing length is not subject to this work, but can be treated by hierarchical tree
algorithms (Hernquist and Katz 1989). An additional technique are Verlet lists,
which may be combined with linked lists or a tree search as well.

C.1.1 Linked List

The algorithm of a linked list has been introduced by Hockney, Goel, and East-
wood (1973, 1974) for Molecular Dynamics (see also Schofield 1973) and can
be adapted easily to SPH simulations. The computational domain is divided
into cells of an edge length being equal or greater than the largest cut-off radius.
Each particle is unambiguously assigned to one cell. Neighbouring particles
can only be contained in the same or in adjacent cells. The number of possible
neighbours of a particle thus is restricted and not affected by the total number
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of particles anymore. Hence, the numerical effort grows with O(n) (Hockney,
Goel, and Eastwood 1974; Schofield 1973).

C.1.2 Verlet List

A Verlet list (Verlet 1967) is an alternative approach in order to restrict the num-
ber of possible neighbours, which have to be tested. Contrarily to a pure linked
list, which only contains the cell-particle connections, the IDs of neighbouring
particles themselves are stored in a list. The Verlet list itself can be generated
efficiently by a linked list algorithm (Domínguez et al. 2011). Additionally, the
kernel values and its derivatives can be stored in a Verlet list, which is sensible
if these values are multiply used in different loops. This is the case in corrected
schemes (Domínguez et al. 2011) or for ISPH. If the radius used for calculat-
ing this Verlet list is larger than the cut-off radius, the list can be applied as a
pre-selection of possible neighbours in several subsequent time-steps.

The implementation of the current model combines a linked list for the neigh-
bourhood search with the storage of repeatedly used values in Verlet lists.

C.2 Performance Aspects, Memory Alignment

The SPH neighbourhood contains a large number of connected particles, which
are not constant but may change due to particle motion. Memory cells con-
taining particles’ data are therefore accessed in a non-continuous way, which
generally is a disadvantage as pre-fetching of values cannot be performed with
the same efficiency as for a continuous memory access. Storage of particle
data in traditional C or Fortran like arrays hence allows a faster memory access
compared to data being collected in high-level objects, as the particle data align-
ment is advantageous. This holds especially, if objects are themselves accessed
through high-level data structures like vectors. The present code was written in
C++ and made use of objects and vectors, but employed traditional C arrays for
storage of particle values.

A linked list of the SPH neighbourhood can be used further to optimise mem-
ory access. If particles contained in single cells of a linked list are aligned
in memory as well, looping over neighbouring particles will refer to memory
cells which are not necessarily continuously aligned but exhibit a minimised
distance in between. A regular check of the particle alignment in memory and
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rearrangement of data if necessary helps to harness modern machine’s caching
and prefetching capabilities at least partly. Especially rearrangement of the ini-
tial, non-optimised particle distribution in memory sped up function evaluations
in the numerical model noticeably in the present code.

In order to provide more data in a continuous way, neighbourhood values as
the kernel Wi j, the interparticle distance ri j and the kernel derivative dWi j

dr as well
as their respective vectors and the term mi

ρi
can be stored in Verlet lists. This way,

these values are aligned in the succession of the neighbourhood and accessed in
a continuous way when looping over neighbouring particles. The values, which
are subject to the respective SPH operator, are however not distributed without
gaps in their memory allignment so that usage of modern CPU’s vector units
(the various SSE and AVX variants) is limited.

Storage of frequently used values can additionally decrease the numerical
effort, if these values are costly to evaluate. As division and square-root are
amongst the most expensive mathematical operations, it is advisable to store
respective values within a Verlet list as well. This concerns the inverse of the in-
terparticle distance ri j, which occurs in the denominator of the Laplace operator
in Brookshaw’s formulation 5.23 or when interparticle forces are given a direc-
tion by ~r

ri j
. Similarly, storing the pre-computed m j

ρ j
value avoids unnecessary

divisions byρ j.
The amount of square-root evaluations within a neighbourhood search can

be minimised, if the test, whether a particle j is within the neighbourhood radius,
is not performed with respect to the particle distance ri j, but the previously
calculated value r2

i j = ∑k rα
i j

2 (α denoting the spatial dimensions).
Unnecessary computations can be avoided, if within the Brookshaw div grad

operator 5.23 not the often stated form

∇
2 fi == ∑

j
2

m j

ρ j
( fi− f j)

~ri j∇iWi j

r2
i j +η2

div
(C.1)

is used, which involves an unnecessary scalar product of particle distance and
the kernel gradient, but the mathematically equivalent form

∇
2 fi = ∑

j
2

m j

ρ j

fi− f j

ri j +ηdiv

dWi j

dr
= ∑

j
2

m j

ρ j
( fi− f j)Fi j. (C.2)

The term Fi j =
1

ri j

dWi j
dr can additionally be precomputed and stored in a Verlet

list. Dropping of ηdiv, if possible when particles do not coincide, alternatively
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allows for the computation with a previously stored inverse of ri j in order to
skip the division operation.
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