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1

Lower dimensional models in elasticity

With the purpose of fixing notation and nomenclature, we begin by quickly
reviewing some fundamental notions in elasticity theory.1.1We then dis-
cuss dimension reduction in this context and its mathematical justification.
We continue with a brief review of the literature where Γ-convergence
is applied for this purpose, to conclude with an outline of the present work
and some acknowledgements. Please refer to Appendix B for the nota-
tion used throughout this work.

1.1 Elasticity, in a rush

The objects of study are a three dimensional body identified with an
open, bounded and Lipschitz set Ω ⊂ ℝ3 and its deformation y: Ω →
ℝ3 under external forces or boundary conditions. When deformations can
be assumed to be very small it is more convenient to use instead dis-
placements w: Ω → ℝ3, defined by y(x) = x + w(x). Throughout we
employ so-called Lagrangian coordinates, i.e. we track the deforma-
tions of material points wrt. the fixed domain Ω.1.2

Subject to external forces or boundary conditions, bodies deform. The
fundamental assumption is that any deformation which is not a rigid body
motion (the composition of a translation and a rotation) stores elastic

1.1. A thorough introduction to elasticity can be found in [Cia88], a gentle one from
the perspective of differential geometry in [Cia05] and a deeper one in [MH94]. For a very
good exposition of continuum mechanics with elasticity as an application see [TM05].

1.2. As opposed to the Eulerian description which instead tracks locations in space.



energy into the body which can be released after the extraneous con-
ditions disappear and this release will bring the body back to its reference
configuration Ω, without inducing any permanent alteration. If this does
not hold, that is, in case the properties of the body are changed after the
forces disappear, one can have viscoelastic or plastic behaviour, but we
will not concern ourselves with these at all. If the reference configura-
tion has zero elastic energy, we speak of a natural state. The elastic
energy can be computed as the integral over Ω of a stored energy den-
sity W , which under mild assumptions turns out to be a function only
of the position x ∈ Ω and the deformation gradient ∇y(x). When this
is the case we speak of a hyperelasticmaterial. The functionW expresses
the relationship between strains (local elongations and compressions in
each direction) and stresses (internal forces induced by the strains). By
our fundamental assumption above, W is non-negative and vanishes for
rigid motions, or W(x,∇y)=0 for all ∇y∈SO(3).
We model the strain by the change in metric induced by the map y

in the body wrt. the flat metric, via the so-called Green - St.Venant's
tensor E(y) = 1

2 (∇
⊤y∇y− I). In terms of displacements w= y− id, this

is E(w) = 1
2 (∇

⊤w + ∇w + ∇⊤w ∇w). Now we can characterise a rigid
motion or rigid body movement as a deformation y such that E(y) = 0,
i.e. ∇⊤y∇y= I, since there is no change in the distance between deformed
points. The set of all rigid motions consists of all maps x ↦ Q x + c
with Q ∈ SO(3), c ∈ ℝ3. Under the assumptions that displacements are
“infinitesimally smaller” than the characteristic dimensions of the body, E
is approximated by the linear strain tensor e(w)≔∇sw=(∇⊤w+∇w)/2
and one speaks of geometrically linear elasticity.
Assuming a smooth energy density and a small displacement gradient

‖∇w‖≪1, one can linearise the energy around the identity:

W(∇y) = W(I)+DW(I)[∇w]+ 1
2 D2W(I)[∇w,∇w]+h.o.t.

≈ 1
2 D2W(I)[∇w,∇w]

=: 1
2 Q3(∇w),

where we used that W vanishes on rigid motions so, in particular W(I)
and DW(I) are zero, and where Q3 is the quadratic form of linear elas-
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ticity. In this setting we speak of linearly elasticmaterials. The form Q3
vanishes exactly over the set of linearised rigid motions1.3

ℛ≔{x↦R x+b:R∈so(3),b∈ℝ3}={x↦ r×x+b: r,b∈ℝ3},

where so(3) is the space of antisymmetric matrices.
In order to define Q3 in terms of the gradients ∇w one needs so-called

constitutive relations between stresses and strains, which may take into
account properties like isotropy (the body exhibits no “preferred direc-
tion” along which responses are different) and homogeneity (the body
has the same behaviour at any material point x ∈ Ω). The symmetries
arising in isotropic, homogeneous materials imply that Q3 has the form

Q3(F)=𝜆 tr2F+2𝜇 |F|2

where F =∇w∈ℝsym3×3 is a strain tensor and 𝜆, 𝜇 are the Lamé constants
of the material.
There are several other couples of physically meaningful magnitudes

related to these two constants, among which we mention Young's mod-
ulus E and Poisson's ratio 𝜈 since we use them in the implementation of
the discretisations. E is a measure of how the body extends or contracts
in response to tensile or compressive stresses. 𝜈 measures the tendency
of materials to compress in directions perpendicular to the direction of
elongation.1.4

1.3. In the setting of very small displacements, one must exclude symmetries (large
displacements) from rigid motions, which means that the rotation matrices Q do not have
the eigenvalue −1 and the maps I + Q are invertible. Then we can define R ≔ (I −
Q) (I + Q)−1 and recover Q with Cayley's transform R ↦ (I − R) (I + R)−1 = Q. This
bijection allows the identification of matricesQ with matrices R, so we can focus on maps
x↦R x + b with R∈ so(3). Additionally, each R is determined by just 3 coefficients, so
there exists a vector r ∈ℝ3 such that R x+b= r × x+b.

1.4. E is defined as the quotients of stresses over strains along each direction, which
reduces to a number for isotropic materials. Since strains are dimensionless, it has units
of pressure N /m2 or Pa, with typical values in the mega- and gigapascal range. 𝜈 is the
quotient of transverse strain to axial strain, with a sign, for each direction. Again, for
isotropic materials this is only a number. Typical values range from 0 for materials with
insignificant transversal expansion when compressed (e.g. cork) to 0.5 for incompressible
ones (e.g. rubber), but materials have been designed beyond this range (auxetic metama-
terials).

1.1 Elasticity, in a rush 9



1.1.1 Some remarks on the energy density

Stored elastic energies require additional conditions to be physically rel-
evant. An essential one is frame invariance, which expresses the funda-
mental idea that properties of physical processes should not depend on
the observer. It is encoded as an invariance of the energy under maps
in SO(3)

W(F)=W(R F) for all R∈SO(3).

Note that frame invariance implies that W cannot be convex,1.5 so that the
problem of minimising the energy under, say, Dirichlet boundary condi-
tions, may have no solution. This is however not an issue for the process
of deriving limit theories using Γ-convergence because in the proofs it is
only required that we have a “diagonally infimizing sequence”, which is
one very convenient feature of the method.
A second condition common in all of continuum mechanics is that

of non-interpenetration of matter, encoded as the requirement that the
energy be infinite whenever the deformation gradient F inverts the orien-
tation of a region. In order to also avoid infinite compression of volumes
it is actually required that1.6

W(F)=∞ if detF⩽0 and W(F)→∞ as detF→0.

The simplest family of nonlinear hyperelastic models are the so-called
Green - St.Venant materials. In these models the strain law is not lin-
earised (geometrically non-linear), so that one uses Green - St.Venant's
tensor, but the stress-strain relations are kept linear (linearly elastic). For
the isotropic case in particular, this means a stored energy density

W(∇y)=𝜆 tr 2E (y)+2𝜇 ||||||||||||||||||||
|||||E(y)||||||||||||||||||||

|||||2.

This choice of W has the ugly property of violating non-interpenetration
but also the desirable one of satisfying natural (from the technical point
of view) p-growth conditions (for p=2):

{ W(F) ⩾ 𝛼 |F|p−𝛽,
W(F) ⩽ C (1+ |F|p). (1.1)

1.5. See e.g. [Cia88, Ex 3.7 and Thm 4.8-1].
1.6. One family of densities satisfying this condition while retaining other necessary

technical properties (lower semicontinuity) consists of suitable polyconvex functions.

10 1 Lower dimensional models in elasticity



These provide (pre-)compactness of minimising sequences and are essen-
tial in many proofs of existence so they have been assumed throughout
the literature. However they fail to be satisfied in other very important
cases [Cia97, p. 349]. It is therefore of interest to relax conditions (1.1)
in some way.
Our framework essentially requires the (inhomogeneous) energy to be

frame invariant and bounded below by the distance to SO(3):1.7

W(x3,F)⩾C dist2 (F, SO(3)),

plus some other technical conditions (Assumptions 2.2) related to the fact
that W depends on the third spatial component. This places us in the non-
convex setting, but with the potential to model physically relevant con-
straints like e.g. non-interpenetration.

1.2 Dimension reduction

Three-dimensional, non linearly elastic bodies under particular boundary
conditions can be governed by complicated equations with no known ana-
lytic solutions. It is therefore fortunate that many physical applications
exhibit a particularly simple structure, with one or two of the dimen-
sions of the domain being relatively much larger than the other, or where

1.7. This lower bound also implies that W0(t, ⋅) cannot be convex: take for instance
A=

⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛ 0 −1 0
1 0 0
0 0 1 ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞
and B=

⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛ 0 1 0
−1 0 0
0 0 1 ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞
. Both are rotations but 𝜆 A+(1−𝜆)B∉SO(3). By the lower

bound we have W0(t,𝜆A+(1−𝜆)B)>0=𝜆W0(t,A)+(1−𝜆)W0(t,B), that is:W0(t, ⋅) is not
convex.

A

B

A B

+

+

W|SO(3)≡0

W0

Fig. 1.1. Non convexity of W0(t, ⋅).

1.2 Dimension reduction 11



the internal characteristics of the bodies (isotropy, orthotropy, ...) or the
loads they are subjected to (planar, compressive, ...) are such that kine-
matical and structural assumptions can be made which greatly simplify
the problem without sacrificing too much accuracy. This reduced com-
plexity can be translated to the equations, providing both ease of interpre-
tation and computation: often, applications require not exact models, but
effective ones, in the sense that they allow predicting how materials and
structures behave under load, within acceptable error margins, with as
little computation as possible and with a reasonable understanding of what
failure modes can be and why. For centuries, analytically simple models
have been employed for which analytic (approximate) solutions could
be computed. Nowadays, even with vast computing resources available
(by today's standards, anyway), many problems remain intractable if their
dimension is not reduced. Examples of two dimensional models in elas-
ticity are plates and shells, whereas ribbons and rods are typical one-
dimensional models.
Given a true (physical, three dimensional) problem, the goal is to

design a model, or approximate problem in a one- or two-dimensional
setting, which within some parameter range and given accuracy approx-
imates the original problem in the sense that any approximate solution
retains the characteristics of the true one which are relevant to the appli-
cation.
An important mathematical feature of dimension reduction is that

questions like existence and regularity, or characterisations of minimal
energy configurations are often possible in situations in which the three
dimensional counterparts have proven to be elusive. Take for instance
nonlinearly elastic, clamped (i.e. with Dirichlet boundary), St-Venant -
Kirchhoff materials: because of the lack of convexity, minimisers are not
known to exist in the general case, whereas in the 2D limit of e.g. elastic
membranes, existence can be shown. A related difficulty is the deriva-
tion of sufficient conditions for minimisers to fulfill the Euler-Lagrange
equations, again often easier in 2D than in 3D.
There are of course drawbacks to lower dimensional models. Obvi-

ously they only provide approximations to the real problems and there
are generally no rigorous estimates of the error made, nor rigorous pro-
cedures to assess their validity in specific applications. Also numerical

12 1 Lower dimensional models in elasticity



methods, which in principle greatly benefit from the reduced number of
degrees of freedom, need to be adapted to avoid issues like shear and
membrane locking or lack of convergence due to bogus boundary condi-
tions or singularities in the solutions. We briefly touch upon these topics
in Chapter 4.

1.2.1 Fundamental questions for low-dimensional models

From the standpoint of applications, the first question to address is that of
designing the right model for any given problem, i.e. of choosing the right
set of equations and boundary conditions for some set of loadings on an
elastic object of given properties. This is of course a problem pervasive
to all of mathematical modeling, but it is certainly acute for plate theories,
where choices abound and application domains have to be determined
with complicated heuristics: how thin is this plate, what kinds of loads
is it subjected to, what are the maximal deformations expected, can we
assume that the strain-stress law is linear, etc.1.8

There are essentially two methods to arrive at lower dimensional theo-
ries. At the core of both classical and current engineering approaches is the
technique of making principled a priori kinematical assumptions defining
the structure of admissible displacement and stress fields. Through great
physical intuition, theories like e.g. Bernoulli and Timoshenko beams,
(linear / nonlinear) Kirchhoff-Love, Reissner andMidlin and von Kármán
plate theories were developed and have been in use for over a century.
The other approach, perhaps more natural from a mathematician's point

of view is to derive the theories from the classical equations of continuum
mechanics. Within this mindset two classical techniqes for plates have
been used [Cia97]:

• Direct estimation of the difference between 3D solutions and some
given 2D solution by means of embeddings or restrictions. This was
done in the context of linear elasticity around the 1950-1970s.

1.8. Furthermore, even when themodels are assumed given and onemust only choose,
many of the same questions arise, for instance if determining the validity of linear elastic
approximations (as opposed to nonlinear or elastoplastic). For just one example of this
in the context of linearly elastic plate theories, see [AMZ02].

1.2 Dimension reduction 13



• Formal asymptotic method: starting from an Ansatz based on physical
intuition or existing theories in engineering, a (formal) series expan-
sion of 3D displacements in terms of the (dimensionless) thickness of
the plate h is made. Higher order terms are discarded and h is sent to
0. Then convergence of the “leading term of the expansion” uh→u is
proved.

An obvious mathematical question is that of rigorous justification of
models obtained in such ways from first principles. Typically this means
starting with the most general variational principle possible (minimisation
of the stored energy density of a general hyperelastic material under phys-
ically realistic conditions) and arriving at the lower dimensional theories
by some notion of variational convergence.1.9 This is the path followed
in the recent literature and in this work.

1.3 Justifying lower dimensional theories

At a high level, the task can be expressed as follows:

Algorithm (big picture)

Given an approximate, lower dimensional problem P0 construct a
sequence of problems (Ph)h→0, converging to P0, such that the solu-
tions uh of Ph converge to the solution u0 of P0.

One must of course define in which sense these objects converge or
are close to each other, and work around the difficulty that the problems
Ph may lack solutions.
It is because of this broad scheme that the notion of Γ-convergence is

so useful. Roughly speaking, if Ph and P0 are (re-)written as minimisation
problems, Γ-convergence of Ph to P0 implies convergence of (approxi-
mate) minimisers uh to the miminiser u0. Note however that, if P0 is an
approximation to some “real” problem Pr, this method does not provide

1.9. Note that this considers the classical equations of continuum mechanics as first
principle. Another, perhaps more “fundamental”, approach is to descend to atomic inter-
actions and their structural arrangements under given potentials. From this discrete setting
limits are computed which directly lead to many continuous theories. For a linear example
see [Sch09].

14 1 Lower dimensional models in elasticity



any fine estimates on the proximity of u0 to ur (or of P0 to Pr for that
matter).1.10
We now set some basic nomenclature and notation and review rele-

vant prior art and how it relates to our contributions. The literature on
the derivation of effective theories via Γ-convergence is vast, so we will
focus on a few cornerstone papers related to plate theories, while briefly
mentioniong related ones.

1.3.1 Previous work

A plate is a three-dimensional elastic body with two special geometric
features: flatness (the middle layer of the body is a plane) and thinness
(one of its dimensions is “much smaller” than the other two).1.11 Because
these features are pervasive in engineering (e.g. in roofs, ship decks and
bridges to cite a few applications), it is of great practical interest to learn
how these bodies behave under different types of loads and conditions.1.12
If external loads act exclusively on and along the midplane, one talks

of plane stress: the stresses and strains remain planar and are uniformly
distributed. When the strain / stress relation remains linear under the
loads considered, so called membrane models are applicable. If how-
ever, loads are transversal to the midplane, in particular normal to it, the
strains and stresses cease to be uniform across the midplane and so called
bending phenomena become relevant. The resulting bending can occur
without extension, i.e. no stretching or contraction of the midplane (pure
bending) or with it (membrane bending or shell-like behaviour). An
inmediate step further is to consider both in-plane and out-of-plane loads,
leading to mixed membrane and bending behaviour, present e.g. in von
Kármán models, which we will focus upon in the coming chapters.

1.10. Other than the following “trivial” one: if the real problem Pr is included in the
sequence (Ph)h→0, i.e. r = h (r ) for some h (r )≪1, then ‖u r − u0‖ = ‖uh(r)− u0‖< 𝜀 if h (r )
is small enough. [P15] suggest doing this systematically for the design of non-standard
sequences Ph yielding both common and novel limit models. Their proposal highlights
the fact that Γ-convergence results are mathematically rigorous ways of obtaining a par-
ticular set of equations from another, which do not show either of them to be physically
sound.

1.11. But not too much: extremely thin materials, like fabrics, are not modelled by
thin plate models.

1.12. As already mentioned, in this work we focus on the elastic regime for multilay-
ered plates, leaving aside plastic, viscoelastic or any other effects.

1.3 Justifying lower dimensional theories 15



A domain Ωh=𝜔× (−h/2,h/2) ⊂ℝ3, the physical plate, is identified
with a hyperelastic body of height h “much smaller” than the lengths of
the sides of 𝜔.1.13 The plane domain 𝜔 × {0} ⊂ ℝ2 constitutes the mid-
layer of the plate. In order to avoid working on a changing domain, a
rescaling x3 = z3 / h is performed to obtain a fixed Ω1. We set zh(x1, x2,
x3) = (x1, x2, h x3) and we consider instead of a deformation ỹ: Ωh →
ℝ3, the rescaled one yh: Ω1→ℝ3, yh(x) = ỹ(zh(x)). We assume that the
body has a (possibly non-homogeneous) stored energy densityW (precise
conditions on W will be specified later) and total elastic energy given
by Eh(ỹ)=∫Ωh

W(z,∇ỹ(z)) dz. We define the energy per unit volume as
Jh=

1
h Eh, which after a change of variables can be seen to be

Jh(y)=∫Ω1 W(x,∇hy) dx,

where ∇h= (∂1, ∂2, ∂3 /h).1.14We are interested in minimal energy defor-
mations for Jh and their properties. The goal is to obtain a functional
in the Γ-limit h → 0, taking functions of x′ = (x1, x2) as input, whose
minimisers solve the equations of known or novel models. We will not be
considering body forces for simplicity, but including them in the analysis
as in [FJM06] is straightforward.

1.3.1.1 Linear models

One of the first applications of Γ-convergence to derive limit theories
in linear elasticity was [ABP88], where the authors arrive at theories
for linearly elastic plates embedded in elastic bodies under a range of
scalings of the plate's energy. However, because they assume convex
stored energy densities (and therefore not frame indifferent) and consider
energies particular to the embedding problem with an additional term for
the surrounding body, they do not recover the classical Kirchhoff-Love
limits nor strong convergence of solutions [Cia97, §1.11].

1.13. Typical values here are h=10−2 or h=10−3, depending on the application.
1.14. One computes first ∇xyh(x) = ∇zỹ(zh(x)) ∇xzh(x) and rearranges to obtain

∇zỹ(zh(x))=∇x yh(x) (∇x zh(x))−1=(∂1, ∂2,h−1 ∂3) yh(x)=∇hy(x). Then Eh(ỹ)=∫Ωh
W (zh(x),

∇zỹ(zh(x))) |Jzh(x)| dx=h ∫Ω1
W (x,∇hyh(x)) dx=h Jh(yh).

16 1 Lower dimensional models in elasticity



Some of those issues were addressed later in [ABP94]. Jumping to
more recent results in the linearly elastic field, we find e.g. justifications
of Timoshenko's beam theory [FP15], of Reissner-Mindling plates [PT07]
and of some polymer gel models [PT17].

Finally, although not an example of a lower dimensional theory,
[DNP02] is interesting for obtaining 3D linear elasticity from the non
linear case, using the geometric rigidity result from [FJM02] (see below).
This is done under a strong coercivity assumption (p=2) which is relaxed
later in [ADD12] to a setting relevant in more applications (p = 2 close
to SO(3) and 1< p⩽2 far from it).

1.3.1.2 Nonlinear models

For the case of strings, the first work to derive a non linearly elastic, lower
dimensional theory with an analysis using variational convergence was
possibly [ABP91]. In the context of nonlinear plates, it is perhaps most
ilustrative to analyze past developments at each scaling of the rescaled
functionals (recall that we have rescaled the domain so we are consid-
ering energy per unit volume Jh=

1
h Eh)

Jh
𝛽(y)= 1

h𝛽 ∫Ω1 W(∇h y).

β = 0: [LR95] is the first derivation of a nonlinear plate theory, inspired
on the work in [ABP91]: a large deformation,1.15 frame-indifferent,1.16
non-linear membrane theory, whose characteristic property is that “non-
linear membranes offer no resistance to crumpling” (concentration of
energy at singular regions due to the confinement to small domains). This

1.15. After de-scaling deformations are 𝒪(1) of h.
1.16. Note that, as we do later, they define frame indifference as the property that for

every F, W (R F) =W (F) holds for all R ∈ SO(3), the group of real orthogonal matrices
with positive determinant. We do not allow for the weaker condition R ∈ O(3), since
models invariant under this group violate the lower bound W (F)⩾C dist2(F,SO(3)) (take
F=−I).
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is proved by characterising a subset of deformations corresponding to
crumpling in the kernel of the limit stored energy function.

β ∈ (0, 1): This is the so-called constrained membrane regime, analysed
in detail in [Con04].

β∈[1,2): To the best of our knowledge, this regime remains not very well
explored, except under certain kinds of boundary conditions or assumed
admissible deformations, exactly as already stated in [FJM06] back in
2006. For instance 𝛽 = 1 is the scaling for thin sheets under compres-
sive Dirichlet conditions [BCDM02]. Following some investigation in the
physics literature of characteristic modes of crumpling, [CM08] find the Γ-
limit for 𝛽∈(0,5/3) under confinement to be trivial using approximations
by piecewise affine, isometric maps (modeling folding, or “origami”). For
the limit case 𝛽 = 5/3 which is conjectured to be the proper scaling for
crumpling under confinement, they prove an upper bound as well as a
lower bound, albeit the latter for specific maps.

β=2: [FJM02] prove the fundamental geometric rigidity estimate which
carries Korn's inequality to the nonlinear setting and utilize it to obtain the
non-linear Kirchhoff theory of pure bending under an isometry constraint.
See Appendix A.3 for the details. This estimate is at the core of most of
the later developments in this area.

β∈ [2,∞): In their seminal paper [FJM06], the authors exploit the quanti-
tative geometric rigidity estimate of [FJM02] in a systematic investigation
of limits for the whole range of scalings 𝛽 ∈ [2, ∞), deriving the first
hierarchy of limit models. They also provide a thorough (albeit suc-
cinct) overview of the state of the art around 2006. The lecture [DFMŠ17,
Chapter 2] by Müller, provides a nice waltkthrough of this paper, as well
as abundant references and open problems as of 2017.

1.3.1.3 Prestrained models

The focus in this thesis is on materials whose reference configuration is
subjected to stresses (one speaks of prestrained or prestressed bodies)
and whose energy density exhibits a dependence on the out-of-plane direc-
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tion (modeling multilayered plates). Examples of these situations are
heated materials, crystallisations on top of a substrate and multilayered
plates. Some of the previous work, again sorted by scaling regime fol-
lows:

β = 2: The study of prestrained plates in this regime begins in [Sch07a]
using the techniques in [FJM06, Pak04]. The essential Ansätze are that
the stored energies are given either as

W(x3,F)=W0(a0(x3)−1F)

or as

W(x3,F)=W0((1+h𝛼 f (x3/h))−1F)

with 𝛼=1 (the full range 𝛼>0 with adequate energy scalings is partially
studied in [Ves12]), which can be thought to model respectively thermal
stress on a single material and stresses in multilayered films due to mis-
matching energy wells but homogeneously changing elastic constants:
notice that the second energy is minimal whenever F∈(1+h𝛼 f (x3)) SO(3)
and W0 does not depend on the out-of-plane coordinate so that the elastic
constants only experience first order changes (the energy well SO(3) is
shifted by vanishing perturbations of the identity). Because of this, the
model does not allow for different materials stacked on top of one another,
since that requires abrupt changes to the energy wells. One can see how
minimisers are modified in the Γ-limit

I0(y)=1𝒜(y)
1
24 ∫S

Q2(II−a1 Id)−a2dx,

where

1𝒜(y)={ 1, y∈𝒜,
∞, else,

and 𝒜 is a suitable class of admissible deformations and a1=a1( f ),a2=
a2( f ) can be explicitly computed. This is a “spherical” or isotropic per-
turbation of the shape tensor II (the second fundamental form of y) in the
bending energy ∫ Q2(II), which is determined by the x3 dependency in the
argument of W0.
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One application is modeling stationary heating of a single material
from below using a monotone f . The top layer would have a smaller
factor inducing it to contract, while the lower layer would tend to expand
(both with a scaling of h𝛼). This would induce a curving of the mate-
rial into a slightly U-shaped figure.

0

/−h2

/h2

x3

Ω

∼h𝛼

Fig. 1.2. Thermal stresses (decreasing f (x3)) induce displacements of order
𝒪(h𝛼).

In this situation the reference state y(x) = x has non-vanishing energy
and ∇y=Id, II(y)=0⇒(. . .)⇒Q2(II−a1 Id)−a2≠0.
[Sch07b] is a natural continuation of this work, with stored energy den-

sities depending on the out-of-plane coordinate W(x3, F) =W(x3, F (I +
h Bh(x3))), thus enabling models of heterogeneous multilayered materials.
This is the approach we follow in Chapter 2, although we later leave the
heterogeneous setting.

β = 4: Very closely related to our work in an interpolating theory (see
Chapter 2), [LMP11] derive the von Kármán equations for prestressed
plates. They assume the domains Ωh to “undergo a growth process”,
described by a smooth tensor ah with det ah(x) > 0. This tensor is pos-
tulated to be one of the factors in a multiplicative decomposition of the
deformation gradient: ∇y = F ah and to have the decomposition ah(x′,
x3) = Id + h2 𝜖g(x′) + h x3 𝜅g(x′), with the scalings relevant for the von
Kármán regime: h2 for in-plane and h for out-of-plane displacements. The
stored energy densityW(⋅) is then taken to depend only on F=∇y (ah)−1.

20 1 Lower dimensional models in elasticity



Note that this generalizes our setting in the case 𝛼 = 3, 𝛽 = 4 for a par-
ticular form of dependence on x3 since we take F = ∇y Z h, with Z h =
I + h𝛼−1 Bh(x3), ‖Bh‖∞ ⩽ C and for h small enough there exists ah ≔
(Z h)−1. Considering a more general dependence on x3 introduces addi-
tional technical difficulties, as will be seen below.

1.3.2 A remark on shell theories

Although we will always work with flat reference configurations, it is
noteworthy that the prestressed reference state that we consider, which
is due to an energy well for the stored energy density which shifts with
the out-of-plane coordinate, can be considered in the framework of non-
euclidean reference metrics for shells.
Shell models assume a reference state with curved geometry. They

have attracted enormous attention and as a matter of fact, most of the
program described above has been carried through for them as well. A
complete reference in the spirit of [FJM06], is [LP09], which gathers
known results for 𝛽⩾2. Closer to our interpolating theory, [LMP14] con-
tinue the work in [LMP11] that we mentioned above and obtain a family
of theories for residually strained thin shells parametrized by an addi-
tional “shallowness parameter” also in the von Kármán regime.

1.4 Outline

In Chapter 2 we present the main contribution of this thesis, which is an
extension of [Sch07b] to the whole hierarchy of models for 𝛽 ⩾ 2, built
upon the core results in [FJM06]. There we also prove the existence of an
intermediate von Kármán regime at 𝛽 = 4 parametrised by a scalar 𝜃 ⩾ 0
interpolating the neighbouring ones 𝛽<4 (linearised Kirchhoff) and 𝛽>4
(linearised von Kármán). In the simplest case of x3-independent stored
energy density and linear internal mismatch, the functional obtained is
(see Appendix B for notation)

ℐvK
𝜃 (u,v)= 𝜃2 ∫𝜔 Q2(∇s u+ 1

2 ∇v⊗∇v)+ 1
24∫𝜔 Q2(∇2v− I), (⋆)
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where Q2 is the quadratic form of linear elasticity.1.17 As can be seen,
this incorporates both membrane and bending energy terms so that one
expects the parameter 𝜃 to “switch” between minimising configurations
for one and the other at some critical value 𝜃c>0. In Chapter 3 we char-
acterise minimisers for 𝛽 < 4 and 𝛽 > 4 and are able to prove uniqueness
in the case 𝛽 =4 under the assumption that we are “close” (𝜃≪1) to the
linearised regime 𝛽 >4.
Finally, Chapter 4 seeks to provide some empirical evidence of this

switching behaviour via numerical experiments. We implement a non-
conforming discretisation with penalty and prove its Γ-convergence to the
continuous interpolating energy (⋆). To compute (local) minimisers we
use a standard discrete gradient flow [Bar15].
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2

A hierarchy of multilayered plate models

The focus of this section is the derivation via Γ-convergence of a com-
plete hierarchy of effective plate models with a prestrained ground state
and inhomogeneous energy density, for scalings ranging from the non-
linear Kirchhoff regime to linearised von Kármán. As mentioned in the
introduction, with some simplifications the prototypical limit functional is
of von Kármán type:

ℐvK
𝜃 (u,v)= 𝜃2 ∫𝜔 Q2(∇s u+ 1

2∇v⊗∇v) dx+ 1
24∫𝜔 Q2(∇2v− I) dx. (⋆)

In Section 2.2 we present our main results. Proofs of lower and upper
bounds are collected in Section 2.3, where we obtain (⋆) and more gen-
eral functionals. In Section 2.4 we show how the von Kármán functional
interpolates between different theories: in the limit 𝜃 →∞ one obtains a
functional with only bending energy and Kirchhoff's isometry constraint,
whereas in the limit 𝜃→0 the limit is an unconstrained, linear version of
von Kármán theory. Finally, in Section 2.5 we prove some density and
matrix representation theorems essential for the construction of recovery
sequences and identification of minimisers in the linearised Kirchhoff
regime.

2.1 The setting

Note. See Appendix B for notation.



As described in Section 1.3.1, we consider a sequence of increasingly
thin domains Ωh≔𝜔×(−h/2,h/2)∈ℝ3 and rescale them to

Ω1≔𝜔×(−1/2,1/2)⊂ℝ3

where 𝜔 fulfills:

Assumptions 2.1. The domain 𝜔 ⊂ ℝ2 is bounded with Lipschitz
boundary.

As a consequence of the rescaling, instead of maps y: Ωh → ℝ3, we
consider the rescaled deformations

yh:Ω1→ℝ3,x↦yh(x)=y(x1,x2,h x3),

belonging to the space

Y≔W 1,2(Ω1;ℝ3).

For each scaling2.1

𝛼∈(2,∞),

and for all deformations y∈ Y , define the scaled elastic energy per unit
volume2.2:

ℐ𝛼h(y)=
1

h2𝛼−2 ∫Ω1 W𝛼
h(x3,∇h y(x)) dx, (2.1)

2.1. In the notation of Chapter 1 we have 𝛽=2𝛼−2 .
2.2. If we start with the energy per unit volume

J𝛼h(yh)≔ 1
h ∫Ωh

W𝛼
h(z3,∇yh(z))dz,

then we have defined, after a coordinate transformation x3= z3/h in the integral:

ℐ𝛼
h(y)= 1

h2𝛼−2 E𝛼h(yh).
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where ∇h = (∂1, ∂2, ∂3 / h)⊤ is the gradient operator resulting after the
change of coordinates described in Section 1.3.1. For the sake of concise-
ness, we will present most results below for all scalings simultaneously,
adding the parameter 𝛼 to much of the notation. The energy density for
𝛼≠3 is given by

W𝛼
h(x3,F)=W0(x3,F (I+h𝛼−1Bh(x3))), F∈ℝ3×3. (2.2)

where Bh:( /−12, /12)→ℝ3×3 describes the internal misfit andW0 the stored
energy density of the reference configuration. In the regime 𝛼 = 3 we
include an additional parameter 𝜃 > 0 controlling further the amount of
misfit in the model:

W𝛼=3
h (x3,F)=W0(x3,F (I+h2 𝜃√ Bh(x3))), F∈ℝ3×3,

and we later write B̃h = 𝜃√ Bh. Note that given the choice h𝛼−1 for the
scaling of the misfit, the fact that in the limit it will be again scaled qua-
dratically forces the choice of a scaling of h−2(𝛼−1) for the energy, since
otherwise one would compute trivial (vanishing or infinite) energies in the
limits. This will become apparent in the computation of the lower bounds
in Theorem 2.8. Our assumptions for Bh and W0 are those of [Sch07b,
Assumption 1.1]:

Assumptions 2.2.

a) For a.e. t∈( /−12, /12),W0(t, ⋅) is continuous on ℝ3×3 and C2 in a neigh-
bourhood of SO(3) which does not depend on t.

b) The quadratic form Q3(t, ⋅)=D2W0(t, I)[⋅, ⋅] is in L∞(( /−12, /12);ℝ9×9).
c) The map

𝜔(s)≔ ess sup
/−12<t< /12

sup
|F |⩽s

|W0(t, I+F)− 1
2 Q3(t,F)|

shall satisfy 𝜔(s)=o(s2) as s→0.
d) For all F∈ℝ3×3 and all R∈SO(3)

W0(t,F)=W0(t,RF).
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e) For a.e. t∈( /−12, /12),W0(t,F)=0 if F∈SO(3) and

ess inf
/−12<t< /12

W0(t,F)⩾C dist2 (F, SO(3)),

for all F∈ℝ3×3 and some C>0.
f) Bh→B in L∞(( /−12, /12);ℝ3×3).
We note in passing two consequences of these conditions. First, frame
invariance (Assumption 2.2.d) extends to the second derivative where
defined, i.e.2.3

D2W0(t,R)[RF,RF]=D2W0(t, I)[F,F]=Q3(t,F).

Second, the energyW0 grows at most quadratically in a neighbourhood of
SO(3), i.e. for small |F| it holds that:2.4

W0(t, I+F)⩽C dist2(I+F, SO(3)). (2.3)

2.3. To see this, let 𝜀 > 0 so that the following derivatives are defined and compute,
using Taylor as in Footnote 2.4:

d2
d𝜀2 |𝜀=0W0(t, I+𝜀F)=D2W0(t, I)[F,F],

which by assumption is equal to:

d2
d𝜀2 |𝜀=0W0(t,R (I+𝜀F))=D2W0(t,R)[R F,R F].

2.4. Let G= I+F and let P be its projection onto the rotations P=PSO(3)G. Then we
have dist2(I +F, SO(3)) = |G−P|2. If |F| is small enough for I +F to be in the set where
W0 is twice differentiable (Assumption 2.2.a) we can consider the Taylor expansion

W0(t,G) = W0(t,P)+DW0(t,P)[G−P]+ 1
2 D2W0(t,P)[G−P,G−P]+o(|G−P|2)

= 1
2 D2W0(t,P)[G−P,G−P]+o(|G−P|2),

where the first and second terms vanish because of Assumption 2.2.e. Now, by frame
indifference we have D2W0(t,P)[G−P,G−P] =Q3(t, (G−P)P−1), and by Assumption
2.2.b, we have for a.e. t the bound Q3(t, A P−1) ⩽ C |A P−1|2 = C |A|2, where the last
equality follows from P−1 being orthogonal (Lemma A.3). But then

W0(t, I+F)⩽C |G−P|2+o(|G−P|2)⩽C dist2(I+F, SO(3)).
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The Hessian

Q3(t,F)≔D2W0(t, I)[F,F]=
∂2W0(t, I)
∂Fij∂Fij

Fij F ij,

for t ∈ ( /−12, /12),F ∈ℝ3×3 is twice the quadratic form of linear elasticity
theory, which results after a linearisation of W0 around the identity.2.5
Define Q2 to be the quadratic form on ℝ2×2 obtained by relaxation of
Q3 among stretches in the x3 direction:

Q2(t,G)≔ min
c∈ℝ3

Q3(t, Ĝ+c⊗e3), for t∈( /−12, /12),G∈ℝ2×2,

where e3 = (0, 0, 1) ∈ ℝ3. This process effectively minimises away the
effect of transversal strain.2.6 The maps Q2(t, ⋅) are positive semidefinite,
convex and vanish on antisymmetric matrices (Lemma A.13) and there
exists a map ℒ: I × ℝ2×2 → ℝ3, linear in its second argument, which
attains the minimum (Lemma A.12):

Q2(t,G)=Q3(t, Ĝ+ℒ(t,G)⊗e3).

For the regimes 𝛼⩾3, we define the effective form

Q2(E,F)≔∫ /−12

/12
Q2(t,E+ tF+ B̌(t)) dt, (2.4)

with E,F∈ℝ2×2 and for 𝛼∈(2,3) its relaxation

Q2
⋆(F)≔ min

E∈ℝ2×2
Q2(E,F)= min

E∈ℝsym2×2∫ /−12

/12
Q2(t,E+ tF+ B̌(t)) dt. (2.5)

For the case 𝛼=3, we include an additional parameter 𝜃>0 as discussed
in page 27 and later write B̃= 𝜃√ B.

2.5. As explained in Section 1.1, for geometrically linear materials its argument F
would be the linear strain tensor e(w)≔∇s w.

2.6. Indeed, with F=∇u the components minimised away are (F13,F23,F33)= (∂3u1,
∂3u2, ∂3u3).
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Remark 2.3. Note that Q2 andQ2
⋆ are convex polynomials of degree 2 and

Q2(E,F),Q2
⋆(F) are in L1(𝜔) for all E,F∈Lp(𝜔;ℝ2×2), p⩾2.

For fixed 𝛼 ∈ (2, ∞) we say that a sequence (yh)h>0 ⊂ Y has finite
scaled energy if there exists some constant C>0 such that

lsup
h→0

ℐ𝛼h(yh)⩽C. (2.6)

This definition will be central for many of the arguments below. After
some corrections we will have precompactness of such sequences, thus
proving that the family ℐ𝛼h is equicoercive, the essential condition for
the fundamental theorem of Γ-convergence showing convergence of min-
imisers and energies, cf. [Bra06] and Section A.5. This compactness
takes place in adequate target ambient spaces

X𝛼={W 1,2(𝜔;ℝ) if 𝛼∈(2,3),
W 1,2(𝜔;ℝ2)×W 1,2(𝜔;ℝ) if 𝛼⩾3,

equipped with the weak topology.2.7

An essential ingredient in arguments with Γ-convergence is the choice
of sequential convergence to obtain (pre-)compactness. By Remark A.25,
for the lower bounds we may suppose that a sequence (yh)h>0 has finite
scaled energy, which enables Lemma A.30 for the identification of the
limits. We choose to encode the necessary estimate for the gradient of the
deformations into the definition of convergence via maps P𝛼h (Definition
2.4). Despite adding clutter to the notation, this helps to highlight and
isolate the technical requirement of using sequences which are close to
the identity, up to certain rigid transformations.

Definition 2.4. Let Y≔W 1,2(Ω1;ℝ3) and

X𝛼≔{W 1,2(𝜔;ℝ) if 𝛼∈(2,3),
W 1,2(𝜔;ℝ2)×W 1,2(𝜔;ℝ) if 𝛼⩾3.

2.7. Because the weak topology is not 1st countable, for Γ-convergence one argues
that one may consider bounded sets, where it is metrisable.
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We say that a sequence (yh)h>0⊂ Y Ph-converges to some w∈ X𝛼 if and
only if there exist maps Rh:Ω1→SO(3), constant along x3, such that

‖∇h yh−Rh‖0,2,Ω1⩽C h𝛼−1 with ‖Rh− I‖0,2,Ω1⩽C h𝛼−2,

and

P𝛼h(yh)→w weakly in X𝛼,

where

P𝛼h:Y→X𝛼,yh↦
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧ v𝛼h, if 𝛼∈(2,3),
(u𝜃h,v𝜃h) if 𝛼=3,
(u𝛼h,v𝛼h), if 𝛼>3,

and we defined:

For α ≠3 and x′∈𝜔, the scaled and averaged in-plane and out-of-plane
displacements:

⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧

u𝛼h(x′) ≔
1
h𝛾 ∫ /−12

/12
(yh′(x′,x3)−x′) dx3,

v𝛼h(x′) ≔
1

h𝛼−2 ∫ /−12

/12
y3h(x′,x3) dx3,

(2.7)

where

𝛾 ={ 2 (𝛼−2) if 𝛼∈(2,3),
𝛼−1 if 𝛼>3.

For α =3 and x′∈𝜔, we introduce the additional parameter 𝜃>0:

⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧

u𝜃h(x′) ≔
1
𝜃h2 ∫ /−12

/12
[yh′(x′,x3)−x′] dx3

v𝜃h(x′) ≔
1
𝜃√ h ∫ /−12

/12
y3h(x′,x3) dx3.

(2.8)
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For 𝛼=3, we overload the notation with the parameter 𝜃 writing (u𝜃h,v𝜃h)
and P𝜃h instead of (u𝛼h, v𝛼h) or P𝛼h, letting the letter used in the subindex
resolve ambiguity.

With Definition 2.4 we can specify precisely what we mean by Γ-con-
vergence of the energies (2.1):2.8

Definition 2.5. Let 𝛼>2. We say that the family of scaled elastic energies
{ℐ𝛼h:Y→ℝ}h>0, h>0, Γ-converges via maps Ph to ℐ𝛼:X𝛼→ℝ iff:

a) Lower bound: For every w∈X𝛼 and every sequence (yh)h>0⊂Y which
Ph-converges to w as h→0 it holds that

linf
h→0

ℐ𝛼h(yh)⩾ℐ𝛼(w).

b) Upper bound: For every w ∈ X there exists a recovery sequence
(yh)h>0⊂Y which Ph-converges to w as h→0 and

lsup
h→0

ℐ𝛼h(yh)⩽ℐ𝛼(w).

Finally, we identify what the space of admissible displacements for
the limit theories will be:

X𝛼0≔{Wsh
2,2(𝜔;ℝ) if 𝛼∈(2, 3),

W 1,2(𝜔;ℝ2)×W 2,2(𝜔;ℝ) if 𝛼⩾3,

where the space of out-of-plane displacements with singular Hessian

Wsh
2,2(𝜔)≔{v∈W 2,2(𝜔;ℝ):det∇2v=0 a.e.},

will be central in the linearised Kirchhoff theory. We define the func-
tionals to be +∞ for inadmissible displacements in X𝛼\X𝛼0.

2.8. We refer to the notes [Bra06] for a quick introduction to Γ-convergence. For a
concise collection of the results we require, adapted to this definition, see Appendix A.5.
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2.2 Main results

Our first goal is to prove that in the prestrained setting described above
one has a hierarchy of plate models à la [FJM06]. The proof is split into
several theorems in Section 2.3. For notation and details on our particular
use of Γ-convergence, see Appendix A.5.

Theorem 2.6. Let

ℐ𝛼h(y)=
1

h2𝛼−2 ∫Ω1 W𝛼
h(x3,∇h y(x)) dx.

If 𝛼∈(2,3) and ω is convex, then the elastic energies ℐ𝛼h Γ-converge to
the linearised Kirchhoff energy2.9

ℐlKi(v)≔{
1
2 ∫𝜔Q2

⋆(−∇2v) if v∈Wsh
2,2(𝜔),

∞ otherwise,
(2.9)

where Q2
⋆ is defined in (2.5). See Theorems 2.8 and 2.9.

If 𝛼=3 and 𝜃>0 then the energiesℐ𝜃h≔
1
𝜃 ℐ𝛼=3

h Γ-converge to the von
Kármán type energy2.10

ℐvK
𝜃 (u,v)≔

⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧ 1
2 ∫𝜔Q2(𝜃 /

12 (∇s u+ 1
2 ∇v⊗∇v),−∇2 v)

if (u,v)∈W 1,2(𝜔;ℝ2)×W 2,2(𝜔;ℝ),
∞, otherwise,

(2.10)

where Q2 is defined in (2.4). See Theorems 2.8 and 2.10.
Finally, if 𝛼 > 3 then ℐ𝛼h Γ-converges to the linearised von Kármán

energy

ℐlvK(u,v)≔
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧ 1
2 ∫𝜔Q2(∇s u,−∇2 v),

if (u,v)∈W 1,2(𝜔;ℝ2)×W 2,2(𝜔;ℝ)
∞, otherwise.

(2.11)

See Theorems 2.8 and 2.11.

2.9. Convexity of the domain is required for the representation theorems in Section
2.5 which are used in the construction of the recovery sequence for 𝛼∈(2, 3).

2.10. Again, we slightly overload the notation in what would be a double definition
of ℐ3

h, trusting the letter used in the subindex to dispel the ambiguity.
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The functional ℐlKi is said to model a linearised Kirchhof regime
because the isometry condition ∇⊤y ∇y = I of the Kirchhoff model is
replaced by det∇2v=0, a necessary and sufficient condition for the exis-
tence of an in-plane displacement u such that ∇u+∇⊤u+∇v⊗∇v= 0,
[FJM06, Proposition 9]. This condition is to leading order equivalent to
∇⊤y ∇y = I for deformations y = (h2𝛼−4 u, h𝛼−2 v).2.11 The functional
ℐvK
𝜃 is of von Kármán type with in-plane and out-of-plane strains inter-

acting in a membrane energy term, and a bending energy term. For simple
choices of Q2 and Bh, one recovers the classical functional (⋆). Finally,
we say that the third limit ℐlvK, models a linearised von Kármán regime
by analogy with the classical equivalent, but it is of a different kind than
the one expected from the hierarchy derived in [FJM06], since it again
features an interplay between in-plane and out-of-plane components.2.12
Our second goal is to show that the limit energy ℐvK

𝜃 interpolates
between ℐlKi and ℐlvK as the parameter 𝜃 moves from ∞ to 0. In this
sense one can say that the theory of von Kármán type bridges the other
two. More precisely, in Section 2.4 we prove:

Theorem 2.7. (Interpolating regime) Assume 𝜔 is convex. The fol-
lowing two Γ-limits hold:

ℐvK
𝜃 ⟶
𝜃↑∞

Γ
ℐlKi,

(Theorems 2.15 and 2.16) and

ℐvK
𝜃 ⟶

𝜃↓0

Γ
ℐlvK

2.11. In the numerical analysis literature, the denomination linear Kirchhoff is some-
times used for a pure bending regime without constraints.

2.12. This is in contrast to [FJM06]. In our setting with the additional dependence on
the x3 coordinate, it is not possible to simply drop terms while bounding below the energy
in the proof of the lower bound as is done in [FJM06, p. 211] because of the difficulty in
building recovery sequences later. For 𝛼∈(2,3) we introduce an additional relaxation and
make use of representation Theorem 2.22 to construct them, but for 𝛼>3, no such result
is available. One could think that minimising globally, inf∇su ∫ Q2(t, ∇s u + . . .), might
be a way of discarding in-plane displacements to recover the standard theory, but this
yields a functional which is not local and therefore lacks an integral representation (see
e.g. [BD98, Chapter 9]). Note that even if we pick Q2 independent of t and B=0, we do
not recover the functional of [FJM06] because ours keeps track of both in-plane and out-
of-plane displacements which is essential to capture the effect of pre-stressing with the
internal misfit Bh.
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(Theorems 2.17 and 2.18). Furthermore, sequences (u𝜃,v𝜃)𝜃>0 of bounded
energy ℐvK

𝜃 are precompact in suitable spaces as 𝜃↑∞ or 𝜃↓0 (Theorem
2.14).

2.2.1 The limit energies for a linear internal mismatch

To show some concrete examples of how the functionals in Theorem 2.6
look like, we choose now a linear internal misfit

B(t)≔ t I3∈ℝ3×3, (2.12)

and consider two different choices for Q2(t, ⋅).

Separate variables in Q2: If we assume that Q2(t, A) = f (t) Q̃2(A) for
some even function f . Then, using the definition of Q2 from (2.4) we can
compute

Q2(E,F) = ∫ /−12

/12
f (t) Q̃2(E+ t (F+ I)) dt

= ∫ /−12

/12
f (t) Q̃2(E) dt+∫ /−12

/12
f (t) t 2 Q̃2(F+ I) dt

+∫ /−12

/12
2 f (t) t

=0

Q̃2[E,F+ I] dt

= C1 Q̃2(E)+C2 Q̃2(F+ I).

And the limit energy is then

ℐvK
𝜃 (u,v)= C1𝜃

2 ∫𝜔 Q̃2(∇s u+ 1
2 ∇v⊗∇v)+ C2

2 ∫𝜔 Q̃2(∇2 v− I).

One particular instance is having Q2 independent of t, i.e. the homoge-
neous case Q̃2(A)=Q2(A), and f ≡1. Then

ℐvK
𝜃 (u,v)= 𝜃2 ∫𝜔 Q2(∇s u+ 1

2 ∇v⊗∇v)+ 1
24 ∫𝜔 Q2(∇2 v− I). (2.13)

Analogously, in this setting:

ℐlvK(u,v)=
1
2 ∫𝜔 Q2(∇s u)+ 1

24 ∫𝜔 Q2(∇2 v− I).
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These functionals, where the elastic coefficients do not depend on the out-
of-plane component, can model for instance a single-layer material under
thermal stress, see Figure 1.2 and the discussion leading to it. We will
be mostly studying the energy (2.13) as a function of 𝜃, in particular in
Chapters 3 and 4 when we investigate minimal configurations analytically
and numerically.

General Q2(t, .): If we do not assume anything about the dependency of Q2
on t, an analogous computation with (2.4) shows that the limit energy for
𝛼=3 is:

ℐvK
𝜃 (u,v) = 𝜃

2 ∫Ω1 Q2(x3,∇s u+ 1
2 ∇v⊗∇v) dx

+ 12 ∫Ω1 x32Q2(x3,∇2 v− I) dx

− 𝜃√ ∫Ω1 x3Q2[x3,∇s u+ 1
2 ∇v⊗∇v,∇2 v− I]dx,

and for 𝛼>3:

ℐlvK(u,v) =
1
2 ∫Ω1 Q2(x3,∇s u) dx+ 12 ∫Ω1 x32Q2(x3,∇2 v− I) dx

−∫Ω1 x3Q2[x3,∇s u,∇2 v− I] dx.

A particular case of this situation is a bundle of plates modelled by a
piecewise constant (wrt. t) form Q2(t, A) = ∑j=1

m 𝜒[aj−1,a j)(t) Q2
j (A). By

the previous computation the limit energy for 𝛼=3 will be

ℐvK
𝜃 (u,v) = 𝜃

2∑
j=1

m

∫𝜔 (a j−a j−1)Q2
j (∇s u+ 1

2∇v⊗∇v) dx′

+ 12∑
j=1

m

∫𝜔 𝛼j Q2
j (∇2 v− I) dx′

− 𝜃√ ∑
j=1

m

∫𝜔 𝛽j Q2
j [∇s u+ 1

2∇v⊗∇v,∇2 v− I]dx′,
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where 𝛼j = (a j
3− a j−1

3 ) /3 and 𝛽j = (a j
2− a j−1

2 ) /2. For 𝛼 > 3 we obtain an
analogous functional with the membrane strain lacking the nonlinearity
1
2 ∇v⊗∇v. Notice however the third sum of mixed terms. Their presence
makes establishing lower bounds difficult without additional assumptions,
thus precluding us from showing e.g. uniqueness of minimisers for all
𝜃>0 (cf. Chapter 3).

2.3 Γ-convergence of the hierarchy

This subsection proves the lower (Theorem 2.8) and upper bounds (The-
orems 2.9, 2.10 and 2.11) required for deriving the hierarchy of models
in Theorem 2.6.
An important result of [FJM06] is that for small h>0 deformations yh

of finite scaled energy are, up to rigid motions, roughly the trivial map
(x′, x3) ↦ (x′, h x3). The factor by which they fail to (almost) be the
identity is essential for the linearisation step in the proof below as well as
for the identification of the limit strains of weakly convergent sequences
of scaled displacements. We must account for these rigid motions if
compactness is to be achieved, in particular because deformations might
“wander to infinity” without altering the elastic energy. Lemmas A.30
and A.31 gather these ideas more precisely. In particular, the last state-
ment of A.30 provides the required compactness.
Recall that we are always using weak convergence in the spaces X𝛼.

Theorem 2.8. (Lower bounds) Let 𝛼∈(2,3). If (yh)h>0⊂Y is a sequence
P𝛼h-converging to v∈X𝛼, then

linf
h→0

ℐ𝛼h(yh)⩾ℐlKi(v).

Now let 𝛼=3 . If (yh)h>0⊂Y is a sequence P𝜃h-converging to (u, v) ∈X𝛼,
then for all 𝜃>0

linf
h→0

1
𝜃 ℐ𝛼

h(yh)⩾ℐvK
𝜃 (u,v).
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Finally, let 𝛼>3. If (yh)h>0⊂Y is a sequence P𝛼h-converging to (u,v)∈X𝛼,
then

linf
h→0

ℐ𝛼h(yh)⩾ℐlvK(u,v).

Proof. If 𝛼 = 3, we define B̃h ≔ 𝜃√ Bh and B̃ = 𝜃√ B, otherwise B̃ ≔
B and B̃h ≔ Bh. Following closely the techniques in [FJM02, FJM06,
Sch07a, Sch07b] we use a Taylor expansion of the energy around the
identity which allows us to cancel or identify its lower order terms. For
this we must correct the deformations with their approximation by rota-
tions and work in adequate sets where there is control over higher order
terms.

Step 1: Rewriting of the deformation gradient.

Let Rh: 𝜔 → SO(3) approximate ∇hyh in L2(Ω1) as in Definition 2.4.
The functions

Gh≔ (Rh)⊤∇h yh− I
h𝛼−1

are uniformly bounded in L2 by invariance of the norm by rotations:

‖Gh‖0,2,Ω1 = h1−𝛼‖(Rh)⊤∇h yh− I‖0,2,Ω1
= h1−𝛼‖∇h yh−Rh‖0,2,Ω1⩽C. (2.14)

Now, by the frame invariance of W h(x3, ⋅):

W h(x3,∇h yh) = W h(x3, (Rh)⊤∇h yh)
= W0(x3, (Rh)⊤∇h yh (I+h𝛼−1 B̃h(x3)))
= W0(x3, I+h𝛼−1Ah), (2.15)

where we have set

Ah(x) ≔ (Rh)⊤∇h yh(x)− I
h𝛼−1

+(Rh)⊤∇h yh(x) B̃h(x3)

= Gh+(Rh)⊤∇h yh B̃h.
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Step 2: Cutoff function.
We will be expanding W0(x3, I + h𝛼−1 Ah) around I, but in order to

apply the Taylor expansion successfully we need to stay where W0 is
twice differentiable, that is we must control dist (I+h𝛼−1 Ah, SO(3)). We
achieve this by multiplying with a cutoff function 𝜒h, defined as the char-
acteristic function of the “good set” {x∈Ω1: |Gh|⩽h /−12}. Here we have:

h /12≫h𝛼− /
32⩾𝜒h |h𝛼−1Gh|=𝜒h

||||||||||||||||||||
|||||(Rh)⊤∇h yh− I||||||||||||||||||||

|||||=𝜒h
||||||||||||||||||||
|||||∇h yh−Rh

||||||||||||||||||||
|||||,

which, because |Rh|≡ 3√ , implies that 𝜒h
||||||||||||||||||||
|||||∇hyh

||||||||||||||||||||
|||||⩽C. Consequently, since

the B̃h are uniformly bounded as well:

𝜒h |h𝛼−1Ah| = 𝜒h
||||||||||||||||||||
|||||h𝛼−1Gh+h𝛼−1 (Rh)⊤∇h yh B̃h

||||||||||||||||||||
|||||

⩽ 𝜒h |h𝛼−1Gh|+𝒪(h𝛼−1)
= o(h /12), (2.16)

and then

dist (I+h𝛼−1𝜒h Ah, SO(3))⩽ |I+h𝛼−1𝜒h Ah− I|=o(h /12),
so in the good sets we may indeed expand around I for small values of h.
Now, the sequence (Gh)h>0 is bounded in L2 by (2.14) so we may extract
a subsequence converging weakly in L2 to some G ∈ L2(Ω1), which we
consider from now on without relabelling.2.13 Furthermore the sequence
(𝜒h)h>0 is essentially bounded and 𝜒h→1 in measure in Ω1 (we say that
the 𝜒h converge boundedly in measure to 1, see Appendix A.4 for the
definition and properties). Indeed |{|𝜒h−1|>𝜀}|= |{|Gh|>h−1/2}|→0 as
h→0 because ‖Gh‖0,2,Ω1⩽C uniformly. Consequently (LemmaA.24) we
have

𝜒h Gh⇀G in L2(Ω1).

Analogously, the sequence (𝜒h B̃h)h>0 is essentially bounded and con-
verges in measure to B̃ because |{|𝜒h B̃h − B̃| > 𝜀}| ⩽ |{|B̃h − B̃| > 𝜀}| +
|{𝜒h = 0} ∩ {|B̃| > 𝜀}| → 0. Hence, using again the strong convergence
(Rh)⊤∇h yh→ I in L2(Ω1) (Lemma A.30):

(Rh)⊤∇h yh𝜒h B̃h⇀ B̃ in L2(Ω1).

2.13. By Remark A.26 this does not affect the lower bound.
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So we conclude
𝜒h Ah⇀ A≔G+ B̃ in L2(Ω1). (2.17)

Step 3: Taylor expansion.
BecauseW0(x3, ⋅)|SO(3)≡0, for any fixed x3 the lower order terms of its

Taylor expansion

W0(x3, I+E)=W0(x3, I)+DW0(x3, I)[E]+
1
2 D2W0(x3, I)[E,E]+o(|E|2)

vanish and we have (for small enough h, as explained above)

W0(x3, I+h𝛼−1𝜒h Ah)= 12 Q3(x3,h𝛼−1𝜒h Ah)+𝜂h(x3,h𝛼−1𝜒hAh),

where 𝜂h(x3, h𝛼−1 𝜒h Ah) = o(h2𝛼−2|𝜒h Ah|2) represents the higher order
terms. Defining the uniform bound

𝜔(s)≔ ess sup
−1⩽2r⩽1

sup
|M |⩽s ||||||

|||||||||||||||||||𝜂h(r,M)||||||||||||||||||||
|||||,

we have 𝜔(s) = o(s2) by Assumption 2.2.c, and integrating over the
rescaled domain Ω1 we obtain the estimate:

1
h2𝛼−2 ∫Ω1 W h(x3,∇h yh) dx

⩾
(2.15) 1

h2𝛼−2 ∫Ω1 W h(x3, I+𝜒h h𝛼−1Ah) dx

⩾ 1
h2𝛼−2 ∫Ω1

h2𝛼−2
2 Q3(x3,𝜒h Ah)−𝜔(|h𝛼−1𝜒h Ah|) dx

= 1
2 ∫Ω1 Q3(x3,𝜒h Ah)− 1

h2𝛼−2 ∫Ω1 𝜔(|h
𝛼−1𝜒h Ah|) dx. (2.18)

Step 4: The limit inferior.
In order to pass to the limit, for the first integral on the right hand side

of (2.18) we use that Q3 is positive semidefinite, therefore convex and
continuous, and the integral is w.s.l.s.c. [Dac07]. For the second integral
we use again Assumption 2.2.c and the fact that |h𝛼−1𝜒h Ah|⩽h /12 to obtain
the bound (uniform over Ω1):

𝜔(|h𝛼−1𝜒h Ah|)
|h𝛼−1𝜒h Ah|2

⩽ sup
|s|⩽h1/2

𝜔(s)
s2

⟶0 as h→0.
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But then, because 𝜒h Ah converges weakly in L2, we have ‖𝜒h Ah‖0,2,Ω1
2 ⩽

C and

1
h2𝛼−2 ∫Ω1 𝜔(|h

𝛼−1𝜒h Ah|) dx = ∫Ω1
𝜔(|h𝛼−1𝜒h Ah|)
|h𝛼−1𝜒h Ah|2

|h𝛼−1𝜒h Ah|2
h2𝛼−2

dx

⩽ sup
|s|⩽h1/2

𝜔(s)
s2 ∫Ω1 |𝜒

h Ah|2dx

uniformly bded.

⟶0

as h→0. Taking the liminf at both sides of (2.18) we have:

linf
h→0

1
h2𝛼−2 ∫Ω1 W h(x3,∇h yh) dx

⩾ linf
h→0

1
2 ∫Ω1 Q3(x3,𝜒h Ah) dx

− lim
h→0

1
h2𝛼−2 ∫Ω1 𝜔(|h

𝛼−1Ah|) dx

⩾ 1
2 ∫Ω1 Q3(x3,G+ B̃) dx

⩾ 1
2 ∫Ω1 Q2(x3, Ǧ+ B̌̃)dx,

where the last estimate follows trivially from the definition of Q2.

If α ⩾3, by Lemma A.31 the limit strain Ǧ has the representation

Ǧ(x)=G0(x′)+x3G1(x′),

with G1 and symG0 given respectively by (A.14) and (A.15) as:

G1={− 𝜃√ ∇2v if 𝛼=3,

−∇2v if 𝛼>3,
and

symG0=
⎩⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎧ 𝜃(∇su+

1
2 ∇v⊗∇v) if 𝛼=3,

∇su if 𝛼>3.
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We plug both into the last integral and use the fact that Q2(x3, ⋅) vanishes
on antisymmetric matrices to obtain

linf
h→0

1
h2𝛼−2 ∫Ω1 W𝛼

h(x3,∇h yh) dx

⩾ 1
2 ∫Ω1 Q2(x3,G0(x′)+x3G1(x′)+B̌̃(x3)) dx

= 1
2 ∫𝜔 Q2(symG0,G1) dx′.

In particular, if α =3, we have again:

linf
h→0

1
𝜃h4 ∫Ω1 W𝛼

h(x3,∇h yh) dx ⩾ 1
2𝜃 ∫𝜔 Q2(symG0,G1) dx′

= 1
2 ∫𝜔 Q2(𝜃1/2 (∇s u+ 1

2∇v⊗∇v),

−∇2 v) dx′.

If α ∈ (2, 3), then sym G0 is unknown, so we must further relax the
integrand. With the definition of Q2

⋆we see that the final integral above is

1
2 ∫Ω1 Q2(x3,G0−x3∇2v+ B̌) dx⩾ 12 ∫𝜔 Q2

⋆(−∇2v) dx′. □

We proceed now with the computation of the recovery sequences for
each of the three regimes discussed. We assume convexity of the domain
in order to apply the representation theorems in Section 2.5.

Theorem 2.9. (Upper bound, linearised Kirchhoff regime) Assume
𝜔 is convex, let 𝛼∈ (2, 3) and v∈X𝛼≔W 1,2(𝜔). There exists a sequence
(yh)h>0⊂Y which Ph-converges to v such that

lsup
h→0

ℐ𝛼h(yh)⩽ℐlKi(v),
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with ℐlKi defined as in (2.9) by

ℐlKi(v)≔{
1
2 ∫𝜔Q2

⋆(−∇2v(x′)) dx′ if v∈Wsh
2,2(𝜔),

∞ otherwise.

Proof. We set 𝜀=h𝛼−2, so that h≪𝜀≪1 and h2≪𝜀h≪1.

Step 1: Setup and recovery sequence.

The functional ℐlKi is strongly continuous on Wsh
2,2(𝜔) by the conti-

nuity and 2-growth of Q2
⋆. By Theorem 2.19 we have a set 𝒱0 of smooth

maps with singular Hessian which is W 2,2-dense in Wsh
2,2, see (2.27) in

page 64. Therefore, by the standard Lemma A.27 it is enough to con-
struct here the recovery sequence. Take then a smooth function v ∈𝒱0.
Because ‖∇v‖∞<C, for 𝜀 small enough there exist by [FJM06, Theorem
7] in-plane displacements u𝜀∈W 2,2(𝜔; ℝ2) ∩W 2,∞(𝜔;ℝ2) with uniform
bounds in 𝜀 such that the deformations

y𝜀(x′)≔( x′+𝜀2u𝜀(x′)
𝜀v(x′) )

are isometries.2.14 That is: ∇⊤y𝜀∇y𝜀= I2, where

∇y𝜀=( I2
0 0 )+𝜀( 02

∇⊤v )+𝜀2( ∇u𝜀
0 0 )∈ℝ3×2.

Additionally the following normal vectors are unitary in ℝ3:

b𝜀(x′) ≔ y𝜀,1(x′)∧y𝜀,2(x′)

= −𝜀( ∇v
0 )+ ⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛ 𝜀3∇u𝜀2 ⋅ (v,2,−v,1)

𝜀3∇u𝜀1 ⋅ (−v,2,v,1)
1+𝜀2 tr∇u𝜀+𝜀4det∇u𝜀 ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞

= e3−𝜀∇̂v(x′)+ r𝜀(x′),

2.14. The uniform bounds for ‖u𝜀‖2,2 follow from [FJM06, Theorem 7], equation
(181), and those for ‖u𝜀‖2,∞ from the explicit construction done in the proof, in particular
equations (183), (186) and (190).
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where the rest r𝜀 satisfies
‖r𝜀‖1,∞=𝒪(𝜀2),

by virtue of ‖u𝜀‖2,∞⩽C and ‖∇v‖∞⩽C. Consequently the matrices

R𝜀≔(∇y𝜀,b𝜀)= I+𝜀( 0 −∇v
∇⊤v 0 )+ r𝜀⊗e3+𝜀2 ∇̂u𝜀

≔r̃𝜀

are in SO(3) for every x′∈𝜔, with the remaining matrix r̃𝜀 satisfying

‖r̃𝜀‖1,∞=𝒪(𝜀2)

by the same arguments as before. Now, for some smooth functions a,g1,
g2∈C∞(𝜔;ℝ), g≔(g1,g2) and d∈L∞(Ω1;ℝ3) with ∇′d∈L∞(Ω1;ℝ3×2)
and Dh∈C∞(Ω1;ℝ3) to be determined later, set

yh(x′,x3) ≔ y𝜀(x′)+h (x3−a(x′))b𝜀(x′)+𝜀h (g(x′), 0)
+𝜀h2∫0

x3 d(x′, 𝜉)d𝜉 +Dh(x′,x3). (2.19)

We will prove
ℐ𝛼h(yh)⟶

h→0
ℐlKi(v).

as well as P𝛼h (yh)→v in W 1,2 for some constants Rh∈SO(3),ch∈ℝ3.

Step 2: Preliminary computations.
In order to compute the limit of 1

h2𝛼−2 ∫Ω1W0(x3, ∇hyh (I + 𝜀 h Bh)) we
start with the gradient of the recovery sequence:

∇hyh = (∇y𝜀, 0)+h∇h [(x3−a)b𝜀]
+𝜀h [∇̂g+d⊗e3]+∇h Dh+o(𝜀h).

For the term in h and any i∈{1,2,3} and j∈{1,2} we have

∂j[(x3−a(x′))b𝜀(x′)]i=∂j[(x3−a)b𝜀i]=(x3−a)b𝜀i, j−𝜀a , j b𝜀i.

Also: 1h ∂3[(x3−a)b𝜀]=
1
h b𝜀, so that

∇h[(x3−a)b𝜀] = (x3−a) ∇̂b𝜀−b𝜀⊗∇̂a+ 1
h b𝜀⊗e3

= (a−x3) (𝜀 ∇̂2v−∇̂r𝜀)−b𝜀⊗∇̂a+ 1
h b𝜀⊗e3.
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Substituting back into the gradient yields:

∇hyh = R𝜀+𝜀h [(a−x3) ∇̂2v+∇̂g+d⊗e3+o(1)]
≔Ah

−h b𝜀⊗∇̂a+∇h Dh. (2.20)

Because we intend to use the frame invariance of the energy, we will need
the product of ∇hyh with R𝜀⊤= I+𝒪(𝜀). First we have:

𝜀hR𝜀⊤Ah=𝜀h Ah+o(𝜀h)=𝜀h Ah,

where we have subsumed terms o(𝜀 h) into the o(1) inside Ah. Using |b𝜀|≡
1 and y𝜀,i⊥b𝜀 we also have R𝜀⊤b𝜀=e3. Therefore

R𝜀⊤∇hyh= I3+𝜀hAh−h e3⊗∇̂a+R𝜀⊤∇h Dh

=:Fh

. (2.21)

Step 3: Convergence of the energies.
The next step is a Taylor expansion around the identity. Given that the

energy is scaled by (𝜀 h)−2, only those terms scaling as 𝜀 h in (2.21) will
remain: anything beyond that will not be seen and anything below will
make the energy blow up. This means that we must choose Dh so that
Fh=o(𝜀 h). In [FJM06], [Sch07b] it was possible for the authors to obtain
exactly Fh=0 by choosing Dh adequately, but in our case this will not be
possible.2.15 If we set Dh≔h2D for some smooth D, we have

Fh = h [D,3⊗e3+𝜀 (v,1D3,3,v,2D3,3,−v,1D1,3−v,2D2,3)⊗e3
−e3⊗∇̂a+o(𝜀)]

=: h F̃h.

2.15. Technically, this is due to the fact that the term h e3⊗ ∇̂a is a row in a matrix
instead of a column, which makes it impossible to exactly compensate because R𝜀

⊤∇h Dh

effectively only provides a column vector to work with. Indeed,

R𝜀
⊤∇h Dh=∇h Dh+𝜀( 0 ∇v

−∇⊤v 0 )∇h Dh+ r̃𝜀⊤∇h Dh,

so in order to cancel h e3⊗ ∇̂a we must have that the leading term ∇h Dh be of order h.
But then ∇h Dh=(∇′Dh, 1h D,3

h ) requires that Dh scale at least as h2≪𝜀h≪1 so we “lose”
the first two columns of ∇h Dh.
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This means that we must solve the equations F̃h = o(𝜀). Although these
have no solution the symmetrised version does,2.16 so that for every
smooth choice of a we can pick a bounded Dh such that

F̃s
h=0, and F̃h=𝒪(1), (2.22)

a fact that we will exploit next. By frame invariance, (2.21) and Fh=h F̃h,
we can write

W0(x3,∇hyh (I+𝜀h Bh))
= W0(x3,R𝜀

⊤∇hyh (I+𝜀h Bh))
= W0(x3, (I+𝜀hAh+h F̃h) (I+𝜀h Bh))
= W0(x3, I+h (𝜀 (Ah+Bh)+ F̃h+o(𝜀))

=:C h

).

Because of (2.22) by our choice of D we need to subtract the antisym-
metric part of F̃h, which we do by means of another rotation (cf. Lemma
A.10) and frame invariance:

W0(x3, I+h Ch) = W0(x3, e−hF̃a
h
(I+hCh))

= W0(x3, (I−h F̃a
h+𝒪(h2)) (I+hCh))

= W0(x3, I+hCh−h F̃a
h+𝒪(h2))

= W0(x3, I+𝜀h (Ah+Bh)+o(𝜀h)).

Now whenever h is small enough that I+h Ch belongs to the neighbour-
hood of SO(3) where W0 is twice differentiable, we can apply Taylor's
theorem and the fact that Q3 vanishes on antisymmetric matrices (Lemma
A.13) to see that, as h→0:

1
𝜀2h2

W0(x3,∇hyh (I+𝜀h Bh)) = 1
2 Q3(x3, (Ah+Bh)s)+o(1)

→ 1
2 Q3(x3,As+Bs),

2.16. Dividing by h we arrive at:

⎩⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎧ D1,3+𝜀v,1D3,3 = a ,1+o(𝜀),

D2,3+𝜀v,2D3,3 = a ,2+o(𝜀),
D3,3−𝜀v,1D1,3−𝜀v,2D2,3 = o(𝜀),

with solution:
D(x′, x3)=x3 ∇̂a+x3𝜀∇v ⋅∇a e3.
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where
As=(a−x3) ∇̂2v+∇̂s g+(d⊗e3)s.

We choose
d(x′,x3)=ℒ(x3, (a−x3)∇2v+∇s g+ B̌s)−B⋅3,

with ℒ the continuous map from Lemma A.12 and B⋅3 the third column
of B. Because the matrix (a−x3)∇2v+∇s g+ B̌s is bounded uniformly in
x′, by Lemma A.15 the map

x↦∫0
x3
ℒ(𝜉, (a−𝜉) ∇̂2v+∇̂s g+Bs(𝜉)) d𝜉

is in W 1,∞(Ω1; ℝ3) and yh∈W 1,2 as required (for the derivatives wrt. x′
note that v,g are smooth and B independent of x′).
Now, all quantities being bounded, by dominated convergence:

ℐ𝛼h(yh) → 1
2 ∫Ω1 Q3(x3, (a−x3) ∇̂2v+∇̂s g+(d⊗e3)s+Bs) dx

= 1
2 ∫Ω1 Q2(x3, (a−x3)∇2v+∇s g+ B̌s) dx.

Note that a final step is required to obtain convergence to ℐlKi(v).

Step 4: Convergence of the deformations: P𝛼h (yh)→v in W 1,2.
We have

P𝛼h (yh)= 1𝜀 ∫ /−12

/12
y3h(x′,x3) dx3,

where in (2.19) we defined y3h(x′, x3) = 𝜀 v(x′) + h (x3 − a(x′)) b𝜀3(x′) +
𝒪(𝜀h). Then:

||||||||||||||||||||
|||||P𝛼h (yh)−v||||||||||||||||||||

|||||2 =
||||||||||||||||||||
||||||||||||||||||||
||||||||||||||||||||
||||||||||||||| 1
𝜀 ∫ /−12

/12
[𝜀v+h (x3−a)b𝜀3+𝒪(𝜀h)] dx3−v

||||||||||||||||||||
||||||||||||||||||||
||||||||||||||||||||
|||||||||||||||2

= 𝒪(𝜀−2h2),

and consequently ‖P𝛼h(yh)−v‖0,2→0. An analogous computation for the
derivatives shows strong convergence in W 1,2.
For the maps Rh:𝜔→SO(3), take

Rh≔R𝜀ehF̃a
h
.
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Then ‖Rh− I‖0,2=‖(I+𝒪(𝜀)) (I+𝒪(h))− I‖0,2=𝒪(h𝛼−2) and:

‖∇h yh−Rh‖0,2 = ‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖e−hF̃a

h
R𝜀
⊤∇h yh− I‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

‖‖‖‖‖‖‖‖‖‖0,2
= ‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖e−hF̃a

h
R𝜀
⊤∇h yh− I‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

‖‖‖‖‖‖‖‖‖‖0,2
= ‖(I−h F̃a

h) (I+𝜀hAh+h F̃h)+o(𝜀h)− I‖0,2
⩽ 𝒪(h𝛼−1).

Step 5: Simultaneous convergence.
Finally, as in [Sch07b, Theorem 3.2], in order for the energy to con-

verge to the true limit, we must pick a and g in (2.19) so as to approximate
the minimum Q2

⋆. This is done with Corollary 2.23, substituting sequences
of smooth functions (ak)k∈ℕ, (gk)k∈ℕ for the functions a, g. Then, for
each fixed k we have:

ℐ𝛼h(yk
h) →

h→0

1
2 ∫Ω1 Q2(x3, (ak−x3)∇2v+∇s gk+ B̌s)

= 1
2 ∫𝜔 Q2

⋆(−∇2v) dx′+o(1)k→∞,

and

‖P𝛼h (yk
h)−v‖1,22 ⩽C(k) 𝜀−2h2.

And by a diagonal argument we can find (yh)h>0whose energy converges
to ℐlKi(v) while maintaining the convergence of the deformations. □

Theorem 2.10. (Upper bound, von Kármán regime) Let 𝛼 = 3 and
consider displacements (u, v) ∈X𝛼=3≔W 1,2(𝜔;ℝ2) ×W 1,2(𝜔;ℝ). There
exists a sequence (yh)h>0⊂Y which P𝜃h-converges to (u,v) such that

lim
h→0

1
𝜃 ℐ𝛼

h(yh)=ℐvK
𝜃 (u,v),

with ℐvK
𝜃 defined as in (2.10) as

ℐvK
𝜃 (u,v)≔ 1

2 ∫𝜔 Q2(𝜃 /
12 (∇s u+ 1

2 ∇v⊗∇v),−∇2 v)

over X𝛼=30 =W 1,2(𝜔;ℝ2)×W 2,2(𝜔;ℝ) and as ∞ elsewhere.
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Proof. In order to build the recovery sequence (yh)h>0 we will use the
map ℒ: ( /−12, /12) × ℝ2×2→ℝ3 given by Lemma A.12, which for each t
realises the minimum of Q3(t, Â+c⊗e3),A∈ℝ2×2, i.e.

Q2(t,A)=Q3(t, Â+ℒ(t,A)⊗e3)=Q3(t, Â+(ℒ(t,A)⊗e3)s),

where the last equality follows from the fact that Q2 vanishes on antisym-
metric matrices (Lemma A.13). Recall thatℒ(t, ⋅) is linear for every t and
that |ℒ(t, A)|≲ |A| uniformly in t (Lemma A.15).
The functionalℐvK

𝜃 is clearly continuous in X𝛼0=W 1,2(𝜔;ℝ2)×W 2,2(𝜔;
ℝ) with the strong topologies, so we may apply Lemma A.27 and it is
enough to consider (u, v) ∈ C∞(𝜔; ℝ2) × C∞(𝜔; ℝ), which is dense in
X𝛼0. We define:

yh(x′,x3) ≔ ( x′
h x3)+(

𝜃h2u(x′)
𝜃√ hv(x′))− 𝜃√ h2 x3(∇v(x′)

0 )
+𝜃h3d(x′,x3) (2.23)

where d∈W 1,∞(Ω1;ℝ3) is a vector field to be determined along the proof.

Step 1: Approximation of the energy.
A direct computation yields

∇h yh = I+
⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛ 𝜃h2∇u −h 𝜃√ ∇v

h 𝜃√ ∇⊤v 0 ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞
−h2𝜃( x3𝜃 /−12∇2v 0

0 0 )
+h2𝜃∂3d⊗e3+𝒪(h3)

= I+h 𝜃√ (e3⊗∇̂v−∇̂v⊗e3)
E

+h2𝜃(∇̂u−x3𝜃 /−12 ∇̂2v+∂3d⊗e3)
F

+𝒪(h3).

For later use we note here the product:

∇h
⊤yh∇h yh = (I+h 𝜃√ E⊤+h2𝜃F⊤) (I+h 𝜃√ E+h2𝜃F)+𝒪(h3)

= I+h 𝜃√ 2Es

=0

+h2𝜃 (2Fs+E⊤E)
N

+𝒪(h3),
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where we used that E is antisymmetric. For any matrix M with posi-
tive determinant we have the polar decomposition M = U M⊤M√ =
U I+P√ , with U∈SO(3) and P=M⊤M− I. By the frame invariance of
the energy and a Taylor expansion around the identity of the square root

W0(x3,M) = W0(x3, M⊤M√ )
= W0(x3, I+ /12 (M⊤M− I)+o(|M⊤M− I|)),

and, assuming that a Taylor expansion of W0 around the identity can be
carried, i.e. that M is close enough to SO(3), this is equal to:

1
2 Q3(x3, /12 (M⊤M− I))+o(|M⊤M− I|2).

In view of the definition of W0, we set

Mh≔∇h yh (I+h2 B̃h),

where B̃h= 𝜃√ Bh→ B̃= 𝜃√ B in L∞. Then

(Mh)⊤Mh ≔ [∇h yh (I+h2 B̃h)]⊤ [∇h yh (I+h2 B̃h)]
= (I+h2 (B̃h)⊤)∇h

⊤yh∇h yh (I+h2 B̃h).
= (I+h2 (B̃h)⊤) (I+h2𝜃N) (I+h2 B̃h)+𝒪(h3)
= I+h2𝜃N +h22 B̃s

h+𝒪(h3)
= I+h2𝜃N +h22 B̃s+o(h2).

To compute the first term in h2, N =2Fs+E⊤E, we have

2Fs=2(∇̂s u−x3𝜃 /−12 ∇̂2v+(∂3d⊗e3)s),
and:2.17

E⊤E = (∇̂v⊗e3−e3⊗∇̂v) (e3⊗∇̂v−∇̂v⊗e3)
= ∇̂v⊗∇̂v+ |∇̂v|2 e3⊗e3.

2.17. We use the identities (c ⊗ e3) (e3⊗ c) = c ⊗ c, (c ⊗ e3) (c ⊗ e3) = c3 c ⊗ e3,
(e3⊗c) (e3⊗c)=c3e3⊗c and (e3⊗c) (c⊗e3)= |c|2e3⊗e3.
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Since these quantities are independent of h, for sufficiently small h the
product (Mh)⊤Mh does lie close enough to SO(3) and we can perform the
desired Taylor expansion:

W h(x3,∇h yh) = W0(x3,∇h yh (I+h2 B̃h))
= W0(x3, ((Mh)⊤Mh) /12)
= 1
2 Q3(x3,

1
2 [(M

h)⊤Mh− I])+o(|(Mh)⊤Mh− I|2).

Define now Ĝ0≔𝜃 (∇̂su+ /12 ∇̂v⊗∇̂v), Ĝ1≔−𝜃 /
12 ∇̂2v as in Lemma A.31.

Bringing the previous computations together we obtain:

1
2 [(M

h)⊤Mh− I] = h2[Ĝ0−x3 Ĝ1+ B̌̃
ˆ

s

+ 𝜃√ (B(t)⋅3⊗e3)s+
𝜃
2 |∇̂v|2 e3⊗e3+𝜃 (∂3d⊗e3)s

H

]
+o(h2),

hence
1
h4 [Q3(x3, /12 ((Mh)⊤Mh− I))+o(|(Mh)⊤Mh− I|2)]

= Q3(x3, Ĝ0−x3 Ĝ1+ 𝜃√ B̂̌s+H)+o(1),

We now choose the vector field d to cancel one term and attain the min-
imum for the others by solving for ∂3d in:

H=
! (ℒ(x3,G0−x3G1+ 𝜃√ B̌s(x3))⊗e3)s,

that is:

𝜃 /−12B(t)⋅3+
1
2 |∇̂v|2 e3+∂3d(x′,x3)=

1
𝜃ℒ(x3,G0−x3G1+ 𝜃√ B̌s(x3)).

Consequently, we set:

d(x′,x3) ≔ −12 |∇̂v|2 x3e3

+1𝜃 ∫0
x3
ℒ(t,G0− tG1+ 𝜃√ B̌s(t))− 𝜃√ B(t)⋅3dt,
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and we obtain

Q3(x3, Ĝ0−x3 Ĝ1+ 𝜃√ Bs(x3)+H)=Q2(x3,G0−x3G1+ 𝜃√ B̌s(x3)).
In order to check that d ∈W 1,∞(Ω1; ℝ3) we note first that G0(x′),G1(x′)
are uniformly bounded over 𝜔 thanks to u i, v being C∞(𝜔) and Bs∈ L∞.
Now, by Lemma A.15 the map ℒ is bounded uniformly in t over sets of
symmetric bounded matrices, so that

‖d‖0,∞⩽C ‖∇v‖0,∞+𝜃−1C(ℒ,u,v,B)⩽C.

For the derivative ∂i d, i∈{1,2} we obtain

‖∂id‖0,∞ ≲ ‖∇v‖0,∞‖∇2v‖0,∞
+𝜃−1C(ℒ,u,v,B) (‖∂iG0‖0,∞+‖∂i G1‖0,∞)

and for the third derivative

‖∂3d‖0,∞⩽𝜃−1C(ℒ,u,v,B).

Step 2: Convergence.
By the previous step we have 1

𝜃h4 W0(x3, ∇h yh) → 1
2𝜃Q2(x3, G0 −

x3G1+ 𝜃√ B̌s) a.e. as h→0, and the sequence is uniformly bounded so
we can integrate over the domain and pass to the limit:

1
𝜃h4 ∫Ω1 W h(x3,∇h yh) → 1

2𝜃 ∫Ω1 Q2(x3,G0−x3G1+ 𝜃√ B̌s)

= 1
2 ∫𝜔 Q2(𝜃 /

12 (∇s u+ 1
2 ∇v⊗∇v),−∇2 v).

Step 3: Convergence of the recovery sequence: P𝜃h(y) → (u, v) in X𝛼 as
h→0.
For the in-plane displacements we have by definition (2.8) of P𝜃h and

(2.23):

uh(x′) = 1
𝜃h2 ∫ /−12

/12
(yh(x′,x3)−x′) dx3

= u(x′)+h ∫ /−12

/12
d ′(x′,x3) dx3,
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where the W 1,2-norm of the last term goes to zero with h because d ∈
W 1,∞(Ω1). Again by (2.8) and (2.23) we have for the out-of-plane dis-
placements

vh(x′) = 1
𝜃√ h ∫ /−12

/12
y3h(x′,x3) dx3

= v(x′)+h2 𝜃√ ∫ /−12

/12
d(x′,x3) dx3.

As before, the second term goes to zero in W 1,2 and consequently (uh,
vh)→(u,v) in W 1,2.
For the rotations take

Rh≔e 𝜃√ hEa.

Then

‖∇h yh−Rh‖0,2 = ‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖e− 𝜃√ hEa∇h yh− I

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖
0,2

=
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖(I− 𝜃√ hEa)(I+ 𝜃√ h Ea)+𝒪(h2)− I

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2

= 𝒪(h2),

and ‖Rh− I‖=𝒪(h) as required. □

In the next result, there is a departure from the analogous functional
in [FJM06] beyond the dependence on the out-of-plane component x3.
In the preceding cases, if one sets Q2(t, A) ≡ Q2(A), and B ≡ 0 then the
same functionals are obtained as in that work. However, in the regime
𝛼 > 3 their limit has no membrane term, but we have Q2(∇su, −∇2v) =
1
2 ∫ Q2(∇su) +

1
24 ∫ Q2(∇2v), with the membrane term. The reason is that

[FJM06] discard the in-plane displacements by minimising them away.
In their proofs, they drop the first term in the lower bound and build the
recovery sequence with no u term in h𝛼−1.
Note that it is by keeping the membrane term that our model is able to

take into account and respond to the pre-stressing (internal misfit) Bh, e.g.
compressive or tensile stresses in wafers.
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Theorem 2.11. (Upper bound, linearised von Kármán regime) Let
𝛼>3 and consider displacements (u,v)∈X𝛼≔W 1,2(𝜔;ℝ2)×W 1,2(𝜔;ℝ).
There exists a sequence (yh)h>0⊂Y which P𝛼h-converges to (u,v) such that

lim
h→0

ℐ𝛼h(yh)=ℐlvK(u,v),

with ℐlvK defined as in Theorem 2.6 by

ℐlvK(u,v)≔
1
2 ∫𝜔 Q2(∇s u,−∇2 v) dx′

on X𝛼0 and by +∞ elsewhere.

Proof. We follow closely the notation and path of proof of Theorem 2.10.
By a standard density argument it is enough to consider (u, v) ∈ X𝛼 ∩
C∞(𝜔). Define

yh(x′,x3)≔( x′
h x3)+( h𝛼−1u(x′)

h𝛼−2 v(x′) )−h𝛼−1x3(∇v(x′)
0 )+h𝛼d(x′,x3),

with d∈W 1,∞(Ω1;ℝ3). Then

∇h yh = I+h𝛼−2 (e3⊗∇̂v−∇̂v⊗e3)
=:E

+h𝛼−1 (∇̂u−x3 ∇̂2v+∂3d⊗e3)
=:F

+𝒪(h𝛼),

and, using that Es=0:

∇h
⊤ yh∇h yh = (I+h𝛼−2E⊤+h𝛼−1F⊤) (I+h𝛼−2E+h𝛼−1F)+𝒪(h𝛼)

= I+2h𝛼−1Fs+o(h𝛼−1).

Define now Mh≔∇h yh (I+h𝛼−1Bh). A few computations lead to
1
2 [(M

h)⊤Mh− I]=h𝛼−1 (Fs+Bs)+o(h𝛼−1),

from which follows, after a Taylor approximation (recall from the proof
of Theorem 2.10, that this can be done for sufficiently small h):

1
h2𝛼−2

W h(x3,∇h yh) = 1
2h2𝛼−2

[Q3(x3, [(Mh)⊤Mh− I]/2)

+o(|(Mh)⊤Mh− I|2)]

= 1
2 Q3(x3,Fs+Bs)+o(1).
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Picking d such that:

((B(x3)⋅3+∂3d)⊗e3)s=(ℒ(x3,∇u−x3∇2v+ B̌s(x3))⊗e3)s,

e.g.

d(x′,x3)≔∫0
x3
ℒ(t,∇s u− t∇2v+ B̌s(t))−B(t)⋅3dt,

the term with ℒ in Q2 cancels out and we obtain

Q3(x3,Fs+Bs)=Q2(x3,∇s u−x3∇2v+ B̌s(x3)).

Note that as proved in Theorem 2.10, the properties of ℒ imply that the
function d∈W 1,∞(Ω1;ℝ3) so the previous computations are justified. We
have therefore

1
h2𝛼−2

W0(x3,∇h yh)→ 1
2Q2(x3,∇s u−x3∇2v+ B̌s(x3)) a.e. in 𝜔,

and alsoQ2(x3,A)≲|A|2 becauseQ3 is in L∞ (Assumption 2.2.b). Because
u i, v ∈ C∞(𝜔) and Bs ∈ L∞, all arguments of Q2 are uniformly bounded
and we can apply dominated convergence to conclude:

1
h2𝛼−2 ∫Ω1 W0(x3,∇h yh) ⟶

h↓0

1
2 ∫Ω1 Q2(x3,∇s u−x3∇2v+ B̌s(x3)) dx

= 1
2 ∫𝜔 Q2(∇s u,−∇2v) dx′.

It remains to prove that indeed P𝛼h(yh) → (u, v) in X𝛼. We begin with the
out-of-plane displacements

vh(x′)≔ 1
h𝛼−2 ∫ /−12

/12
y3h(x′,x3) dx3=v(x′)+h2∫ /−12

/12
d(x′,x3) dx3,

which converges to v in W 1,2 because d∈W 1,∞. Analogously:

uh(x′)≔ 1
h𝛼−1 ∫ /−12

/12
(yh′(x′,x3)−x′) dx3=u(x′)+h2∫ /−12

/12
d(x′,x3) dx3
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converges to u in W 1,2. Finally, with the choice Rh≔eh𝛼−2Ea we have:

‖∇h yh−Rh‖0,2 = ‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖e−h𝛼−2Ea∇h yh− I‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

‖‖‖‖‖‖‖‖‖‖0,2
= ‖(I−h𝛼−2Ea) (I+h𝛼−2Ea)+𝒪(h𝛼−1)− I‖0,2
= 𝒪(h𝛼−1).

□

Together with the compactness results of Appendix A.6, this com-
pletes the arguments necessary to show convergence of the functionals,
of their (almost) minimisers and of their minima. Next, we investigate
the transition between 𝛼<3 and 𝛼>3.

2.4 Γ-convergence of the interpolating theory

Notation. Throughout this section we write A𝜃≔∇s u𝜃+
1
2 ∇v𝜃⊗∇v𝜃 for

the strain induced by a pair of displacements (u𝜃,v𝜃). As before, 𝜃>0.

We now set to prove Theorem 2.7, which states that the functional of
generalised von Kármán type that we found in the preceding section,

ℐvK
𝜃 (u𝜃,v𝜃)≔

1
2 ∫𝜔 ∫ /−12

/12
Q2(x3, 𝜃√ A𝜃−x3∇2 v𝜃+ B̌(x3))dx3dx′,

interpolates between the two adjacent regimes as 𝜃 → ∞ or 𝜃 → 0. As
𝜃 approaches infinity, we expect the optimal energy configurations to
approach those of the linearised Kirchhoff model, whereas with 𝜃 tending
to zero they should approach the linearised von Kármán model.
For this section we must restrict ourselves to spaces where Korn-Poin-

caré type inequalities hold.

Definition 2.12. Let

Xu≔{u∈W 1,2(𝜔;ℝ2):∫𝜔∇a u=0 and ∫𝜔 u=0},
and

Xv≔{v∈W 2,2(𝜔;ℝ):∫𝜔∇v=0 and ∫𝜔 v=0}.
We set Xw≔Xu×Xv with the weak topologies.
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Additionally, from now on we assume that ω is symmetric (i.e. x ∈
𝜔⇔−x∈𝜔).2.18 This condition is inessential but simplifies some of the
computations by removing the need to shift functions. Finally, for the
limit 𝜃→∞ we require that ω be convex and recall the definition of the
space of maps with singular Hessian

Wsh
2,2(𝜔)≔{v∈W 2,2(𝜔;ℝ):det∇2v=0 a.e.}.

Remark 2.13. Working in Xu × Xv does not affect the energies: First we
can always add an infinitesimal rigid motion to u and and any affine func-
tion to v without changing ∇su or ∇2v. Second, although the nonlinear
term ∇v⊗∇v does change after adding an affine function, the extra terms
appearing happen to be a symmetric gradient which can be absorbed into
∇s u with a little help: For any g(x)=a ⋅x+b with a,b∈ℝ2, we have

∇(v+g)⊗∇(v+g) = ∇v⊗∇v+a⊗a+a⊗∇v+∇v⊗a
= ∇v⊗∇v+∇s z (2.24)

where we set z(x) ≔ (2 v(x) + a ⋅ x) a ∈W 2,2(𝜔; ℝ2). Therefore, for any
fixed u ∈W 1,2(𝜔; ℝ2), v ∈W 2,2(𝜔) one can choose g(x) = −[(∇v)𝜔 ⋅ x +
(v)𝜔] and define

ũ=u+ z+ r, ṽ=v+g,

with r(x) = R x + c, for constants R ≔ −1
|𝜔| ∫𝜔∇a u + ∇a z dx ∈ ℝant2×2 and

c ≔ −1
|𝜔| ∫𝜔 u(x) + z(x) + R x dx. For ũ, ṽ we then have on the one hand

∫ ũ=0,∫ ∇a ũ=0 and ∫ ṽ=0,∫ ∇ṽ=0 and on the other (note that ∇s r=0):

ℐvK
𝜃 (u,v)=ℐvK

𝜃 (ũ− z− r, ṽ−g) =
(2.24)

ℐvK
𝜃 (ũ− r, ṽ)=ℐvK

𝜃 (ũ, ṽ)

as desired.

Our first theorem identifies the types of convergence required in order
to obtain precompactness of sequences of bounded energy. We use these
definitions of convergence for the computation of the Γ-limits.

2.18. Actually, we only need the barycenter to be the origin so that ∫𝜔 x′ dx′ =0, but
for consistency with Section 3.2.1 we require symmetry.
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Theorem 2.14. (Compactness) Let (u𝜃,v𝜃)𝜃>0 be a sequence in Xw with
finite energy

sup
𝜃>0

ℐvK
𝜃 (u𝜃,v𝜃)⩽C.

Then:

1. The sequence (v𝜃)𝜃↑∞ is weakly precompact in W 2,2(𝜔) and the weak
limit is in Xv∩Wsh

2,2(𝜔). Additionally (u𝜃)𝜃↑∞ is weakly precompact in
W 1,2(𝜔;ℝ2).

2. The sequence (𝜃1/2 u𝜃, v𝜃)𝜃↓0 is weakly precompact in W 1,2(𝜔; ℝ2) ×
W 2,2(𝜔) and the weak limit is in Xu×Xv.

Proof. By assumption:

C⩾∫𝜔 ∫ /−12

/12
Q2(x3, 𝜃√ A𝜃−x3∇2v𝜃+ B̌(x3))dx3dx′

and by Lemma A.14 we have the uniform lower bound

Q2(x3,F)≳ |F|2 for all symmetric F and x3∈( /−12, /12),

so that ∫ /−12

/12 Q2(x3, F(x3)) ≳ ∫ /−12

/12 |F(x3)|2. Now split the inner integral in
half, and normalize to use Jensen's inequality. In the upper half:

C ⩾ ∫𝜔 2∫0
/12

Q2(x3, 𝜃√ A𝜃−x3∇2v𝜃+ B̌s(x3))dx3dx′

≳ ∫𝜔 2∫0
/12

||||||||||||||||||||
|||||||||||||||||||| 𝜃√ A𝜃−x3∇2v𝜃+ B̌s(x3)||||||||||||||||||||

||||||||||||||||||||2dx3dx′

≳ ∫𝜔 ||||||||||||||||||||||||||||||||||||||
||||||||||||||||||||
|||||||||||||||||
2∫0

/12
𝜃√ A𝜃−x3∇2v𝜃+ B̌s(x3) dx3

||||||||||||||||||||
||||||||||||||||||||
||||||||||||||||||||
|||||||||||||||2
dx′

= ∫𝜔 |||||||||||||||||||||||||||||||||
||||||| 𝜃√ A𝜃−

1
4 ∇

2v𝜃+c
||||||||||||||||||||
||||||||||||||||||||2dx′

≳
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖ 𝜃√ A𝜃−

1
4 ∇

2v𝜃‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2,𝜔
2 −c2 |𝜔|.

An analogous computation for the lower half of the interval results in

C⩾
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖ 𝜃√ A𝜃+

1
4 ∇

2v𝜃‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2,
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and bringing both bounds together we obtain:

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖ 𝜃√ A𝜃‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2⩽C and ‖∇2v𝜃‖0,2⩽C. (2.25)

Two applications of Poincaré's inequality to the second bound yield:

‖v𝜃‖2,2⩽C for all 𝜃>0.

Therefore a subsequence (not relabeled) v𝜃 ⇀ v for some v ∈ W 2,2(𝜔).
Since Xv is convex, it is weakly closed and v∈ Xv. Now consider (2.25)
again and observe that with the Sobolev embedding W 1,2(𝜔)↪L4(𝜔) we
know that

‖∇v𝜃⊗∇v𝜃‖0,2=‖∇v𝜃‖0,42 ≲‖∇v𝜃‖1,22 ⩽‖v𝜃‖2,22 ⩽C.

An application of the triangle inequality implies then

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖ 𝜃√ ∇s u𝜃‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2⩽C+C 𝜃√ , (†)

so, by Korn-Poincaré (Corollary A.22), the sequence (u𝜃)𝜃>0 is bounded
inW 1,2when 𝜃→∞ and there exists a subsequence (not relabeled) u𝜃⇀u
for some u∈Xu (again by convexity of Xu).
Now if z𝜀 ⇀ z in W 1,2(𝜔; ℝ2), by the compact Sobolev embedding

W 1,2↪L4 we have z𝜀→ z in L4 and

∫𝜔 |z𝜀⊗ z𝜀− z⊗ z|2dx ⩽ ∫𝜔 |z𝜀⊗(z𝜀− z)|2+ |(z𝜀− z)⊗ z|2dx

⩽ ∫𝜔 |z𝜀|2 |z𝜀− z|2+|z𝜀− z|2 |z|2dx

⩽ ‖z𝜀‖0,42 ‖z𝜀− z‖0,42

+‖z𝜀− z‖0,42 ‖z‖0,42 ⟶
𝜀→0

0. (2.26)

So ∇v𝜃⊗∇v𝜃→∇v⊗∇v in L2 and from (2.25) and lower semicontinuity
of the norm we deduce

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖∇s u+ 1

2∇v⊗∇v
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2⩽ linf𝜃→∞

‖A𝜃‖0,2=0.

By [FJM06, Proposition 9] v∈Wsh
2,2(𝜔) and this concludes the proof of the

first statement.
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For the second statement we take 𝜃↓0. It only remains to prove pre-
compactness for u𝜃 since the previous computation for (v𝜃)𝜃>0 applies for
all 𝜃. But it follows directly from (†) above: again with Corollary A.22,
the sequence (𝜃1/2 u𝜃)𝜃>0 is bounded inW 1,2, so it contains a weakly con-
vergent subsequence 𝜃1/2u𝜃⇀u and the limit is in the convex set Xu. □

We begin the proof of Γ-convergence in Theorem 2.7 with the lower
and upper bound for the passage from 𝛼=3 to 𝛼<3.

Theorem 2.15. (Lower bound, von Kármán to linearised Kirchhoff)
Assume 𝜔 is convex and let (u𝜃, v𝜃)𝜃>0 be a sequence in Xw such that

v𝜃⇀v in Xv as 𝜃→∞. Then

linf
𝜃↑∞

ℐvK
𝜃 (u𝜃,v𝜃)⩾ℐlKi(v).

Proof. We must consider two cases.
Case 1: v∈Xv

0≔Xv∩Wsh
2,2(𝜔), hence ℐlKi(v)<∞.

We can minimise the inner integral pointwise and obtain a lower
bound:

ℐvK
𝜃 (u𝜃,v𝜃) =

1
2 ∫𝜔 ∫ /−12

/12
Q2(x3, 𝜃√ A𝜃−x3∇2v𝜃+ B̌(x3))dx3dx′

⩾ 1
2 ∫𝜔 min

A∈ℝ2×2∫ /−12

/12
Q2(x3, A−x3∇2v𝜃+ B̌(x3)) dx3dx′

= ℐlKi(v𝜃).

By Remark 2.3 Q2
⋆ is convex, therefore ℐlKi is w.s.l.s.c. in L2 [FL07,

Theorem 5.14], and we have by the convergence v𝜃⇀v in W 2,2:

linf
𝜃↑∞

ℐvK
𝜃 (u𝜃,v𝜃)⩾ linf

𝜃↑∞
ℐlKi(v𝜃)⩾ℐlKi(v).

Case 2: v∉Xv
0, hence ℐlKi(v)=+∞.

We need to show that ℐvK
𝜃 (u𝜃, v𝜃) diverges. To prove this by contra-

diction assume that
linf
𝜃↑∞

ℐvK
𝜃 (u𝜃,v𝜃)<∞.

But then there exists some subsequence (not relabelled) such that

sup
𝜃>0

ℐvK
𝜃 (u𝜃,v𝜃)⩽C,
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and by Theorem 2.14 v∈Xv
0 in contradiction to the assumption. □

Theorem 2.16. (Upper bound, von Kármán to linearised Kirchhoff)
Assume 𝜔 is convex. Set Xv

0≔ Xv ∩Wsh
2,2(𝜔) and fix some displacement

v ∈ Xv. There exists a sequence (u𝜃, v𝜃)𝜃↑∞ ⊂ Xw such that v𝜃 ⇀ v in
W 2,2(𝜔) and lsup

𝜃↑∞
ℐvK
𝜃 (u𝜃,v𝜃)⩽ℐlKi(v).

Proof. By Theorem 2.19 we can work with functions v∈𝒱0, see (2.27),
which are smooth with singular Hessian, since they are dense in the restric-
tion to Xv. By [FJM06, Proposition 9] there exists a displacement u:𝜔→
ℝ2 in W 2,2(𝜔;ℝ2) such that

∇s u+ 1
2 ∇v⊗∇v=0. (†)

Fix 𝛿>0 and, using Corollary 2.23, choose smooth functions a∈C∞(𝜔),
g∈C∞(𝜔;ℝ2) such that

‖∇s g+a∇2v− Amin‖0,22 <𝛿,

where Amin∈L∞(𝜔;ℝsym2×2) is defined as

Amin≔argmin
A∈ℝsym2×2

∫ /−12

/12
Q2(t,A− t∇2v+ B̌(t)) dt.

Define now the recovery sequence (u𝜃,v𝜃)𝜃>0 with

u𝜃≔u+ 1
𝜃√
(a∇v+g), v𝜃≔v− 1

𝜃√
a.

Clearly v𝜃=v−𝜃 /−12a→v as 𝜃→∞ in W 2,2(𝜔). Furthermore

𝜃√ ∇s u𝜃= 𝜃√ ∇s u+∇s g+(∇a⊗∇v)s+a∇2 v,

𝜃√
2 ∇v𝜃⊗∇v𝜃=

𝜃√
2 ∇v⊗∇v+ 1

2 𝜃√
∇a⊗∇a−(∇a⊗∇v)s,

and2.19

−t∇2 v𝜃=−t∇2 v+ t
𝜃√
∇2a,

2.19. Observe that this line implies that v appears with the correct scaling (i.e. none)
in v𝜃.
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so that, using (†) and the fact that the product ‖∇a⊗∇a‖0,2=‖∇a‖0,42 is
bounded we have

ℐvK
𝜃 (u𝜃,v𝜃) =

1
2 ∫𝜔 ∫ /−12

/12
Q2(t, 𝜃 /12 A𝜃− t∇2 v𝜃+ B̌(t))dt dx′

= 1
2 ∫𝜔 ∫ /−12

/12
Q2(t,∇s g+(a− t)∇2 v+ B̌(t)) dt dx′+𝒪(𝜃 /−12).

Now subtract and add Amin insideQ2 and use Cauchy's inequality (Lemma
A.16) with 𝜀= 𝛿√ :

∫ /−12

/12
Q2(t,∇s g+a∇2v− t∇2v+ B̌) dt

⩽ (1+ 𝛿√ ) ∫ /−12

/12
Q2(t, Amin− t∇2v+ B̌) dt

+ 1
4 𝛿√ ∫ /−12

/12
Q2(t,∇s g+a∇2v− Amin) dt

≲‖∇sg+a∇2v−Amin‖0,22 <𝛿

= ∫ /−12

/12
Q2(t, Amin− t∇2v+ B̌) dt+𝒪𝛿↓0(𝛿 /12).

We plug this in and obtain:

ℐvK
𝜃 (u𝜃,v𝜃) ⩽ 1

2 ∫𝜔 ∫ /−12

/12
Q2(t, Amin− t∇2 v+ B̌(t)) dt dx′

+𝒪(𝜃 /−12)+𝒪𝛿↓0(𝛿 /12)
⟶
𝜃↑∞ 1

2 ∫𝜔 ∫ /−12

/12
Q2(t, Amin− t∇2 v+ B̌(t)) dt dx′+𝒪𝛿↓0(𝛿 /12).

The proof is concluded by letting 𝛿 → 0 and passing to a diagonal
sequence. □

We finish the proof of Theorem 2.7 with the lower and upper bounds
for the transition from 𝛼=3 to 𝛼>3. The lack of constraints in the limit
functional makes the proofs straightforward.
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Theorem 2.17. (Lower bound, von Kármán to linearised von Kármán)
Let (u𝜃, v𝜃)𝜃>0 be a sequence in Xw such that (𝜃1/2 u𝜃, v𝜃) → (u, v) in

Xw as 𝜃→0. Then
linf
𝜃→0

ℐvK
𝜃 (u𝜃,v𝜃)⩾ℐlvK(u,v).

Proof. We may assume that sup𝜃>0ℐvK
𝜃 (u𝜃, v𝜃) ⩽ C. Then by Theorem

2.14 (∇v𝜃)𝜃>0 is bounded in W 1,2 and by the Sobolev embedding W 1,2↪
L4 we have as before ‖∇v𝜃⊗∇v𝜃‖0,2=‖∇v𝜃‖0,42 ⩽C. Consequently

𝜃√ A𝜃= 𝜃√ ∇s u𝜃+
𝜃√
2 ∇v𝜃⊗∇v𝜃⇀∇s u in L2 as 𝜃↓0.

The functional ℐvK
𝜃 is a Γ-limit under weak convergence, so it is w.s.l.s.c.

and:

linf
𝜃↓0

ℐvK
𝜃 (u𝜃,v𝜃) ⩾

1
2 ∫𝜔 ∫ /−12

/12
Q2(x3,∇s u−x3∇2v+ B̌(x3)) dx3dx′

= ℐlvK(u,v).

□

Theorem 2.18. (Upper bound, von Kármán to linearised von Kármán)
Let (u, v) ∈ Xw. There exists a sequence (u𝜃, v𝜃)𝜃>0 ⊂ Xw converging

to (u,v)∈Xw such that ℐvK
𝜃 (u𝜃,v𝜃)→ℐlvK(u,v) as 𝜃→0.

Proof. Define
u𝜃≔𝜃−1/2u and v𝜃≔ v.

Clearly (𝜃1/2u𝜃,v𝜃)≡(u,v) and using again W 1,2↪L4 we have:

𝜃√ A𝜃=∇s u+ 1
2 𝜃

1/2∇v⊗∇v⟶
𝜃↓0

∇s u in L2.

Consequently:

ℐvK
𝜃 (u𝜃,v𝜃) = 1

2 ∫𝜔 ∫ /−12

/12
Q2(x3, 𝜃√ A𝜃−x3∇2 v𝜃+ B̌(x3))dx3dx′

⟶
𝜃↓0

1
2 ∫𝜔 ∫ /−12

/12
Q2(x3,∇s u−x3∇2 v+ B̌(x3)) dx3dx′

= ℐlvK(u,v),

as stated. □
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2.5 Approximation and representation theorems

A key ingredient in the proofs of the upper bounds is the density of certain
smooth functions in the space where the energy is minimised. In partic-
ular, for the case 𝛼∈(2,3) we obtain a result proving that W 2,2maps with
singular Hessian can be approximated by smooth functions with the same
property. In order to apply the results of [Sch07b] we may restrict our-
selves to isometries which partition 𝜔 into finitely many so-called bodies
and arms (cf. Definition 3.6). There it is shown that the set

𝒜0≔{y∈C∞(𝜔;ℝ3) :y is an isometry finitely partitioning 𝜔},

is dense in the W 2,2-isometries. Here we show that, additionally,

𝒱0≔{v∈C∞(𝜔):∃𝜂>0 s.t. 𝜂v=y3 for some y∈𝒜0} (2.27)

is W 2,2-dense in Wsh
2,2.

Theorem 2.19. Let 𝜔⊂ℝ2 be a bounded, convex, Lipschitz domain. Then
the set 𝒱0 is W 2,2-dense in Wsh

2,2(𝜔). In particular det ∇2v = 0 for all
v∈𝒱0.

Proof. 2.20

Step 1: Approximation.
Let v ∈ Wsh

2,2(𝜔) and 𝜀 > 0. By [FJM06, Theorem 10], we can find
some ṽ ∈Wsh

2,2(𝜔) ∩W 1,∞(𝜔) s.t. ‖v − ṽ‖2,2 < 𝜀/2 and, for 𝜂 = 𝜂(𝜀) > 0
sufficiently small, ‖∇𝜂ṽ‖∞<1/2. One can now apply [FJM06, Theorem
7] to construct an isometry ỹ ∈W 2,2(𝜔; ℝ3) whose out-of-plane compo-
nent ỹ3= 𝜂 ṽ. By [Sch07b, Proposition 2.3]2.21 we find a smooth y∈𝒜0
such that ‖y− ỹ‖2,2<𝜀 𝜂/2 and in particular ‖y3− ỹ3‖2,2<𝜀 𝜂/2. Setting
𝜓≔y3/𝜂∈𝒱0 we conclude

‖v−𝜓‖2,2⩽‖v− ṽ‖2,2+‖ṽ−𝜓‖2,2<𝜀.

2.20. We are grateful to Prof. Hornung for the help provided with this proof.
2.21. It is in order to apply this theorem that we require the additional assumption

(wrt. Assumption 2.1) of convexity of the domain.
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Step 2: Inclusion.

Let v ∈ 𝒱0 with 𝜂 v = y3, 𝜂 > 0 for some smooth isometry y ∈ 𝒜0.
Recall that the second fundamental form ΙΙ(y) of any smooth isometric
immersion y is singular and the identity ∇2yj=−ΙΙ(y) n j holds for all j∈
{1, 2, 3}, where n= y,1∧ y,2.2.22 Therefore det (𝜂 ∇2v) = det(−II(y) n3) = 0
and the proof is complete. □

Remark 2.20. In [FJM06, Theorem 7], maps y′ ∈ W 1,2(𝜔; ℝ2) with
det ∇y′ > 0 such that ∇⊤y′ ∇y′ + ∇v ⊗ ∇v = I are built from maps
v∈Wsh

2,2(𝜔) under the condition that ‖∇v‖∞<1. This additional require-
ment for the existence of the isometries y = (y′, v) is necessary and is
the reason for the factor 𝜂 in the definition of 𝒱0 (since we want to approx-
imate any v∈Wsh

2,2 with arbitrarily large gradient). Indeed if we require
det∇y′>0 then

0<det2∇y′=det (∇⊤y′∇y′)=det (I−∇v⊗∇v)=1− |∇v|2,

and the requirement follows.2.23

We note that the following similar statement can be proved using the
same approximation arguments and [Hor11, Theorem 1] (with the bonus
of in addition holding for more general domains).

Theorem 2.21. Let 𝜔 ⊂ ℝ2 be a bounded, simply connected, Lipshitz
domain whose boundary contains a set Σ=Σ⊂∂𝜔 with ℋ1(Σ) = 0 such
that on its complement ∂𝜔\Σ the outer unit normal to 𝜔 exists and is
continuous. Then the set Wsh

2,2(𝜔)∩C∞(𝜔) is W 2,2-dense in Wsh
2,2(𝜔).

2.22. See [MP05, Proposition 3] for a proof forW 2,2 isometries on Lipschitz domains.
2.23. One way to see this intuitively is that it should not be possible to construct

isometries from vertical displacement fields v with large gradients. A complementary
view to have is that any linear map with matrix e ⊗ e is a projection onto the vector e,
and has eigenvectors e and e⊥, with respective eigenvalues |e|2 and 0, as can be readily
checked. This means that |e| must be <1 or I − e ⊗ e will have one non-positive eigen-
value, hence non-positive determinant.
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Once one can work with smooth functions, the essential tool for the
construction of the recovery sequences for 𝛼∈(2,3) is the following rep-
resentation theorem for maps with singular Hessian and its corollary, both
following [Sch07b] very closely. A crucial component in the proof of the
result in that paper is the ability to use approximations partitioning the
domain in regions over which they are affine. This is in close connection
to the rigidity property for W 2,2-isometries proved in [Pak04, Theorem
II]: every point of their domain lies either on an open set or on a segment
connecting the boundaries where the map is affine.

Theorem 2.22. Let v ∈ 𝒱0 and A ∈ C∞(𝜔; ℝsym2×2) such that A ≡ 0 in a
neighbourhood of {∇2v = 0}. There exist maps a, g1, g2 ∈ C∞(𝜔) such
that a=g i=0 on {∇2v=0} and

A=∇s g+a∇2v.

Proof. Let 𝜂 > 0, y ∈ 𝒜0 s.t. 𝜂 v = y3. Using that ∇2y3 = −ΙΙ(y) n3 holds
by virtue of y being an isometry, with n= y,1∧ y,2 being the unit normal
vector, we have that A≡0 in a neighbourhood of {II (y)=0}∪{n3=0}, and

{∇2v=0}={II(y)=0}∪{n3=0}.

We can apply [Sch07b, Lemma 3.3]2.24 to y in order to obtain functions
ã,g1,g2∈C∞(𝜔) s.t. ã,g1,g2=0 on {II(y)=0} and A=∇s g+ ã II(y).
By examining the proof of this Lemma one can see that ã, g ≡ 0 in

a neighbourhood of {n3 = 0}: since over bodies one has ã, g1, g2 = 0
by construction, we need only consider arms, i.e. domains covered by
a leading curve (see Definition 3.6). On these sets, if n3 vanishes at a
point then it vanishes at a whole line perpendicular to the leading curve,
because the latter is orthogonal to the level sets of the gradient. Now,
because A=0 in a neighbourhood of this line, when solving the equations
in the proof of the Lemma which determine g then ã, one obtains u2,s=0
and u2,t = 0, and with the boundary conditions u2 = 0 then u1 = 0 is a
solution to the remaining equation. Hence g=0 and ã=0 on these lines.
Since the functions so obtained are C∞, we can define a ≔ −ã 𝜂 / n3 if
n3≠0 and a=0 otherwise, and this is a smooth function such that

A=∇s g+a∇2v. □

2.24. Namely: If y ∈ 𝒜0 and A ∈ C∞(𝜔; ℝsym
2×2) vanishes over a neighbourhood of

N={II (y)=0}, then there exist ã,g1,g2∈C∞(𝜔) vanishing on N such that A=∇s g+ ã II (y).
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Corollary 2.23. ([Sch07b]) Let v∈𝒱0 and define for every x′∈𝜔

Amin(x′)=argmin
A∈ℝsym2×2

∫ /−12

/12
Q2(t, A− t∇2v(x′)+ B̌s) dt.

Then Amin ∈ L2(𝜔; ℝsym2×2) and there exist sequences of functions ak ∈
C0
∞({∇2 v≠0}),gk∈C0

∞({∇2 v≠0};ℝ2) such that

‖∇s gk+ak∇2v−Amin‖L2(𝜔;ℝ2×2)⟶0 as k→∞.

Proof. Let k∈ℕ be arbitrary. First, on the set {∇2v=0} we trivially have
Amin≡A0 a constant matrix. Now let Ak∈C0

∞({∇2v≠0};ℝ2×2) such that

‖Ak−(Amin− A0)‖L2(𝜔;ℝ2×2)<
1
k

and use Theorem 2.22 to pick smooth ak, g̃k with support on {∇2 v≠ 0}
and

Ak=∇s g̃k+ak∇2 v.

Set gk(x′)= g̃k(x′)+A0 x′. Then:

‖∇s gk+ak∇2 v− Amin‖L2=‖∇s g̃k+ak∇2 v−(Amin− A0)‖L2<
1
k . □
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3

Properties and characterisation of minimisers

In this chapter we pursue two goals: First we develop a characterisation
of minimisers for the lower range 𝛼 ∈ (2, 3) of scalings in Theorem 3.1
and for the upper range 𝛼 > 3 in Theorem 3.2. The results indicate that
the characteristic shapes are roughly (infinitesimal) cylinders and parabo-
loids respectively. Together with the interpolating property of the regime
𝛼 = 3 from Section 2.4 this leads us to conjecture that minimisers in this
regime will experience a stark qualitative change for some critical (order
of) magnitude 𝜃c> 0 of the parameter. Second, we take some first steps
investigating in this direction with proofs of existence, uniqueness and
global minimisation for small values of 𝜃 in Section 3.2.

3.1 Optimal configurations in the linearised regimes

This first section contains the proofs of the following two theorems.

Theorem 3.1. Up to the addition of an affine transformation, the min-
imisers of ℐlKi are of the form

v(x′)= 12 x′⊤F x,

where

F∈𝒩≔argmin{Q2
∗(F−F0):F∈ℝsym2×2, detF=0},

and Q2
∗,F0 are given in Proposition 3.3.



Theorem 3.2. The minimisers of ℐlvK are of the form

u(x′)=E0 x′ and v(x′)= 12 x′⊤F0 x′,

where E0, F0 ∈ ℝsym2×2 are constants depending on Q2 and B which are
explicitly computed in Proposition 3.8. u is unique up to an infinitesimal
rigid motion and v up to the addition of an affine transformation.

We start with ℐlKi and, mimicking [Sch07b, Proposition 3.5], we seek
to compute a representation of the form Q2

⋆which dispenses with the min-
imum:

Proposition 3.3. Let Q2
⋆ be given as in (2.5):

Q2
⋆(F)≔ min

E∈ℝ2×2
Q2(E,F)= min

E∈ℝsym2×2∫ /−12

/12
Q2(t,E+ tF+ B̌(t)) dt.

There exist a quadratic form Q2
∗ strictly convex over ℝsym2×2 and constants

F0∈ℝ2×2,a0∈ℝ, all explicitly computable in terms of the coefficients of
Q2 and B, such that:

Q2
⋆(F)=Q2

∗(F−F0)+a0, for all F∈ℝsym2×2.

An immediate consequence, which also follows from a direct compu-
tation, is that in the homogeneous case (cf. Section 2.2.1), the linearised
Kirchhoff energy reduces to a “pure bending” energy term:

Corollary 3.4. If Q2(t,A)=Q2(A) and B(t)= t I then one has

Q2
⋆(F)= 1

12 Q2(F+ I).

Therefore:

ℐlKi(v)={
1
24 ∫𝜔Q2(∇2v− I) if v∈Wsh

2,2,
+∞ otherwise.
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For the proof of Proposition 3.3 we require the following:

Lemma 3.5. Let t ↦M(t) ∈ℝsymn×n for t ∈ ( /−12, /12) be a measurable map
such that M(t) is positive definite for each t and define its moments

M0≔∫ /−12

/12
M(t) dt, M1≔∫ /−12

/12
t M(t) dt, M2≔∫ /−12

/12
t 2M(t) dt.

Then M0, M2 and M∗≔M2−M1M0
−1M1 are positive definite.

Proof. Define first 𝛿(t)≔ inf
x

x⊤M(t)x
|x|2 , a measurable function with 𝛿(t) > 0

for every t∈( /−12, /12). Then

x⊤M0 x=x⊤∫ /−12

/12
M(t) dt x⩾∫ /−12

/12
𝛿(t) dt |x|2=𝛿0 |x|2,

with 𝛿0>0. Analogously:

x⊤∫ /−12

/12
t2M(t) dt x⩾∫ /−12

/12
t2𝛿(t) dt |x|2⩾𝛿1 |x|2,

for some 𝛿1 > 0, and this concludes the proof for M0 and M2. Now fix
some Λ∈ℝ2×2 and consider the quantity

0 ⩽ ∫ /−12

/12
(t M /12(t)−M /12(t)Λ)⊤(tM /12(t)−M /12(t)Λ)dt

= ∫ /−12

/12
(t I−Λ)M(t) (t I−Λ)dt

= M2−Λ⊤M1−M1Λ+Λ⊤M0Λ.

Choosing Λ=M0
−1M1 we obtain

0⩽M2−M1M0
−1M1,
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and we claim that the right hand side cannot have 0 as eigenvalue and
therefore the inequality is strict and the proof is concluded. If it had, say
with eigenvector x0, then

0 = x0⊤ (M2−M1M0
−1M1) x0

= ∫ /−12

/12
x0⊤(tM /12(t)−M /12(t)Λ)⊤(tM /12(t)−M /12(t)Λ)x0dt

= ∫ /−12

/12

||||||||||||||||||||
|||||(t M /12(t)−M /12(t)Λ)x0||||||||||||||||||||

|||||2dt.

So the integrand would be a.e. 0. Factoring M /12>0 out this would mean
that (t I − Λ) x0 = 0 for a.e. t, a contradiction since Λ has at most two
eigenvalues. □

Proof of Proposition 3.3. Recall again definition (2.5):

Q2
⋆(F)≔ min

E∈ℝ2×2∫ /−12

/12
Q2(t,E+ t F+ B̌(t)) dt, for F∈ℝ2×2.

Because, by Lemma A.13, Q2(t,F)=Q2(t,Fs) we may restrict our atten-
tion to F∈ℝsym2×2. From now on, we identify matrices E=(Eij)i, j=12 ∈ℝsym2×2

with vectors in ℝ3 via

E↦e≔(E11,E22,E12), (3.1)

and analogously F ↦ f , B̌ ↦ b, A ↦ a. Then, for each t ∈ ( /−12, /12)
there exists some symmetric, positive definite matrix M(t) such that for
all A∈ℝsym2×2:

Q2(t,A)=a⊤M(t)a.

Define the moments of M as in Lemma 3.5, as well as the vectors

b1≔∫ /−12

/12
M(t)b(t) dt, b2≔∫ /−12

/12
t M(t)b(t) dt

and the scalar

𝛽0≔∫ /−12

/12
b(t)⊤M(t)b(t) dt.
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By Lemma 3.5, M0 and M2 are positive definite. Now, because E,F are
independent of t:

∫ /−12

/12
Q2(t,E+ tF+ B̌(t)) dt = ∫ /−12

/12
{Q2(t,E)+ t 2Q2(t,F)+Q2(t, B̌(t))

+2 t Q2[t,E,F]+2Q2[t,E, B̌(t)]
+2 t Q2[t,F, B̌(t)]}dt

= e⊤M0 e+ f ⊤M2 f +𝛽0
+2e⊤M1 f +2e ⋅b1+2 f ⋅b2

=: q2(e, f ,b).

We can then write
Q2
⋆(F)= min

e∈ℝ3
q2(e, f ,b).

Setting the derivative ∂e q2(e, f , b) = 2M0 e+2M1 f +2 b1 equal to zero
we obtain the minimiser em=−M0

−1 (M1 f +b1) and the expression

Q2
⋆(F)=em

⊤M0 em+ f ⊤M2 f +2em
⊤M1 f +2em ⋅b1+2 f ⋅b2+𝛽0.

Substituting the value of em into this expression we can complete the
square: for some vector f0∈ℝ3 we have

Q2
⋆(F) = f ⊤ (M2−M1M0

−1M1)
=:M∗

f −2b1⊤M0
−1M1 f +2 f ⋅b2

−b1⊤M0
−1b1+𝛽0

= ( f − f0)⊤M∗ ( f − f0)− f0⊤M∗ f0+2 f ⊤M∗ f0
−2b1⊤M0

−1M1 f +2 f ⋅b2−b1⊤M0
−1b1+𝛽0.

The matrix M∗ is positive definite by Lemma 3.5, hence invertible so we
can choose

f0≔(M∗)−1 (M1M0
−1b1−b2),

so that 2 f ⊤ M∗ f0 − 2 b1⊤ M0
−1 M1 f + 2 f ⋅ b2 = 0. Then, grouping all

constants together into

a0≔− f0⊤M∗ f0−b1⊤M0
−1b1+𝛽0

we obtain:
Q2
⋆(F)= ( f − f0)⊤M∗ ( f − f0)+a0. (3.2)
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The result now follows if we let Q2
∗ stand for the quadratic form with

associated matrix M∗:

Q2
∗(F)≔ f ⊤M∗ f for all F∈ℝsym2×2. □

Proof of Corollary 3.4. With the notation of the proof of Proposition 3.3,
we have M0 = M, M1 = M ∫ t = 0 and M2 = M ∫ t2 = 1

12 M, so M∗ =
1
12 M. Furthermore, letting i = ( 1 1 0 )⊤, we obtain b1 = 0, b2 =

1
12 M i

and 𝛽0=
1
12 i⊤M i, so f0=−12M−1 b2=−i and a0=− f0⊤M∗ f0+ 𝛽0=0.

Substituting into (3.2), and because F0=−I, the statement follows. □

To recapitulate, according to Theorem 2.6 and Proposition 3.3 the limit
functional for 𝛼∈(2, 3) is

ℐlKi(v)={
1
2 ∫𝜔Q2

∗(∇2v(x′)−F0) dx′+ a0
2 |𝜔| if v∈Wsh

2,2,
∞ otherwise,

(3.3)

where Q2
∗ is a strictly convex quadratic form and F0,a0 are constant func-

tions of the moments of Q2 and B.
The next difficulty for the proof of the first main result, Theorem 3.1,

lies in excluding the possibility of constructing a minimiser by piecing
together functions whose Hessian belongs to the set 𝒩, all with min-
imal energy but lacking a nice global structure. A careful analysis of the
proof of [Sch07b, Lemma 3.3] shows that it is possible to obtain a local
representation of the Hessian which shows that it must be constant and
singular over 𝜔 so that minimisers are (up to an affine transformation)
indeed cylindrical. In order to do this we require:

Definition 3.6. Let y∈W 1,2 be an isometry. A connected maximal subdo-
main of 𝜔 where ∇y is constant and y is affine whose boundary contains
more than two segments inside 𝜔 is called a body. A leading curve is a
curve orthogonal to the preimages of ∇y on the open regions where∇y is
not constant, parametrised by arc-length. We define an arm to be a max-
imal subdomain 𝜔(𝛾) which is covered (parametrised) by some leading
curve 𝛾 as follows:

𝜔(𝛾)⊂{𝜙𝛾(t, s)≔𝛾(t)+ s n(t):s∈ℝ, t∈[0, l]},
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where n(t)=𝛾′(t)⊥. We also speak of a covered domain.

𝛾
𝜔

Fig. 3.1. The partition of 𝜔 into bodies and arms. ∇y is constant in the bodies
(colored) and along each of the straight lines making up the arms (white).

The existence of covered domains for isometric immersions y∈W 1,2

is shown in [Pak04, Corollary 1.2].

Theorem 3.7. Let v∈Wsh
2,2(𝜔) and x0∈𝜔. There exists a neighbourhood

U of x0 such that, if ∇2v ≠ 0 a.e. in U, then for a suitable 𝜀 > 0 there
exist maps 𝛾 ∈ W 2,2((−𝜀, 𝜀); ℝ2) and 𝜆 ∈ L2((−𝜀, 𝜀)) such that U ⊂
{𝛾(t)+ s 𝛾′(t): s∈ℝ, t∈(−𝜀,𝜀)} and

∇2v(𝛾(t)+ s𝛾′(t))= 𝜆(t)
1− s 𝛾′′(t) 𝛾 ′(t)⊗𝛾′(t) (3.4)

if 𝛾(t)+ s 𝛾′(t)∈U.

Proof. Using [FJM06, Theorem 10] take vk ∈W 2,2 ∩W 1,∞, Sk ⊂ 𝜔 such
that x0∈int Sk, vk=v on Sk and ‖vk‖1,∞⩽C. By scaling vk with 𝜂 >0 we
can extend 𝜂 vk to an isometry y ([FJM06, Theorem 7]) with 𝜂 vk = y3.
Then, because y is an isometry:

−n3 II(y)=∇2y3=𝜂∇2v on Sk.

Since ∇2 y≠0 a.e. near x0, there is a neighbourhood U of x0 covered by
some leading curve 𝛾, that is:U⊂{𝛾(t)+s 𝛾′(t):s∈ℝ, t∈(−𝜀,𝜀)} and, by
[Sch07b, p. 111], on U we have

II(y)(𝛾(t)+ s 𝛾′(t))= �̃�(t)
1− s 𝛾′′(t) 𝛾 ′(t)⊗𝛾′(t),
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with �̃� ∈L2. Now, [Hor11, Proposition 1, eq. (12)] shows that ∇y(𝛾(t)+
s 𝛾′(t)) is independent of s, hence n3=(y,1∧y,2)3 is also independent of s
and we can subsume it into the function �̃�. Setting 𝜆(t)=−n3(t) �̃�(t) /𝜂 we
obtain the representation (3.4). □

Finally, we come to the proof of Theorem 3.1, which follows closely
that of [Sch07b, Proposition 4.2]:

Proof of Theorem 3.1. We observe first that the set 𝒩=argmin {Q2
∗(F−

F0): F ∈ ℝsym2×2, det F = 0} is not empty because F ↦ Q2
∗(F − F0) is

non-negative and strictly convex, but it also need not consist of just one
point because of the constraint. Note next that v is a minimiser of (3.3) iff
∇2v(x′) ∈𝒩 for almost every x′ ∈ 𝜔: On the one hand, every minimiser
has finite energy and thus ∇2vmust be pointwise a.e. in the set {F∈ℝsym2×2:
det F = 0}. On the other, any function F: 𝜔→ℝsym2×2 with F(x′) ∈𝒩 a.e.
minimises the integrand in (3.3) pointwise and thus the energy.
Next we show that any two elements F,G of 𝒩 are linearly indepen-

dent. Indeed, by strict convexity we have for all 𝜆∈(0,1):

Q2
∗(𝜆F+(1−𝜆)G−F0)<𝜆Q2

∗(F−F0)+ (1−𝜆)Q2
∗(G−F0).

Hence 𝜆F+(1−𝜆)G∉𝒩 or else F,Gwould not be minimisers. Because
Q2
∗ attains a lower value here we must have det(𝜆F+ (1−𝜆)G)≠ 0. But

then it cannot be that G=𝜌 F for any scalar 𝜌∈ℝ or else it would hold that
det(𝜆F+(1−𝜆)G)=det(𝜆F+(1−𝜆) 𝜌F)=C det F=0, a contradiction.
Consequently, we have in particular 0 ∉𝒩 unless 𝒩 = {0}. But in that
case ∇2v≡0 and the proof would be concluded.

Let now v ∈ Wsh
2,2 be a minimiser for ℐlKi. Note first that ∇v cannot

be constant over open sets: indeed we just saw that w.l.o.g. 0 ∉ 𝒩 and
consequently the possibility that ∇2v = 0 is excluded for a minimiser.
Consider then some point x0∈𝜔with a neighbourhoodU where ∇v is not
constant and use the representation (3.4). We have that, pointwise and
over U:

0≠∇2v(t, s)= 𝜆(t)
1− s𝜅(t) 𝛾 ′(t)⊗𝛾′(t).
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Assume now 𝜅(t0) ≠ 0 for some t0. By varying s we obtain distinct, lin-
early dependent matrices ∇2v(t0, s1) and ∇2v(t0, s2). Because ∇2v ∈𝒩
pointwise, this cannot be, so that such a t0 does not exist: the curvature
𝜅 vanishes everywhere and consequently 𝛾′ must be constant. Analo-
gously, 𝜆 is also constant or again we would have points at which ∇2v
is linearly dependent. Since this holds locally around every x′ = 𝛾(t) +
s 𝛾′(t), we deduce that ∇2v is constant on U and because we can cover
𝜔 in this manner, ∇2v≡F∈𝒩 a.e. over 𝜔. □

Jumping now to the regime 𝛼>3, we proceed first to compute a simpler
representation of the effective quadratic form where the misfit is absorbed
into a constant.

Proposition 3.8. Let 𝛼>3 and Q2 be given as in (2.4):

Q2(E,F)≔∫ /−12

/12
Q2(t,E+ t F+ B̌(t)) dt.

There are explicitly computable constants E0, F0 ∈ ℝsym2×2 and c0 ∈ ℝ
depending on B and Q2, such that

Q2(E−E0,F−F0)=∫ /−12

/12
Q2(t,E+ t F)+c0.

Proof. Suppose first that one can compute E0, F0 ∈ ℝsym
2,2 such that the

following orthogonality conditions hold

⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧ ∫ /−12

/12 Q2[t; B̌(t)−E0− tF0,X] dt=0,

∫ /−12
/12 Q2[t; B̌(t)−E0− tF0, t X] dt=0,

for all X∈ℝsym2×2. (3.5)

If this is the case, then we can expand the products and after some com-
putations arrive at the conclusion:

Q2(E−E0,F−F0) = ∫ /−12

/12
Q2(t,E−E0+ t (F−F0)+ B̌(t)) dt

=
(3.5) ∫ /−12

/12
Q2(t,E+ tF) dt+c0,
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with c0=∫ /−12
/12 Q2(t, B̌(t)−E0− tF0) dt.

It remains to prove the conditions (3.5). In order to do this we use the
moments of M as in Lemma 3.5, as well as the vectors b0, b1, the scalar
𝛽 and the identifications (3.1) in the proof of Proposition 3.3. With these
we can write e.g. Q2[t;X,Y]=x⊤M(t) y. The equations (3.5) then read

⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧ x⊤∫ /−12

/12 M(t) (b(t)−e0− t f0) dt=0,

x⊤∫ /−12
/12 t M(t) (b(t)−e0− t f0) dt=0,

for all x∈ℝ3,

which is to say that the integrals themselves vanish. Distributing the pro-
duct and rearranging, this means for the first equation

0 = ∫ /−12

/12
M(t)b(t) dt−∫ /−12

/12
M(t) dt e0−∫ /−12

/12
tM(t) dt f0

= b1−M0 e0−M1 f0,

or, with Lemma 3.5:

e0=M0
−1b1−M0

−1M1 f0.

For the second equation we have

0=b2−M1e0−M2 f0,

and plugging in the value of e0 and M∗=M2−M1M0
−1M1:

0 = b2−M1M0
−1b1+M1M0

−1M1 f0−M2 f0
= b2−M1M0

−1b1−M∗ f0.

Again with Lemma 3.5 we can solve for f0:

f0=(M∗)−1 (b2−M1M0
−1b1)

and consequently for e0, concluding the proof. □

Theorem 3.2 is now an inmediate consequence of the previous propo-
sition:
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Proof of Theorem 3.2. Let u,u0∈W 1,2(𝜔;ℝ2) and v,v0∈W 2,2(𝜔) choosing
u0, v0 such that ∇su0 = −E0 and ∇2v0 = F0 for the matrices E0 and F0
of Proposition 3.8. Then

ℐlvK(u+u0,v+v0) =
1
2 ∫𝜔 Q2(∇s u−E0,−∇2v−F0) dx′

= 1
2 ∫𝜔 ∫ /−12

/12
Q2(x3,∇s u−x3∇2 v) dx3dx′+ c̃0,

= ℐlvK
B≡0(u,v)+ c̃0,

where ℐlvK
B≡0 denotes ℐlvK with constant zero internal misfit B≡0.

Taking infima we have

c̃0⩽infℐlvK(u,v)= c̃0+infℐlvK
B≡0(u−u0,v−v0),

and the last summand is zero exactly when ∇su=∇su0 (i.e u=u0 modulo
infinitesimal rotations) and ∇2v=∇2v0 (i.e. v=v0modulo affine transfor-
mations). □

3.2 The structure of minimisers for ℐvK
θ

The second main contribution of this chapter is a first study of the prop-
erties of minimisers in the interpolating regime, “close” to the linearised
von Kármán model, in the homogeneous setting with Q2 independent of
x3 and linear misfit B(t)= t I (see (2.13)):

ℐvK
𝜃 (u,v)= 𝜃2 ∫𝜔 Q2(∇s u+ 1

2 ∇v⊗∇v) dx′+ 1
24∫𝜔 Q2(∇2v− I) dx′.

Natural subsequent steps along this line of work, which we do not take
here, are to consider the regime 𝜃→∞ and to investigate the existence of
the conjectured critical value 𝜃c, as well as to incorporate dependence on
the out-of-plane component or a more general misfit.3.1
The first goal is to show existence and uniqueness of critical points for

𝜃≪1. Here the main difficulty lies in the fact that minimisers at 𝜃=0 are
not unique. Indeed,

(u,v0)∈argminℐvK
0 , for u arbitrary and v0(x′)=

1
2 |x′|

2+a ⋅x′+b, (3.6)

3.1. In Chapter 4 we conduct numerical experiments supporting the conjecture that
this critical value exists.
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for any a ∈ ℝ2, b ∈ ℝ, as can be readily checked by substituting. The
second goal is proving that in fact these critical points are global min-
imisers by an application of a Taylor expansion for a carefully perturbed
functional.
As before in Section 2.4, we must restrict the functions w to lie in the

Banach space
X≔Xu×Xv,

with Xu,Xv as in Definition 2.12, in order to apply Korn's and Poincaré's
inequalities. We give below amore natural interpretation of these require-
ments. The fact that this does not alter the properties of existence and
uniqueness is a consequence of the arguments in Remark 2.13.

3.2.1 Existence and uniqueness for θ≪ 1

Notation. In this section, the parameter 𝜃 will be explicitly included in
the arguments of the functional and differentiation is understood to be
wrt. the variables w=(u,v), unless otherwise stated, i.e.

DℐvK
𝜃 (u,v; 𝜃)=Du,v ℐvK

𝜃 (u,v; 𝜃).

We are interested in the existence and uniqueness of solutions w=(u,
v) to the equation

DℐvK
𝜃 (u,v; 𝜃)=0

as a function of 𝜃∈[0,𝜀) with ℐvK
𝜃 given by (2.13). We will in fact prove

the existence of a point (u0,v0)∈X such that there exists a (locally) unique
function 𝜙(𝜃), starting for 𝜃 = 0 at (u0, v0), such that every 𝜙(𝜃) ∈ X is
a critical point for ℐvK

𝜃 . However, lack of uniqueness of minimisers at
𝜃=0 (3.6) will thwart what would be a natural application of the implicit
function theorem. The problem manifests itself as a lack of injectivity of
the first derivative at (u, v) ∈ X for 𝜃 = 0, which from equation (A.16) in
the appendix we know to be

DℐvK
𝜃 (u,v;0)[(𝜑,𝜓)]= −112 ∫𝜔 Q2[∇2v− I,∇2𝜓],

and this vanishes at every u∈Xu and the unique

v0(x′)= /12 |x′|2+a ⋅x′+b,
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with a∈ℝ2,b∈ℝ such that ∫𝜔 v0=0 and ∫𝜔∇v0=0. Because of this the
equation

DℐvK
𝜃 (u,v; 𝜃)=0 in ℒ(X,ℝ)

cannot be uniquely solvable for (u,v)∈X as a function of 𝜃, even locally.
Nevertheless, after some computations one can see that the problem in
(A.16) is the presence of a leading factor 𝜃 which we can dispense with,
because we may apply the implicit function theorem to the set of equiva-
lent equations

(1
𝜃 ∂u)ℐvK

𝜃 (u,v; 𝜃)=0, ∂vℐvK
𝜃 (u,v; 𝜃)=0. (⋄)

These equations are equivalent to DℐvK
𝜃 (u, v; 𝜃) = 0 for any 𝜃> 0 and by

an application of the implicit function theorem around a specific point
(u0,v0;0) we determine the existence of a solution function 𝜙:Θ→U×V
with [0, 𝜀) ⊂ Θ, 𝜀 > 0, U × V ⊂ X open, 𝜙(0) = (u0, v0) and (1

𝜃 ∂u,
∂v)ℐvK

𝜃 (𝜙(𝜃); 𝜃) = 0. Then we have DℐvK
𝜃 (𝜙(𝜃); 𝜃) = 0 for 𝜃 > 0 because

of the equivalence mentioned and DℐvK
𝜃 (𝜙(0); 0) = 0 by the choice of

(u0,v0).
We can now comment on the additional assumptions on X: without

them, the derivatives in (⋄) would not define an isomorphism. The fact
that we need to discard constant displacements is clear, since otherwise
the plate could shift away withouth incurring an energy cost. An integral
condition ensures that the only allowed constant is u≡0:

∫𝜔 u=0 for all u∈Xu.

Given any displacement w: 𝜔 → ℝ2 with ∇s w = 0, we can shift u by w
without changing the strain: ∇su = ∇s(u + w), so one must exclude (at
least) this kind of in-plane displacements from the admissible set Xu in
order to even expect injectivity. Since we can always decompose the dis-
placement gradient in strain tensor and rotation tensor, ∇u=∇s u+∇a u,
we want to exclude those u which are either constant (above) or have a
vanishing strain tensor and non zero rotation tensor. Such u are called
infinitesimal rigid displacements. They would be automatically excluded
by imposing Dirichlet boundary conditions on a subset of ∂𝜔 with positive
measure, but imposing a pointwise constraint introduces serious compli-
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cations for the identification of the minimisers, as we saw in the proof of
Theorem 3.1. Intuitively, the reason is that it means imposing “infinitely
many” constraints, thus making the function space much harder to work
with. A weaker, scalar condition is sufficient:

∫𝜔∇a u=0 for all u∈Xu.

Analogously, due to the bending energy term that will reappear in the
derivative we need to exclude functions v: 𝜔→ℝ such that ∇2 v=0, i.e.
any affine transformation v(x′) = a x′ + b. The proper scalar conditions,
which are those required to apply Poincaré's inequality in W 2,2 are:

∫𝜔 v=0 and ∫𝜔∇v=0 for all v∈Xv.

Finally, we will work with:

Assumptions 3.9. The domain 𝜔 fulfils all of Assumptions 2.1 plus

a) It is convex.
b) It is symmetric: x′∈𝜔⇔−x′∈𝜔.

Convexity is inessential in the current context3.2 but it will provide the
optimal Poincaré constant for the domain [PW60, eq. (1.9)] in terms of
its diameter d:

‖u‖0,2⩽
d
π ‖∇u‖0,2 for allu∈W 1,2(𝜔) such that ∫𝜔 u=0. (3.7)

This helps in obtaining more precise estimates but it should be straight-
forward to dispense with it for the results of this section.
The symmetry condition provides two things that we will be using

below: first, the estimate ∫𝜔 |x′|
2⩽ d2 |𝜔| and second, the fact that ∫𝜔 x′ =

0, hence the displacement

v0(x′)≔
1
2 |x′|

2−c0,

with c0 ≔
1
2 (|x′|

2)𝜔 is in Xv and it is the only minimiser of the bending
energy 1

24∫𝜔Q2(∇2v− I) dx′.

3.2. As opposed to the construction of the recovery sequence in the linearised Kirch-
hoff regime, Theorem 2.9.

82 3 Properties and characterisation of minimisers



Finally, we define the bounds

m≔ min
F∈ℝsym2×2,|F |=1

Q2(F) and M≔ max
F∈ℝsym2×2,|F |=1

Q2(F). (3.8)

Theorem 3.10. Assume the domain 𝜔 fulfills Assumptions 3.9. There
exist open sets W , Θ in X = Xu × Xv and ℝ respectively, with [0, 𝜀) ⊂
Θ, 𝜀 > 0, a point u0 ∈ Xu such that w0 = (u0, v0) ∈ W and a uniquely
determined C1 map 𝜙:Θ→W such that 𝜙(0)=w0 and

DℐvK
𝜃 (𝜙(𝜃);𝜃)=0 for every 𝜃∈[0, 𝜀).

Reciprocally, for all w∈W, DℐvK
𝜃 (w; 𝜃)=0 iff w=𝜙(𝜃).

Proof. We first define a new set of equations to solve, then show that the
second derivative of ℐvK

𝜃 is one to one and then the conclusion is exactly
that of the implicit function theorem, Theorem A.34. For brevity we write

⟨F,G⟩≔∫𝜔 Q2[F,G] and ⟨F⟩≔⟨F,F⟩=∫𝜔 Q2(F).

These define a scalar product and a norm in L2(𝜔;ℝsym2×2) by Lemma A.16.
Even though Q2 vanishes on antisymmetric matrices, during the proof we
keep track of symmetrised arguments to these functions for the sake of
clarity.
Step 1: Equivalent equations.
From the computations leading to (A.16) we have:

(1
𝜃 ∂u)ℐvK

𝜃 (u,v; 𝜃)[𝜑]= //∇s u+ 1
2 ∇v⊗∇v,∇s𝜑//,

and

∂vℐvK
𝜃 (u,v; 𝜃)[𝜓] = 𝜃 //∇s u+ 1

2∇v⊗∇v, (∇v⊗∇𝜓)sym //
+ 1
12 ⟨∇

2 v− I,∇2𝜓⟩.

We observe first that, because (1
𝜃 ∂u)ℐvK

𝜃 is independent of 𝜃 the right
hand side makes sense even if 𝜃=0. Now, on the one hand, for any fixed
value of 𝜃⩾0 solving the system

⎩⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎧ (1

𝜃 ∂u)ℐvK
𝜃 (u,v; 𝜃) = 0, in ℒ(Xu,ℝ),

∂vℐvK
𝜃 (u,v; 𝜃) = 0, in ℒ(Xv,ℝ),
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implies solving:

f (u,v; 𝜃)[𝜑,𝜓]=0 for every (𝜑,𝜓)∈X, (3.9)

where f :X×ℝ→ℒ(X,ℝ) is given by

f (u,v; 𝜃)[𝜑,𝜓] = //∇s u+ 1
2 ∇v⊗∇v,∇s𝜑//

+𝜃 //∇s u+ 1
2∇v⊗∇v, (∇v⊗∇𝜓)sym //

+ 1
12 ⟨∇

2v− I,∇2𝜓⟩.

On the other hand, solving f (u,v; 𝜃)=0 for 𝜃>0 is equivalent to solving
the original problem DℐvK

𝜃 (u,v; 𝜃)=0 as we desired.

Step 2: A zero and the derivative of f.

Since we are interested in the behaviour around 𝜃 = 0, we evaluate
here and obtain

f (u,v; 0)[𝜑,𝜓]= //∇s u+ 1
2 ∇v⊗∇v,∇s𝜑//+ 1

12 ⟨∇
2v− I,∇2𝜓⟩.

We can compute a zero of f (⋅, ⋅; 0) by first considering the last term,
which vanishes if and only if

v0(x′)=
1
2 |x′|

2−c0,

with c0=
1
2 (|x′|

2)𝜔. We next observe that the first term encodes the orthog-
onality of ∇s u+ 1

2 ∇v0⊗∇v0 to the space of symmetric gradients SGu≔
{∇s 𝜑: 𝜑 ∈ Xu} wrt. the scalar product induced by Q2. The u ∈ Xu real-
izing this is attained by projecting onto SGu, i.e.

∇s u0=−𝜋(1
2 ∇v0⊗∇v0),

where 𝜋 is the orthogonal projection defined in Lemma 3.11. We have
then a point w0=(u0,v0) such that

f (u0,v0; 0)=0 in ℒ(X,ℝ).
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Finally, we compute d
d𝜀 |𝜀=0 f (u0+ 𝜀 𝜑2, v0+ 𝜀 𝜓2; 0)[𝜑1, 𝜓1] to have the

derivative of f at (u0,v0):

F0(𝜑2,𝜓2)[𝜑1,𝜓1] ≔ Du,v f (u0,v0;0)[(𝜑1,𝜓1), (𝜑2,𝜓2)]
= ⟨∇s𝜑1,∇s𝜑2+(∇v0⊗∇𝜓2)sym⟩

+ 1
12 ⟨∇

2𝜓1,∇2𝜓2⟩.

Step 3: The map F0:X→ℒ(X,ℝ) is an isomorphism.
Note first that the map

⟨(u,v), (ũ, ṽ)⟩X≔⟨∇s u,∇s ũ⟩+⟨∇2 v,∇2 ṽ⟩

defines a scalar product in X, with positive-definiteness following from
Korn-Poincaré's (Corollary A.22) and Poincaré's inequalities. Then we
can write F0 as

F0(𝜑2,𝜓2)[𝜑1,𝜓1] = ⟨∇s𝜑1,∇s𝜑2+(∇v0⊗∇𝜓2)sym⟩
+ 1
12 ⟨∇

2𝜓1,∇2𝜓2⟩

= // (𝜑1,𝜓1), (𝜑2+�̃�((∇v0⊗∇𝜓2)sym),
1
12 𝜓2) //X,

where we defined �̃� ≔∇s
−1 ∘ 𝜋, a continuous map from L2(𝜔;ℝsym2×2) to Xu

as shown in the proof of Lemma 3.11, and we used that⟨∇s𝜑1,∇s𝜋(G)⟩=
⟨∇s𝜑1, 𝜋(G)⟩= ⟨∇s𝜑1, 𝜋(G)⟩+ ⟨∇s𝜑1,G−𝜋(G)⟩= ⟨∇s𝜑1,G⟩. The Riesz
representation for F0(𝜑2,𝜓2) inℒ(X,ℝ) is then (𝜑2+�̃�((∇v0⊗∇𝜓2)sym),
1
12 𝜓2) and the map

(𝜑2,𝜓2)↦(𝜑2+�̃�((∇v0⊗∇𝜓2)sym),
1
12 𝜓2)

is clearly an isomorphism in X, with continuity for 𝜓2↦�̃�(∇v0⊗∇𝜓2)sym
following from the continuity of �̃� and the Sobolev embedding W 1,2↪
L4. □

There were two pieces missing in the proof above: one is a Korn-Poin-
caré type inequality, which we leave for Appendix A.3, and the other was
the definition of the orthogonal projection onto the space of symmetric
gradients:
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Lemma 3.11. The map 𝜋:L2(𝜔;ℝsym2×2)→L2(𝜔;ℝsym2×2) given by

𝜋(B)≔argmin
A∈SGu

∫𝜔 Q2(B−A)=argmin
A∈SGu

⟨B− A⟩Q2,

where SGu≔{∇su:u∈Xu}, is well defined (the minimum is attained) and
is a continuous projection onto SGu and is orthogonal wrt. the scalar
product ⟨⋅, ⋅⟩Q2. In particular

⟨B−𝜋(B),∇s𝜑⟩=0 for every 𝜑∈Xu.

Proof. By Lemma A.16, L2(𝜔; ℝsym2×2) with ⟨A, B⟩Q2≔ ∫𝜔Q2[A, B] dx′ is
a Hilbert space. By the projection theorem (see e.g. [Alt12]), in order to
prove the existence of a unique continuous orthogonal projection onto
SGu, it suffices to prove that it is a closed subspace of L2, and then the
projection is characterised as in the statement.
Now, the linear map ∇s:Xu→L2(𝜔;ℝsym2×2) is bounded below by Corol-

lary A.22, hence it is injective and by the bounded inverse theorem it has
a bounded linear inverse over its range, ∇s

−1:SGu→Xu. Consequently the
set SGu=∇s(Xu) is closed because Xu is. □

3.2.2 Critical points are global minimisers

In addition to the previous local result, we can prove that critical points
are in fact global minimisers for small non zero values of the parameter
𝜃. We do this in two steps: close to the origin (u0, v0) of the branch of
solutions found in the previous section, we would like to perform a Taylor
expansion and use that the second differential at (u0,v0) is “almost” posi-
tive definite.
The key idea is to slightly modify the energy by a shift and a rescaling

in order to obtain derivatives as those appearing in the equivalent equa-
tions (3.9) of Theorem 3.10, thus obtaining a positive definite second
derivative. We set

ℐ̃vK
𝜃 (ũ, ṽ)≔ℐvK

𝜃 (u0+
ũ
𝜃 , ṽ)

and then (ũ𝜃, ṽ𝜃) is a minimiser of ℐ̃vK
𝜃 if and only if (u0+ ũ𝜃 /𝜃, ṽ𝜃) is a

minimiser of ℐvK
𝜃 . In other words, if (u𝜃, v𝜃) is a minimiser of ℐvK

𝜃 , then
ũ𝜃=𝜃(u𝜃−u0) and ṽ𝜃=v𝜃 minimise ℐ̃vK

𝜃 .
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We name w̃0 the point around which we investigate the modified func-
tional:

w̃0≔(ũ0, ṽ0)= (0,v0). (3.10)

Theorem 3.12. There exists 𝜃c > 0 such that for every 𝜃 ∈ (0, 𝜃c), every
critical point of ℐ̃vK

𝜃 , and consequently of ℐvK
𝜃 , is a global minimiser.

Proof. We proceed in three steps. First we prove that there is some 𝜃c>0
such that D2ℐ̃vK

𝜃 (w) is positive definite for all 𝜃 ∈ (0, 𝜃c) if ‖w− w̃0‖< 𝜌
for some suitable 𝜌>0 and w̃0=(0,v0) as defined in (3.10). Then we use
this to determine a neighbourhood of w̃0where (local) minimisers of ℐ̃vK

𝜃

will be global by first considering points close to one such minimiser and
finally those far away.
We will need the first two derivatives of ℐ̃vK

𝜃 (see Appendix A.7 for
detailed, analogous computations). For the first differential we apply the
chain rule to obtain Duℐ̃vK

𝜃 (u,v)= 1
𝜃 DuℐvK

𝜃 (u0+
u
𝜃 ,v) and substitute:

Dℐ̃vK
𝜃 (u,v)[𝜑,𝜓] = //∇s u0+

1
𝜃 ∇s u+ 1

2 ∇v⊗∇v,∇s𝜑//
+𝜃 //∇s u0+

1
𝜃 ∇s u+ 1

2 ∇v⊗∇v, (∇v⊗∇𝜓)sym //
+ 1
12 ⟨∇

2 v− I,∇2𝜓⟩.

For the second differential we can compute another directional derivative
(Lemma A.33):

d
d𝜀 |𝜀=0Dℐ̃vK

𝜃 (u+𝜀𝜑2,v+𝜀𝜓2)[𝜑1,𝜓1]

= // 1𝜃 ∇s𝜑2+(∇v⊗∇𝜓2)sym,∇s𝜑1 //
+⟨∇s𝜑2+𝜃 (∇v⊗∇𝜓2)sym, (∇v⊗∇𝜓1)sym⟩
+𝜃 //∇s u0+

1
𝜃 ∇s u+ 1

2 ∇v⊗∇v, (∇𝜓2⊗∇𝜓1)sym //
+ 1
12 ⟨∇

2𝜓2,∇2𝜓1⟩. (3.11)

Step 1: There exist 𝜂 >0 and 𝜃c>0 s.t. D2ℐ̃vK
𝜃 (w) is positive definite for

all 0<𝜃<𝜃c and all ‖w− w̃0‖X<𝜂.
Observe first that it is enough to prove the statement for arguments

(𝜑,𝜓) such that ‖𝜑‖1,22 +‖𝜓‖2,22 =1, i.e. we want to show that there exists
some c0>0 such that

D2ℐ̃vK
𝜃 (w)[(𝜑,𝜓), (𝜑,𝜓)]⩾c0,
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for all 𝜃 in some interval, allw sufficiently close to w̃0 and all (𝜑,𝜓) of unit
norm. Let then 𝜂 > 0 be fixed and to be determined later and let w= (u,
v)∈X with ‖w− w̃0‖X<𝜂. We start by bringing terms together in (3.11):

D2ℐ̃vK
𝜃 (w)[(𝜑,𝜓), (𝜑,𝜓)]
= 1

𝜃 ⟨∇s𝜑+𝜃(∇v⊗∇𝜓)sym⟩ (a)
+𝜃 //∇s u0+

1
𝜃 ∇s u+ 1

2 ∇v⊗∇v, (∇𝜓⊗∇𝜓)sym // (b)
+ 1
12 ⟨∇

2𝜓⟩. (c)

Given f ,g∈W 1,2(𝜔;ℝ2) we have, by the bounds (3.8) for Q2 and Hölder's
inequality (with the Sobolev embedding W 1,2(𝜔;ℝ2)↪L4(𝜔;ℝ2)):

⟨( f ⊗g)sym⟩≲∫𝜔 ||||||||||||||||||||||||| f ⊗g||||||||||||||||||||
|||||2=∫𝜔 ||||||||||||||||||||||||| f |||||||||||||||||||||||||

2 |g|2 ⩽‖ f ‖0,42 ‖g‖0,42 ≲‖ f ‖1,22 ‖g‖1,22 .

Using this, the first and last term in D2ℐ̃vK
𝜃 can be estimated using Korn-

Poincaré (Corollary A.22) and Poincaré's inequalities (3.7):

(a) ⩾ 1
2𝜃 ⟨∇s𝜑⟩−𝜃⟨(∇v⊗∇𝜓)sym⟩

⩾ m
2𝜃 ‖∇s𝜑‖0,22 −𝜃M ‖∇v⊗∇𝜓‖0,22

⩾ C0
𝜃 ‖𝜑‖1,2

2 − C̃1𝜃‖v‖2,22 ‖𝜓‖2,22

⩾ C0𝜃−1‖𝜑‖1,22 −C1𝜃‖𝜓‖2,22 ,

where in the last step we used the assumption ‖v − v0‖2,2 < 𝜂 to bound
‖v‖2,22 by some constant independent of 𝜂 ⩽ 1. For the second term in
D2ℐ̃vK

𝜃 , use Cauchy-Schwarz (A.9) for Q2, and the same ideas as above:

(b) ≳ −𝜃
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖∇s u0+

1
𝜃 ∇s u+ 1

2 ∇v⊗∇v
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖0,2‖(∇𝜓⊗∇𝜓)sym‖0,2

≳ −[𝜃 (‖∇s u0‖0,2+‖∇v⊗∇v‖0,2)+‖∇s u‖0,2] ‖(∇𝜓⊗∇𝜓)sym‖0,2
≳ −[𝜃 (‖u0‖1,2+‖∇v‖0,42 )+‖u‖1,2]‖𝜓‖0,42

≳ −[𝜃 (‖u0‖1,2+‖v‖2,22 )+𝜂]‖𝜓‖2,22

≳ −[𝜃+𝜂]‖𝜓‖2,22 .

Again, we used that by assumption ‖u‖1,2<𝜂 and ‖v−v0‖2,2<𝜂.
Finally, we estimate the third term in D2 ℐ̃vK

𝜃 with analogous argu-
ments and obtain (c) ⩾ C2 ‖𝜓‖2,22 . Bringing the previous computations
together, we have:

D2ℐ̃vK
𝜃 (w̃)⩾C0𝜃−1‖𝜑‖1,22 +(C2−C1𝜃−C3 (𝜃+𝜂)) ‖𝜓‖2,22 .
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So there exist some 𝜃c and 𝜂 small enough such that there exists c0 > 0
with

D2ℐ̃vK
𝜃 (w̃)[(𝜑,𝜓), (𝜑,𝜓)]⩾c0‖(𝜑,𝜓)‖X,

for all w̃∈X with ‖w̃− w̃0‖X<𝜂, uniformly in 𝜃∈(0, 𝜃c).
From now on, we let w̃𝜃=(ũ𝜃, ṽ𝜃) be a local minimiser of ℐ̃vK

𝜃 with

‖w̃𝜃− w̃0‖X⩽𝜂/3 (†)

and we prove that it is in fact a global one.

Step 2: Estimates close to w̃𝜃.
Consider first some w∈X which is close to w̃𝜃:

‖w− w̃𝜃‖X⩽2𝜂/3. (⋆)

With a Taylor expansion we see:

ℐ̃vK
𝜃 (w)=ℐ̃vK

𝜃 (w̃𝜃)+Dℐ̃vK𝜃 (w̃𝜃) [w− w̃𝜃]
=0

+ 12 D2ℐ̃vK
𝜃 (z) [w− w̃𝜃,w− w̃𝜃],

where z ∈ {𝛼 w + (1 − 𝛼) w̃𝜃: 𝛼 ∈ [0, 1]}. Notice that this segment is
in the 𝜂-ball around w̃0 since ‖z − w̃0‖X ⩽ ‖z − w̃𝜃‖X + ‖w̃𝜃 − w̃0‖X ⩽
‖w− w̃𝜃‖X+𝜂/3⩽𝜂, and consequently D2ℐ̃vK

𝜃 (z)⩾c0/2.

𝜂

2
3 𝜂

𝜂
3

w̃0w̃𝜃

w

⩽𝜂

Fig. 3.2. Minimisers w̃𝜃 in the region are minimal at least in the region.
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Substituting in the Taylor expansion above we obtain

ℐ̃vK
𝜃 (w)⩾ℐ̃vK

𝜃 (w̃𝜃)+
c0
4 ‖w− w̃𝜃‖X

2 >ℐ̃vK
𝜃 (w̃𝜃),

as desired.

Step 3: Estimates far away from w̃𝜃.
Consider now any w∈X with

‖w− w̃𝜃‖X>2𝜂/3,

which in particular means that ‖w− w̃0‖X >𝜂/3, so we can consider two
cases:
Case 1: ‖v− v0‖2,2⩾ 𝜂/3: We discard the first term in the energy, recall
that v0(x′) = |x′|2 / 2 − c0 and use the lower bound for Q2 in (3.8) and
Poincaré's inequality (3.7):

ℐ̃vK
𝜃 (w)⩾ 1

24 ⟨∇
2v− I⟩⩾ m

24 ‖∇
2(v−v0)‖0,22 ⩾C 𝜂2.

To compare this with the energy at w̃0 we add and subtract ℐ̃vK
𝜃 (w̃0) =

𝜃
2 //∇s u0+

1
2∇v0⊗∇v0 //:

ℐ̃vK
𝜃 (w) ⩾ ℐ̃vK

𝜃 (w̃0)+C 𝜂2
9 −

𝜃
2 //∇s u0+

1
2 ∇v0⊗∇v0 //

> ℐ̃vK
𝜃 (w̃0), for 𝜃 small enough,

⩾ ℐ̃vK
𝜃 (w̃𝜃),

where the last line is due to the fact that w̃𝜃 minimises ℐ̃vK
𝜃 over the ball

B 2
3𝜂
(w̃𝜃).

Case 2: ‖v−v0‖2,2<𝜂/3: We can estimate the energy for w as follows:

ℐ̃vK
𝜃 (w) = 𝜃

2 //∇s u0+
1
𝜃 ∇s u+ 1

2 ∇v⊗∇v //+ 1
24 ⟨∇

2v− I⟩

⩾ 1
2𝜃 ⟨∇s u⟩+ 𝜃2 //∇s u0+

1
2∇v⊗∇v //

+ //∇s u,∇s u0+
1
2 ∇v⊗∇v //

⩾ ( 1
2𝜃 −𝜀)⟨∇s u⟩+(𝜃2 − 1

4𝜀) //∇s u0+
1
2∇v⊗∇v //

= 1
4𝜃 ⟨∇s u⟩− 𝜃2 //∇s u0+

1
2∇v⊗∇v //,
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where we chose 𝜀 ≔ 1
4𝜃 . Both terms may be estimated once again by a

combination of the bounds (3.8) for Q2, Sobolev's embeddingW 1,2(𝜔)↪
L4(𝜔) and Poincaré's inequality (3.7):

1
4𝜃 ⟨∇s u⟩≳ 1

𝜃 ‖u‖1,22 ,
and

1
2 //∇s u0+

1
2 ∇v⊗∇v // ⩽ ⟨∇s u0⟩+

1
2 ⟨∇v⊗∇v⟩

≲ ‖∇s u0‖0,22 +‖∇v‖0,42

≲ 1+‖v‖2,22

≲ 1+‖v−v0‖2,22 +‖v0‖2,22

≲ 1+𝜂2/9.

Now plug this back into the previous estimate and insert

ℐ̃vK
𝜃 (w̃0)=

𝜃
2 //∇s u0+

1
2∇v0⊗∇v0 //= C̃ 𝜃

to obtain

ℐ̃vK
𝜃 (w) ≳ 1

𝜃 ‖u‖1,22 −𝜃(C+C 𝜂2/9)

= 1
𝜃 ‖u‖1,22 −𝜃(C+C 𝜂2/9+ C̃)+ℐ̃vK

𝜃 (w̃0)
> ℐ̃vK

𝜃 (w̃0), for 𝜃 small enough,
⩾ ℐ̃vK

𝜃 (w̃𝜃).

As above, the last line holds because w̃𝜃 minimises ℐ̃vK
𝜃 in a 2

3 𝜂-neigh-
bourhood of itself. □
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4

Discretisation of the interpolating theory

Our goal in this chapter is to study the qualitative behaviour of minimisers
in the interpolating regime 𝛼=3 for an isotropic energy density which is
homogeneous along the out-of-plane component (see Section 2.2.1). We
experimentally evaluate the conjectured existence of a critical value 𝜃c>
0 for which the symmetry of minimisers is “strongly” broken. We will
not provide a full theoretical analysis, but instead adduce some empirical
evidence to support the claim. To this end, we develop a simple numer-
ical method to approximate minimisers and prove Γ-convergence to the
continuous problem.
As can only be expected from a topic originating in structural

mechanics, numerical methods for plate models are a vast field with a
long history and as such a comprehensive review falls well beyond the
scope of this thesis. However, it can be said that a significant portion of
finite element approaches focus on the Euler-Lagrange equations. For von
Kármán-like theories like our interpolating regime, these are transformed
into an equivalent form in terms of the Airy stress function [HKO08,
§2.6.2]. The resulting system of equations is of fourth order and can be
solved with conforming C1 elements like Argyris or specifically taylored
ones. To avoid the higher number of degrees of freedom, non-conforming
methods can be used instead,4.1 but a poor choice of the discretisation
can suffer from locking, as briefly described in Remark 4.5. Some suc-
cessful classical methods employ C0Discrete Kirchhoff triangles (DKT),
which we implement in [dB17c], but it is also possible to employ stan-

4.1. See [MN16b, MN16a] for particular instances of a conforming and a non-con-
forming method respectively, as well as reviews of recent literature.



dard Lagrange elements with penalty methods [BNRS17], as we will do.
A recent line of work, upon which we heavily build in this chapter,

is that of [Bar13, Bar16], where the author develops discrete gradient
flows for the direct computation of (local) minimisers of non-linear Kirch-
hoff and von Kármán models. Γ-convergence and compactness results
are also proved showing the convergence of the discrete energies to the
continuous ones, as well as their respective minimisers.4.2Crucially, these
papers use DKTs for the discretisation of the out-of-plane displacements,
allowing for a representation of derivatives at nodes in the mesh which
is decoupled from function values. This enables e.g. the imposition of
an isometry constraint for the non-linear Kirchhoff model, but also the
computation of a discrete gradient ∇𝜀 projecting the true gradient ∇v𝜀
of a discrete function v𝜀 into a standard piecewise P2 space. The oper-
ator ∇𝜀 has good interpolation properties circumventing the lack of C1

smoothness of DKTs which would otherwise make them unsuitable to
approximate solutions in H2.4.3 We refer to the book [Bar15] for a sys-
tematic and mostly self-contained introduction to these methods.

4.1 Discretisation

We wish to investigate minimal energy configurations of the following
functional, derived in Section 2.2.1:

ℐvK
𝜃 (u,v)= 𝜃2 ∫𝜔 Q2(∇s u+ 1

2∇v⊗∇v)dx+ 1
24 ∫𝜔 Q2(∇2v−B) dx,

where (u, v) ∈W 1,2(𝜔; ℝ2) ×W 2,2(𝜔; ℝ2) and B ∈ℝsym2×2 is constant. We
assume that 𝜔 fulfils Assumptions 3.9. We implement gradient descent
in a non-conforming method using C0 linear Lagrange elements.4.4 The

4.2. For a concise introduction to Γ-convergence for Galerkin discretisations and
quadrature approximations of energy functionals, see [Ort04].

4.3. As an illustration of these ideas, we have implemented a pure bending model
(Kirchhoff, without constraints) using both Hermite and DKT elements developed for
FENICS. See our online code repository [dB17a] for a preliminary implementation of
[Bar13].

4.4. Alas, despite significant advances in the integration of DKT elements into the
FENICS framework [ABH+15] (cf. our code repositories [dB17c]), we were not able
to implement in time a functioning version of the decoupled gradient flow in [Bar16]
adapted to ℐvK

𝜃 .
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first step is to transform the problem into one of constrained minimisation
reducing the order of the elements required.

Problem 4.1. Find minimisers of

J𝜃(u, z)= 𝜃2 ∫𝜔 Q2(∇su+
1
2 z⊗ z)dx+ 1

24 ∫𝜔 Q2(∇z−B) dx, (4.1)

with B∈ℝsym2×2 a constant, u, z∈W 1,2(𝜔;ℝ2) and

z∈Z≔{𝜁∈W 1,2(𝜔;ℝ2): curl 𝜁 =0}.

If z∉Z, then we set J𝜃(u, z)=+∞.

We can now use H 1-conforming elements but, for simplicity of
implementation, instead of adding the constraint into the discrete spaces
to obtain a truly conforming discretisation, we add a penalty term
𝜇𝜀‖curl z𝜀‖2 to ensure that the solutions z𝜀 are close to gradients.
Assume from now on that 𝜔 is a polygonal domain. For fixed 𝜀 >

0, introduce a quasi-uniform triangulation 𝒯𝜀 of 𝜔 with triangles T of
uniformly bounded diameter c−1 𝜀 ⩽ 𝜀T ⩽ c 𝜀 for some c > 0 and all
𝜀 > 0 and T ∈ 𝒯𝜀.4.5 Such a mesh is in particular said to be, in virtue
of the uniform upper bound, shape-regular. We denote by 𝒩𝜀 the set
of all nodes of the triangulation. Define V𝜀 to be the standard piecewise
affine, globally continuous Lagrange P1 finite element space 𝒮1(𝒯𝜀) in
two dimensions:4.6

V𝜀≔{v𝜀∈C(𝜔;ℝ2):v𝜀|T ∈P1(T)2 for all T ∈𝒯𝜀}.

Quadrature rules will be chosen to be exact for this polynomial degree and
the first integrand in the energy interpolated for this to apply by means
of the interpolated quadratic form

Q2
𝜀≔ Î𝜀 ∘Q2.

4.5. Note that this does not allow for arbitrary local refinements or grading (a dif-
ferent scaling of simplices along different directions as 𝜀→0), but the fact that this is not
optimal is not of concern here.

4.6. Because functions in this space are Lipschitz over each compact triangle, they are
globally Lipschitz and V𝜀⊂W 1,2(𝜔;ℝ2). However V𝜀⊄Z of Problem 4.1 since we do not
impose any constraints, so the method will not be conforming.
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This is defined (with a slight abuse of notation) component-wise using the
element-wise nodal interpolant Î𝜀, defined for functions v∈L∞(𝜔) such
that v|T ∈C(T) for all T ∈𝒯𝜀 as

Î𝜀(v)≔ ∑
T∈𝒯𝜀

∑
z∈𝒩𝜀∩T

v|T(z)𝜑z|T , (4.2)

where 𝜑z|T is the truncation by zero outside T of the global basis function
𝜑z ∈ 𝒮1. Because this is a linear combination of truncated global basis
functions, the range of Î𝜀 is the space 𝒮1(𝒯𝜀) of discontinuous, piecewise
affine Lagrange elements.
In cases where the function to be interpolated is continuous, the

element-wise nodal interpolant coincides with the standard nodal inter-
polant into the space 𝒮1 of globally continuous, piecewise affine func-
tions, which is defined as

I𝜀(v)≔ ∑
z∈𝒩𝜀

v(z)𝜑z. (4.3)

Notice that the shape functions 𝜑z are not truncated. In order to control
the error incurred by the interpolation, we will use the following standard
result:

Lemma 4.1. (Nodal interpolation estimates) Let v∈W 2,p(𝜔),1< p⩽∞
and let 𝒯𝜀 be a shape-regular triangulation of the polygonal domain 𝜔.
Let I𝜀 be the standard nodal interpolation operator onto P1 (4.3). Then
there exists some C>0 independent of 𝜀 such that for every 0⩽ r⩽2:

|I𝜀(v)−v|r,p⩽C 𝜀2−r ‖D2v‖0,p,

where |⋅| denotes the standard seminorm.

Proof. See [GRS07, Theorem 4.28] or [BS08, (4.4.4)]. □

When working with discontinuous functions in 𝒮1, we will use the
following local result. This follows from Lemma 4.1 or can be shown
directly, e.g. in [Bar15, Proposition 3.1].

Lemma 4.2. (Local interpolation estimate) Let T ∈𝒯𝜀 and v∈C1(T).
If Î𝜀 is the element-wise nodal interpolant (4.2), then

‖v− Î𝜀(v)‖0,p,T ⩽C 𝜀‖Dv‖0,p,T .

The goal is to solve:
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Problem 4.2. Let 𝜇𝜀>0. Compute minimisers of the discrete energy

J𝜀𝜃(u𝜀, z𝜀) =
𝜃
2 ∫𝜔 Q2

𝜀(∇su𝜀+
1
2 z𝜀⊗ z𝜀)dx+ 1

24 ∫𝜔 Q2(∇z𝜀−B) dx

+𝜇𝜀∫𝜔 |curlz𝜀|2dx, (4.4)

for (u𝜀, z𝜀)∈V𝜀2.

As usual, if (u𝜀, z𝜀)∈W 1,2(𝜔;ℝ2)2\V𝜀2, we set J𝜀𝜃(u𝜀, z𝜀)=+∞.

Remark 4.3. (Scaling of the constants) The penalty 𝜇𝜀= 𝜇(𝜀) needs to
explode as 𝜀 → 0 in order for the functionals to Γ-converge (Theorem
4.8). However, large penalties negatively affect the condition number of
the system, so that an adequate choice for 𝜇𝜀, dependent on the mesh
size 𝜀, is required [GRS07, p.416]. We have not explictly investigated
how this requirement interacts with the Γ-convergence of the functionals,
but in our proof we require only that 𝜇𝜀→∞ not faster than 𝜀−2. In the
implementation we use 𝜇𝜀 = 1 / 𝜀−1. Analogously, large values of the
Lamé constants have a similar effect and therefore hinder convergence,
so one needs to scale them to the order of the problem.

Remark 4.4. (Automatic fulfilment of the constraint) Experiments
seemed to indicate that under some circumstances, in particular not too
unfavourable initialisations, one can set 𝜇=0 and still obtain minimisers
with vanishing curl. However, if this is done, when 𝜃 is increased and
approaches the (conjectured) critical value, long energy plateaus are tra-
versed after which large, markedly non physical deformations take place.
Because the constraint is part of the discretisation, we did not further
investigate this phenomenon.

Remark 4.5. (Common issues with finite element methods for plates)
Discretisations for lower dimensional theories can face complications
due to the infamous locking phenomena. In a nutshell, these mean that
as the thickness of the plate tends to zero, discrete solutions “lock” to
stiff states of lower, or even vanishing, bending or shearing than the ana-
lytic ones.4.7 Another instance of unexpected behaviour is known as the

4.7. We refer to [BS92] for a first rigorous definition of locking, to [Pra01, Chapters
5 and 6] for detailed computations highlighting the issues with linear elements in the con-
text of Timoshenko beams and to the thesis [Qua12] for a thorough and detailed analysis
of locking in shell models.
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Babuška paradox [BP90], again a failure to converge as expected, which
can happen in e.g. the Kirchhoff model when both vertical and tangential
displacements are fixed at the boundaries of a polygonal domain: these
so-called “hard” support constraints are not enforced in the same manner
as in the continuous model because of the approximated domain.
There are two potential sources of locking in our setting: the penalty

term 𝜇𝜖, which is akin to the shear strain in Timoshenko beams, and 𝜃.
We have not obtained any a priori bounds on the error in this work, but
a rigorous treatment of the problem would require estimates which are
uniform in these parameters as the mesh diameter goes to zero. For the
regimes studied and the geometries considered we have found the issue
to be of moderate practical relevance, but it does manifest itself e.g. with
more complicated domains or higher values of 𝜃.
Finally, our simulations will not suffer from Babuška's paradox

because we do not prescribe boundary conditions.

4.2 Γ-convergence of the discrete energies

The first step in the proof that J𝜀𝜃→
Γ

J𝜃 is dispensing with the interpolation
operators for numerical integration: due to the good properties of Î𝜀, we
can assume that we work with the true integrals ∫ Q2 instead of ∫ Q2

𝜀.

Lemma 4.6. (Numerical integration) Let u𝜀, z𝜀∈W 1,2(𝜔; ℝ2) be uni-
formly bounded in W 1,2 and let Q2

𝜀 = Î𝜀 ∘Q2 as above. Let A𝜀≔∇su𝜀+
1
2 z𝜀⊗ z𝜀. Then, as 𝜀→0:

‖Q2
𝜀(A𝜀)−Q2(A𝜀)‖0,1→0.

Proof. By the local interpolation estimate Lemma 4.2:

∫𝜔 |Q2
𝜀(A𝜀)−Q2(A𝜀)| dx ≲ 𝜀 ∑

T∈𝒯𝜀
∫T
|DQ2(A𝜀)| dx

≲ 𝜀 ∑
T∈𝒯𝜀

∫T ∑
i=1

2

|∂i Q2(A𝜀)| dx.

For simplicity we work with the partial derivatives for i ∈ {1, 2}. Note
first that, pointwise:

|∂i Q2(A𝜀)|=2 |Q2[A𝜀, ∂i A𝜀]|=2q jklm (A𝜀)jk (∂i A𝜀)lm≲|A𝜀| |∂i A𝜀|,
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where q jklm ∈ ℝ are the coefficients of Q2. Consequently, by Cauchy-
Schwarz, first for integrals, then for sums:

𝜀 ∑
T∈𝒯𝜀

∫T
|∂i Q2(A𝜀)| dx ≲ 𝜀 ∑

T∈𝒯𝜀
∫T
|A𝜀| |∂i A𝜀| dx

≲ 𝜀 ∑
T∈𝒯𝜀

(∫T
|A𝜀|2dx)

/12

(∫T
|∂i A𝜀|2dx)

/12

≲ 𝜀( ∑
T∈𝒯𝜀

∫T
|A𝜀|2 dx)

/12

( ∑
T∈𝒯𝜀

∫T
|∂iA𝜀|2 dx)

/12

.

Now, the first term is simply ‖A𝜀‖0,2,𝜔 which is uniformly bounded since
‖z𝜀⊗ z𝜀‖0,2 = ‖z𝜀‖0,42 ≲ ‖z𝜀‖1,22 , and for the second we use that ∇s u𝜀 is
piecewise constant so that

|∂i A𝜀|2= |z𝜀⊗∂i z𝜀+∂i z𝜀⊗ z𝜀|2≲ |z𝜀|2 |∂i z𝜀|2

and

∑
T∈𝒯𝜀

∫T
|∂i A𝜀|2dx≲ ∑

T∈𝒯𝜀
∫T
|z𝜀|2 |∂i z𝜀|2dx⩽ ∑

T∈𝒯𝜀

‖z𝜀‖0,∞,T2 ‖∂i z𝜀‖0,2,T2 .

A standard inverse estimate (see e.g. [BS08, Theorem 4.5.11]) provides
the bound

max
T∈𝒯𝜀

‖z𝜀‖0,∞,T ≲𝜀 /−12( ∑
T∈𝒯𝜀

‖z𝜀‖0,4,T4 )
/14
.

We plug this into the preceding computation to obtain

∑
T∈𝒯𝜀

∫T
|∂i A𝜀|2dx ≲ 𝜀−1( ∑

T∈𝒯𝜀

‖z𝜀‖0,4,T4 )
/12

∑
T∈𝒯𝜀

‖∂i z𝜀‖0,2,T2

= 𝜀−1‖z𝜀‖0,4,𝜔2 ‖∂i z𝜀‖0,2,𝜔2 .

The last two norms being uniformly bounded, we conclude:

∫𝜔 |Q2
𝜀(A𝜀)−Q2(A𝜀)| dx≲∑

i=1

2

∑
T∈𝒯𝜀

𝜀∫T
|∂i Q2(A𝜀)| dx≲𝜀 /12→0. □
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The second step is, as usual, to ensure that we can focus on smooth
functions for simplicity in the construction of the upper bound:

Lemma 4.7. Assume 𝜔 is convex. The set C∞(𝜔) ∩ Z is W 1,2-dense in
Z≔{z∈W 1,2(𝜔;ℝ2): curlz=0}.

Proof. Observe that Z = {∇v: v ∈ W 2,2(𝜔)}. Now take any z ∈ Z with
z=∇v and let 𝜀 > 0. Because C∞(𝜔) is dense in W 2,2(𝜔), we can find a
smooth 𝜑 with ‖𝜑−v‖2,2<𝜀. But then

𝜀>‖∇𝜑−∇v‖1,2=‖∇𝜑− z‖1,2

and the function ∇𝜑∈C∞(𝜔)∩Z . □

Theorem 4.8. Let J𝜃, J𝜀𝜃 be given by (4.1) and (4.4) respectively. Let
𝜇𝜀 → ∞ but 𝜇𝜀 = o(𝜀−2) as 𝜀 → 0. Then J𝜀𝜃→

Γ
J𝜃 as 𝜀 → 0 wrt. weak

convergence in W 1,2.

Proof. Because of Lemma 4.6 we can substitute Q2 for Q2
𝜀 in J𝜀𝜃. Also,

by Lemmas 4.7 and A.27 it is enough to consider smooth functions for the
upper bound. Set

A≔∇su+
1
2 z⊗ z and A𝜀≔∇su𝜀+

1
2 z𝜀⊗ z𝜀.

Step 1: Upper bound.
Let (u, z) ∈ W 1,2(𝜔; ℝ2) × Z be C∞ up to the boundary and define

u𝜀 ≔ I𝜀(u), z𝜀 ≔ I𝜀(z), where I𝜀 is the nodal interpolant of (4.3). Note
that because u and z are smooth, we can apply the standard interpola-
tion estimates of Lemma 4.1 to show strong convergence inW 1,2 of these
sequences towards u and z. By (2.26), we know that z𝜀⊗z𝜀→z⊗z in L2,
so we have that A𝜀→A in L2 and by Cauchy's inequality for Q2, Lemma
A.16, for fixed 𝛿>0 we have

∫𝜔 |Q2(A𝜀)−Q2(A)| = ∫𝜔 Q2[A𝜀+ A,A𝜀− A]

⩽ 𝛿∫𝜔 Q2(A𝜀+A)+ 1
4𝛿 ∫𝜔 Q2(A𝜀−A)

≲ 𝛿 (‖A𝜀‖0,22 +‖A‖0,22 )+
1
𝛿 ‖A𝜀− A‖0,22 ,
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where we also used the elementary bound for Q2 in Proposition A.11. We
can always choose 𝜀0=𝜀0(𝛿) such that ‖A𝜀− A‖0,2⩽𝛿2 for all 𝜀⩽𝜀0 and
consequently: ∫𝜔 |Q2(A𝜀)−Q2(A)|≲𝛿. Since this can be done for all 𝛿>0,
we obtain

lim
𝜀→0∫𝜔 Q2(∇su𝜀+

1
2 z𝜀⊗ z𝜀)=∫𝜔 Q2(∇su+

1
2 z⊗ z).

An analogous computation shows

lim
𝜀→0∫𝜔 Q2(∇z𝜀−B)=∫𝜔 Q2(∇z−B).

Finally, by the same interpolation estimate above and the assumption on
𝜇𝜀 we have that 𝜇𝜀‖curl (Î𝜀(z)− z)‖0,22 =o(1) as 𝜀→0, and consequently

J𝜀𝜃(u𝜀, z𝜀)→J𝜃(u, z).

Step 2: Lower bound, finite case.
Let u𝜀,z𝜀∈V𝜀⊂W 1,2with u𝜀⇀u,z𝜀⇀zweakly inW 1,2 to u∈W 1,2(𝜔;

ℝ2), z ∈ Z . By (2.26), we know that z𝜀⊗ z𝜀→ z ⊗ z in L2, so we have
that A𝜀⇀ A in L2. Analogously ∇z𝜀⇀∇z and curl z𝜀⇀curl z also in L2.
Dropping the (non-negative) curl term in J𝜀𝜃 and by the w.s.l.s.c. of all
integrands involved (Q2 being finite and convex [Dac07]),

linf
𝜀→0

J𝜀𝜃(u𝜀, z𝜀) ⩾
𝜃
2∫𝜔 Q2(∇su+

1
2 z⊗ z)dx+ 1

24 ∫𝜔 Q2(∇z−B) dx

= J𝜃(u, z).

Step 3: Lower bound, infinite case.
Let u𝜀, z𝜀∈V𝜀 with u𝜀⇀ u, z𝜀⇀ z weakly in W 1,2 to u∈W 1,2(𝜔;ℝ2),

z ∈ W 1,2 \Z . Then, curl z ≠ 0 on a set of positive measure and J𝜃(u,
z)=+∞. We need to show that the energy J𝜀𝜃(u𝜀, z𝜀) diverges.
Suppose that there exists a subsequence, not relabeled, such that J𝜀𝜃(u𝜀,

z𝜀) ⩽ C. Then 𝜇𝜀 ∫𝜔 |curl z𝜀|2 dx ⩽ C and ‖curl z𝜀‖0,2 → 0 as 𝜀 → 0.
But because z𝜀 ⇀ z in W 1,2, we have curl z𝜀 ⇀ curl z in L2, a contra-
diction by uniqueness of the weak limits. □

The final ingredient of this subsection is a proof that sequences with
bounded energy are (weakly) precompact. The fundamental theorem of
Γ-convergence, Lemma A.29, then shows convergence of global min-
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imisers. In order for this to work, we need to assume conditions in the
space which provide Korn and Poincaré inequalities. We can do this using
functions with zero mean, zero mean of the gradient or zero mean of
the antisymmetric gradient, as we do in Section 2.4 and Chapter 3, but
including these conditions in the discrete spaces is not entirely trivial.
Because the energies are invariant under the transformations which are
factored out by taking quotient spaces as described in the sections men-
tioned, it is enough for our purposes to claim compactness modulo these
transformations and to exclude them in the implementation via projected
gradient descent.4.8

Theorem 4.9. (Compactness) Let (u𝜀,z𝜀)𝜀>0 be a sequence in (V𝜀∩Xu)2
with bounded energy, where Xu is defined by (2.12) in page 56. Then
there exist u∈W 1,2, z∈Z such that u𝜀⇀u and z𝜀⇀ z. in W 1,2.

Proof. As above, let A𝜀≔∇su𝜀+
1
2 z𝜀⊗z𝜀, and set ‖F‖Q2

2 ≔∫ Q2(F). Note
that we cannot use Lemma 4.6 to substitute Q2 for Q2

𝜀 since we do not
have uniform bounds inW 1,2 by assumption, so we work directly with J𝜀𝜃.
We begin by observing that by the properties of Q2 in Lemma A.16

and all terms being non-negative, the sequence having bounded energy
implies:

‖∇z𝜀−B‖0,22 ≲‖∇z𝜀−B‖Q2
2 ⩽J𝜀𝜃(u𝜀, z𝜀)⩽C,

and consequently, by Poincaré's inequality:

‖z𝜀‖1,2⩽C. (⋆)

We have then a subsequence (not relabeled) weakly converging inW 1,2 to
some z∈W 1,2. In particular ∇z𝜀⇀∇z and curlz𝜀⇀curlz in L2. But also

𝜇𝜀‖curlz𝜀‖0,22 ⩽C⇒curlz𝜀→0 in L2,

and therefore curl z=0, i.e. z∈Z .
Now, for the sequence u𝜀 we must work with Q2

𝜀 instead. First write

Q2(∇s u𝜀) = Q2(∇s u𝜀+
1
2 z𝜀⊗ z𝜀−

1
2 z𝜀⊗ z𝜀)

⩽ 2Q2(A𝜀)+
1
2 Q2(z𝜀⊗ z𝜀)

≲ Q2(A𝜀)+ |z𝜀|4.

4.8. I.e. one takes one step in the direction of the gradient, then projects the new point
onto the space of admissible functions and repeats until convergence.
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Since this applies pointwise, after (local) interpolation the estimate still
holds:

Q2
𝜀(∇s u𝜀)≲Q2

𝜀(A𝜀)+ Î𝜀(|z𝜀|4).

Note now that because ∇s u𝜀 is piecewise constant, Q2
𝜀(∇s u𝜀)=Q2(∇s u𝜀),

so

∫𝜔 Q2(∇s u𝜀) = ∫𝜔 Q2
𝜀(∇s u𝜀)

≲ ∫𝜔 Q2
𝜀(A𝜀)+ Î𝜀(|z𝜀|4)

≲ J𝜀𝜃(u𝜀, z𝜀)+∫𝜔 Î𝜀(|z𝜀|4).

We claim now that ‖Î𝜀(|z𝜀|4)− |z𝜀|4‖0,1=𝒪(𝜀). Indeed, by the local inter-
polation estimate (Lemma 4.2) and Hölder's inequality for integrals and
for sums:

∫𝜔 |Î𝜀(|z𝜀|4)− |z𝜀|4| ≲ 𝜀 ∑
T∈𝒯𝜀

∫T
|∇ |z𝜀|4|

≲ 𝜀 ∑
T∈𝒯𝜀

∫T
|z𝜀|3 |∇z𝜀|

≲ 𝜀 ∑
T∈𝒯𝜀

‖z𝜀‖0,6,T3 ‖∇z𝜀‖0,2,T

≲ 𝜀( ∑
T∈𝒯𝜀

‖z𝜀‖0,6,T6 )
/12

( ∑
T∈𝒯𝜀

‖∇z𝜀‖0,2,T2 )
/12

≲ 𝜀‖z𝜀‖0,6,𝜔3 ‖∇z𝜀‖0,2,𝜔,

and this goes to zero as 𝜀 → 0 by (⋆). But then ∫𝜔 Î𝜀(|z𝜀|4) ⩽ C and
by Corollary A.22, the Sobolev embedding W 1,2↪ L4 and the previous
bound, we have

‖u𝜀‖1,22 ≲‖∇s u𝜀‖0,22 ≲‖∇s u𝜀‖Q2
2 ≲J𝜀𝜃(u𝜀, z𝜀)+C⩽C.

The sequence (u𝜀)𝜀>0 is therefore also weakly precompact inW 1,2(𝜔;ℝ2)
and the proof is complete. □
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4.3 Discrete gradient flow

For each discrete problem, we compute local minimisers using gradient
descent, for which the basic result is the following (see [Bar15, §4.3.1]):

Theorem 4.10. (Projected gradient descent) Let V𝜀 and J𝜀𝜃 be given
as in Problem 4.2 and let (⋅, ⋅) be the scalar product on V𝜀. The map F𝜀:
V𝜀×V𝜀→(V𝜀×V𝜀)′ given by

F𝜀𝜃[u𝜀, z𝜀](𝜑𝜀,𝜓𝜀) ≔ 𝜃∫𝜔 Q2
𝜀[∇su𝜀+

1
2 z𝜀⊗ z𝜀,∇s𝜑𝜀+(z𝜀⊗𝜓)s] dx

+ 1
12 ∫𝜔 Q2[∇z𝜀−B,∇𝜓𝜀] dx

+2𝜇𝜀∫𝜔 curlz𝜀curl𝜓𝜀dx, (4.5)

is the Fréchet derivative of J𝜀𝜃. Let 𝜋u: V𝜀2 → (V𝜀 ∩ Xu)2 be the linear
orthogonal projection onto its image. The sequence defined as

w𝜀
j+1≔w𝜀

j+𝛼j𝜋u d𝜀
j ,

with w𝜀0=(u𝜀0,v𝜀0)∈(V𝜀∩Xu)2 and d𝜀
j ∈V𝜀×V𝜀 such that

(d𝜀
j , 𝜉𝜀)=−F𝜀𝜃[w𝜀

j](𝜉𝜀) for all 𝜉𝜀∈V𝜀×V𝜀, (4.6)

and 𝛼j determined with line search is energy decreasing. A line search
means computing the maximal 𝛼j∈{2−k:k∈ℕ} such that

J𝜀𝜃(w𝜀
j+𝛼j𝜋u d𝜀

j)⩽J𝜀𝜃(w𝜀
j)−𝜌𝛼j‖𝜋u d𝜀

j‖22,

where 𝜌∈(0, 1/2) is the proverbial fudge factor.

Proof. For the computation of F𝜀𝜃 see Appendix A.7, where we work with
analogous functionals. To see that the iteration is energy decreasing use
(4.6) and the self-adjointness of 𝜋u=𝜋u

2 to compute

d
d𝛼|𝛼=0J𝜀𝜃(w𝜀

j+𝛼𝜋u d𝜀
j)=F𝜀𝜃[w𝜀

j](𝜋u d𝜀
j)=−(𝜋u d𝜀

j ,𝜋u d𝜀
j)⩽0.
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The existence of 𝛼j>0 is guaranteed as long as J𝜀𝜃∈C2(V𝜀2) because then
we can perform a Taylor expansion and use again (4.6):

J𝜀𝜃(w𝜀
j+𝛼j𝜋u d𝜀

j)=J𝜀𝜃(w𝜀
j)−𝛼j‖𝜋u d𝜀

j‖𝒮2 +𝒪(𝛼j
2). □

Remark 4.11. (Caveat: local and global minimisers) Even though we
now know that the discrete energies correctly approximate the contin-
uous one, as well as any global minimisers, gradient descent on each
discrete problem is only guaranteed to converge to some local minimiser
w𝜀⋆. Lacking some means of tracking a particular w𝜀⋆ as 𝜀 → 0, there
is not much one can do to prove that our method actually approximates
the true global minimisers of ℐvK𝜃 . Unless 𝜃≪1, in which case we know
all critical points to be global minimisers (cf. Theorem 3.12).4.9

4.4 Experimental results

For the implementation of the discretisation detailed above, we employ
the FENICS library [ABH+15] in its version 2017.1.0. The code is avail-
able at [dB17b] and includes the model, parallel execution, experiment
tracking using SACRED [GKC+17] with MONGODB as a backend and
exploration of results with JUPYTER [KP+16] notebooks, OMNIBOARD
[Sub18] and a custom application. Everything is packaged using DOCKER-
COMPOSE for simple reproduction of the results and one-line deployment.
We set 𝜔= B̂1(0), a (coarse) polygonal approximation of the unit disc

and test several initial conditions. The space V𝜀 has ~7000 dofs. We
implement a general Q2 for isotropic homogeneous material with the two
(scaled) Lamé constants set to those of steel at standard conditions. We
apply neither body forces nor boundary conditions, but hold one inte-
rior cell to fix the value of the free constants. We compute minimisers
for increasing values of 𝜃 and 𝜇𝜀 ∼ 1/ 𝜀√ via projected gradient descent
(onto the space of admissible functions V𝜀 ∩ Xu) and examine the sym-
metry of the final solution. The choice 𝜀−1/2 has shown to provide the

4.9. One possibility to test the convergence of a sequence (w𝜀
⋆) of local minimisers

to a local minimiser of J 𝜃, would be to test whether there exists some fixed radius 𝜂>0,
independent of 𝜀, such that each w𝜀

⋆ is a minimiser of J𝜀𝜃 over the ball B𝜂(w𝜀
⋆) (setting

the functional to +∞ outside it). ‖w𝜀
⋆‖ being uniformly bounded, a subsequence would

converge weakly to some w0
⋆ which would minimise J 𝜃 locally.
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fastest convergence results while keeping the violation of the constraint in
the order of 10−4 (higher penalties have the expected effect of adversely
affecting convergence). We track two magnitudes as measures of sym-
metry: on the one hand we compute the mean bending strain over the
domain and on the other, as a second simple proxy we employ the quo-
tient of the lengths of the principal axes.
The first initial configuration is the trivial deformation y𝜀0=0. Note that

because the model is prestrained, the ground state is non-trivial and the
plate “wants” to reach a lower energy state. In Figure 4.1 we depict the
results of running the energy minimisation procedure for multiple values
of 𝜃.

Fig. 4.1. Final configurations after gradient descent starting with a flat disk viewed
from the top. From left to right, top to bottom: 𝜃=1, 81, 91 and 150. Color repre-
sents the magnitude of the displacements |w|, from blue at its minimum to red at the
maximum.
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We further highlight the behaviour of the solution as a function of 𝜃 in
Figures 4.2 and 4.3. In the first one we compute the mean bending strains

1
|𝜔| ∫𝜔 (∇2 v)iidx with i∈{1,2}.

As mentioned, these act as an easy to compute proxy for the (mean) prin-
cipal curvatures. We observe how as 𝜃 increases both strains decrease
almost by an equal amount as the body gradually opens up and flattens
out, while retaining its radial symmetry. However, around 𝜃≈86 a stark
change takes place and one of the principal strains decreases while the
other increases. This reflects the abrupt change of the minimiser to a
cylindrical shape.
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Fig. 4.2. Mean principal strains of the minimiser as a function of 𝜃 for the flat
disk.

We observe the same phenomenon when we plot the quotient of the
principal axes of the deformed disk in Figure 4.3.
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Fig. 4.3. Symmetry of the minimiser as a function of 𝜃 for the flat disk.

The second initial condition tested is an orthotropically skewed parab-
oloid. Basically, a spherical cap is pressed from the sides to obtain a
“potato chip”:

Fig. 4.4. A pringle in its initial configuration.

Testing this shape will highlight the effect of the initial configuration
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on the final curvature. We examine its symmetry in Figures 4.6 and 4.7

Fig. 4.5. Final states starting with skewed paraboloid. From left to right, top to
bottom, 𝜃=1,51, 61 and 91.

Again there is a critical value of 𝜃 ≈ 50 around which the shape of
the minimiser drastically changes. Note however how the change is now
gradual and we see intermediate shapes.
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Fig. 4.6. Mean principal strains of the minimiser as a function of 𝜃 for the skewed
paraboloid.
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Fig. 4.7. Symmetry of the minimiser as a function of 𝜃 for the skewed parabo-
loid.
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Appendix A
Auxiliary results

A.1 Some elementary matrix properties

We collect here standard definitions and properties of real matrices for the
convenience of the reader. We refer to the monographs [HJ12, Bha09] for
an extensive treatment of these ideas.

A.1.1 The norm of a real matrix

A function |⋅|:ℝn×n→ℝ is a matrix norm iff it is a positive, homogene-
nous function such that the triangle inequality and submultiplicativity
hold, the latter meaning

|A B|⩽ |A| |B|
for all matrices A,B∈ℝn×n. Every matrix norm is consequently a vector
norm, but the converse is not true, as the example |A|∞≔max||||||||||||||||||||

|||||A ij||||||||||||||||||||
||||| shows:

consider A ij=1 with n=2. Then A2=2 A and this norm is not submulti-
plicative; however, n |A|∞ is.
The lp vector norms for p∈[1,∞) do define matrix norms. In partic-

ular, the l2 norm
|A|≔(∑

i, j
A ij
2 ) /12

is a matrix norm (submultiplicativity holds by Cauchy-Schwarz), which
we call the Frobenius norm. It is induced by theHilbert-Schmidt inner
product

A:B≔tr (B⊤A),



since A:A=tr (A⊤A)=∑i, j A ij
2 . That is:

|A|= tr(A⊤ A)√ .

Remark A.1. Thisis not an operator norm in the sense that there is no
vector norm ‖⋅‖ in ℝn such that

⫴A⫴≔sup
x≠0

‖Ax‖
‖x‖

is equal to |A|. This is because |I| = n√ > 1 for n > 1 but a necessary
condition for a matrix norm to be induced by a vector norm (i.e. to be an
operator norm) is clearly ‖Ix‖

‖x‖ ≡ 1.
A.1 Operator norms are automatically

compatible with their inducing vector norms in the sense that ‖A x‖ ⩽
⫴A⫴‖x‖. Despite its not being an operator norm, the Frobenius norm has
this property since |A x|2=∑i, j A ij

2 x j
2⩽∑i, j A ij

2 |x2|= |A|2 |x|2.
The l2 or Frobenius norm is different from the norm induced by it,

which can be proven to be the so called spectral norm: |A|2≔max{ 𝜆√ :
𝜆∈spectrum(A⊤A)}.
Because of its definition, the following properties are useful when

working with the Frobenius norm. For proofs, see e.g. [HJ12].

Proposition A.2. Fundamental properties of the trace.
1. tr (𝛼A+B)=𝛼 tr A+trB.
2. tr A=tr A⊤.
3. tr (A B)= tr (BA).
4. tr (A BC)= tr (BC A)= tr (C AB).
5. tr (S−1A S)= tr(A) for every invertible matrix S∈ℝn×n.

Finally, we define the absolute value of A ∈ ℝn×n as the symmetric
matrix:

[A]≔ A⊤ A√ .

Lemma A.3. (Some properties of the Frobenius norm). Let A,B∈ℝn×n:

1. |A|= |A⊤|.

A.1. Note that if we tried to fix this by scaling the Frobenius norm by n−1/2, the
property of submultiplicativity would be lost.
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2. It is invariant under orthogonal transformations. In particular it is
invariant under rotations: |A|= |A U|=|U A| for any orthogonal matrix
U.

3. It is absolute: |A|= |[A]|.
4. It is monotone: if A⩽B then |A|⩽ |B|.
5. |A|= (∑i=1

n 𝜇i
2) /12, where 𝜇i are the singular values of the matrix A.

6. If A= A⊤, then |A|= (∑i=1
n 𝜆i

2) /12, where 𝜆i are the eigenvalues of A.
7. If A is orthogonal (A⊤ A= I), then |A|= n√ .

We say that a symmetric matrix A∈ℝn×n is positive semidefinite if
x⊤ A x⩾0 for all x≠0, and that it is positive definite if x⊤ A x>0 for all
x≠0. Amatrix A has a square root if there exists somematrix B such that
B⊤B=A. For positive semidefinite matrices we can define a partial order

A⩾B iff A−B is positive semidefinite.

As we will see below, the Frobenius norm is monotone wrt. this order.
Further properties are (for proofs see e.g. [Bha09]):

Proposition A.4. Positive (semi-) definite matrices.

1. A matrix is positive definite, resp. semidefinite, iff all of its eigenvalues
are positive, resp. non-negative.

2. A positive semidefinite matrix has at least one square root and exactly
one which itself positive semidefinite.

3. A positive definite matrix is invertible and its inverse is itself invert-
ible.

Proposition A.5. Some useful inequalities:

1. tr A⩾0 for every positive semidefinite matrix A.
2. |tr A|⩽ tr ⟦A⟧.
3. tr (A⊤B)⩽ 1

2(|A|
2+|B|2).

The symmetric and antisymmetric part of A∈ℝn×n are defined as

As=
1
2 (A+A⊤), Aa=

1
2 (A−A⊤).

As a consequence of the definition one always has A=As+Aa as well as

As⊥Aa
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since As: Aa = tr(Aa
T As) = −tr(Aa As) = −tr(As Aa) = −Aa: As. Therefore

we have the following nice property (to prove it, compute (A− As): (A−
As)):

Lemma A.6. Let A∈ℝn×n. Then

|A|2=|As|2+ |Aa|2.

A.1.2 Some matrix groups

We write O(n) for the group of all orthogonal n×nmatrices: A⊤ A= I. Its
subgroup SO(n) (the special orthogonal group) consists of those with
positive determinant (i.e. the group of rotations in ℝn). By definition this
set is bounded since |A| = n√ for all A∈O(n). Finally so(n) is the set of
all real antisymmetric matrices A=−A⊤.
The distance of a matrix A ∈ ℝn×n to any of the compact sets 𝒢 ∈

{O(n), SO(n), so(n)} is given by

dist (A,𝒢)=min
S∈𝒢

|A−S|.

From this definition and the triangle inequality it immediately follows that

dist (A+B,𝒢)=min
S∈𝒢

|A+B−S|⩽ |A|+dist (B,𝒢). (A.1)

Lemma A.7. Let A∈ℝn×n. Then
dist (A, so(n))= |As|.

Proof. Let S ∈ so(n). Because taking the symmetric and antisymmetric
parts of a matrix are linear operations we have by Lemma A.6:

|A−S|2= |(A−S)s|2+ |(A−S)a|2= |As|2+|Aa−S|2.
But then

dist (A, so(n))= min
S∈so(n)

|A−S|2= |As|2+ min
S∈so(n)

|Aa−S|2=|As|2. □

Proposition A.8. Some properties of the distance to SO(n). Let A∈ℝn×n:

1. For every rotation R∈SO(n):

dist (R A, SO(n))=dist (A, SO(n)). (A.2)
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2.
dist (A, SO(n))⩾ |[A]− I|. (A.3)

3. If det A>0, then equality holds:

dist (A, SO(n))= |[A]− I|=dist ([A],SO(n)). (A.4)

Proof. 1. If R,S∈SO(n) then by the invariance of the norm under orthog-
onal transformations, |R A − S| = |R⊤ (R A − S)| = |A − R⊤ S|. For any
rotation R, one has SO(n)={R⊤S:S∈SO(n)}, so that in fact

dist (R A, SO(n))= min
S∈SO(n)

|RA−S|= min
Q∈SO(n)

|A−Q|=dist (A, SO(n)).

2. To prove (A.3) we let S ∈ SO(n) be arbitrary and compute using the
properties of the trace:

|A−S|2 = tr [(A−S)⊤ (A−S)]
= tr [A⊤ A+S⊤S−(S⊤A+A⊤S)]
= tr (A⊤ A)+n−2tr (A⊤S).
= tr (A A⊤)+n−2tr (AS⊤).

Therefore
min

S∈SO(n)
|A−S|2=tr (A A⊤)+n−2 max

S∈SO(n)
tr (AS⊤).

Now using again the properties of the trace we have

tr (AS⊤)⩽ tr ([AS⊤])= tr ([A]) (A.5)

and consequently

min
S∈SO(n)

|A−S|2⩾tr (A A⊤)+n−2 tr ([A])= tr ([A]− I)2= |[A]− I|2.

3. Let A=R [A] be the polar decomposition of A. Then [A]=R⊤ A and if
det A>0 then we know that R∈SO(n) and the following inequality holds

tr ([A])= tr (R⊤A)= tr (AR⊤)⩽ max
S∈SO(n)

tr (A S⊤).

Consequently, using (A.5) we have

tr ([A])= max
S∈SO(n)

tr (AS⊤),
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and the first equality is proved. We can prove the second one with argu-
ments analogous to the previous ones or we can use the polar decomposi-
tion and (A.2):

dist (A, SO(n))=dist (R [A], SO(n))=dist ([A], SO(n)). □

A.1.2.1 A linearisation at the identity

Proposition A.9. Linearising the function dist (⋅, SO(n)) at the identity I
yields:

dist (A, SO(n))= |As− I|+𝒪(|A− I|2).

Proof. Note first that by the continuity of the determinant we may always
find 𝜀>0 such that |A− I| < 𝜀 implies |det A−det I| < 1, or 0< det A<2.
Fix that 𝜀.

Step 1: |A− I|<𝜀, linearisation around I.
The linearisation at 0 of the scalar function x↦ 1+x√ is

1+x√ −1= 12 x+𝒪(|x|2).

Letting A= I+G for some “small”G and proceeding by analogy with this
equation we find

A⊤ A√ − I = (I+G)⊤ (I+G)√ − I

= I+(G⊤G+G⊤+G)√ − I
= I+X√ − I

= 1
2 (G

⊤G+G⊤+G)+𝒪(|(G⊤G+G⊤+G)|2)

= 1
2 (G

⊤+G)+𝒪(|G|2)

= 1
2 (A

⊤+A)− I+𝒪(|A− I|2).

Because we have assumed that det A> 0 we may apply Proposition A.8
above to conclude:

dist (A, SO(n))= |As− I|+𝒪(|A− I|2).
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Step 2: |A− I|>𝜀.
We show that |dist (A, SO(n)) − |As − I|| ⩽ C |A − I|2 for some C > 0

when |A− I|>𝜀>0. The main idea is that the growth of |As− I| is linear in
|A| and it is therefore possible to estimate it above by a multiple of |A− I|2.
On the one hand, repeated application of the triangle inequality yields:

|As− I|⩽ 1
2 (|A

⊤|+ |A|)+|I|= |A|+ |I|. On the other |As− I|⩾ 1
2 |A

⊤+A|− |I|⩾
1
2√
|A|− |I|, where the last lower bound is due to

1
2 |A

⊤+ A|= 1
2 2 tr (A2)+2 tr (A⊤A)√ ⩾

2√
2 tr (A⊤ A)√ = 1

2√
|A|.

By Proposition A.8 above and the definition of the distance we have |[A]−
I|⩽dist (A, SO(n))⩽ |A− I| and

m1≔|[A]− I|− (|A|+ |I|) ⩽ dist (A, SO(n))− |As− I|
⩽ |A− I|− (2−1/2 |A|− |I|) ≔m2.

So |dist (A, SO(n)) − |As− I|| ⩽max {|m1|, |m2|} and we want to show that
this is of order 𝒪(|A − I|2). More applications of the triangle inequality
yield

|m1|⩽ |A|+ |[A]|+2 |I|=
(a)
2(|A|+ |I|)⩽

(b)
C1 |A− I|⩽

(c)
C2 |A− I|2,

where:

a) We use that |A|= |[A]|.
b) We use that |A− I|>𝜀>0:

|A|⩽ |A− I|+ |I|⩽
⎩⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎧ 2 |A− I| if |A− I|⩾ |I|,

2 |I|= 2 |I|𝜀 𝜀⩽C |A− I| if |A− I|< |I|.

c) We use again |A− I|>𝜀 and consider the two cases where |A− I| is ⩽1
or >1: If 𝜀2<|A− I|2<|A− I|<1 then |A− I|<1< 1

𝜀 |A− I|2=:C |A− I|2.
If 1⩽ |A− I|, then |A− I|⩽C |A− I|2 with C=1.

And using the same method we obtain

|m2|⩽2 |A|+2 |I|⩽
(b)

C1 |A− I|⩽
(c)

C2 |A− I|2.
So indeed

|dist (A, SO(n))− |As− I||=𝒪(|A− I|2). □
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A.1.2.2 The tangent space to SO(n)

Consider the map f : ℝn×n→ℝn×n defined as f (A) = A⊤ A− I. With the
trivial localisations 𝜙: ℝn×n → ℝn2 we immediately see that f is differ-
entiable because the components of 𝜙 ∘ f ∘ 𝜙−1 are simply polynomial
functions of degree 2. Therefore the differential map at some point A and
evaluated at B exists and coincides with the directional derivative at A
along B:

𝛿B f (A) ≔ lim
𝜆→0

f (A+𝜆B)− f (A)
𝜆

= lim
𝜆→0

(A+𝜆B)⊤ (A+𝜆B)−A⊤ A
𝜆

= lim
𝜆→0

A⊤A+𝜆2B⊤B+𝜆B⊤A+𝜆A⊤B− A⊤ A
𝜆

= B⊤ A+ A⊤B.

In particular, the differential map at the identity is given by:

Df [I](A)=A⊤+A.

Obviously f −1{0} = O(n), the group of orthogonal matrices. Because
of the implicit function theorem O(n) is then a manifold, and it can be
shown that it has dimension n (n−1)/2. The tangent space to O(n) at I is
consequently given by

TI O(n)=kerDf [I]={A∈ℝn×n:A⊤+A=0}=so(n),

the set of antisymmetric matrices. Because SO(n) is a subgroup of O(n)
we have TI SO(n) = TI O(n). At any other point B ∈ SO(n), the tangent
space may be obtained as

TBSO(n)=B ⋅ so(n)={B A:A∈so(n)}={A B:A∈so(n)}=so(n) ⋅B.

Another approach: Alternatively, we may consider vectors in the tangent
space TI SO(n) as derivatives M = 𝛾′(0) of smooth curves 𝛾: (−𝛿, 𝛿) →
SO(n) such that 𝛾(0)= I. Then, because 𝛾(t)∈SO(n) one has 𝛾(t) 𝛾(t)⊤=
I and differentiating 𝛾′(t) 𝛾(t)⊤ + 𝛾(t) 𝛾 ′(t)⊤ = 0. But then, for t = 0:
𝛾′(0)+𝛾′(t)⊤=0, i.e. 𝛾 ′(0)∈so(n). This proves that TI SO(n)⊂so(n) and
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because both spaces have dimension n (n−1)/2 the inclusion is actually
an equality.

The exponential map A↦eA≔∑k Ak/k! maps so(n) onto SO(n) (and it is
surjective):

Lemma A.10. Let A∈so(n). Then eA is a rotation.

Proof. This follows from the properties of the exponential map (see e.g.
[Gal01, Chapter 14]). For A∈ so(n) it holds −A= A⊤, therefore (eA)⊤=
eA⊤=e−A and consequently (eA)⊤ eA=e−A+A= I and eA (eA)⊤= I as well,
so A is orthogonal. Because deteA=etrA and tr A=0, it is a rotation. □

A.2 On quadratic forms

A quadratic form is a polynomial function in several variables whose
terms have all degree 2 (it is homogeneous). First we collect a few ele-
mentary properties of these objects, then prove several lemmas related to
the elastic energy densities that we consider and their linearisations.

Proposition A.11. Let Q:ℝn→ℝ be a quadratic form:

1. There exists a unique symmetric matrix 𝒬 ∈ ℝsymn×n such that Q(x) =
x⊤𝒬x.

2. There exists a unique symmetric bilinear form Q: ℝn ×ℝn→ℝ such
that Q(x)=Q[x,x].

3. The following identity holds: Q[x,y]= 1
2 (Q(x+y)−Q(x)−Q(y)).

4. Q is positive semidefinite (i.e. Q(x)⩾0 for all x≠0) iff it is convex.
5. If Q is positive semidefinite and not degenerate (i.e. Q≢0), then it is

positive definite over ker⊥Q.
6. There exists a constant M>0 such that Q(x)⩽M |x|2 for all x∈ℝn. If

in addition Q is positive definite (i.e. Q(x)>0 for all x≠0), then there
exists a constant m>0 such that Q(x)⩾m |x|2 for all x∈ℝn.

Proof. 1, 2, 3. Either of the first two statements may be taken as a defini-
tion for quadratic form over ℝn and the third one is just a simple computa-
tion. Notice that we use the number of arguments (and the type of bracket)
to distinguish between the quadratic form Q(⋅) and its associated bilinear
form Q[⋅, ⋅].
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4. This is immediate using the characterisation of convex functions with
their Hessian: Fix any x ∈ ℝn. The first derivative is DQ(x)[y] = 2 Q[x,
y] and the second one is the constant (as a function of x) bilinear map
D2Q(x)[y, z] = Q[y, z] = y⊤ 𝒬 z, where 𝒬 is the symmetric matrix asso-
ciated to Q. If Q is positive semidefinite, so is 𝒬 and Q is convex. The
reciprocal is then obvious.
5. This property follows after a coordinate transformation: because the
associated 𝒬 is symmetric, there exists an orthogonal matrix P such that
�̃�≔P𝒬P⊤=diag(𝜆1,...,𝜆n) with 0⩽𝜆i∈𝜎(𝒬) the spectrum of 𝒬. Define
Q̃ to be the quadratic form associated to �̃�. Then for any x̃=P x in the new
coordinates:

�̃�(x̃)=(P x)⊤ (P𝒬P⊤) (P x)=x⊤𝒬x=Q(x).

Without loss of generality assume 𝜆1, . . . , 𝜆j to be zero and let 𝜆j+1 be the
smallest nonzero eigenvalue of 𝒬. In the corresponding basis of eigen-
vectors, the first j form a basis of 𝒩⊥. Therefore, for any x ∈ 𝒩⊥ the
coordinates in this basis are (0, . . . , x̃ j+1, . . . , x̃n) and

Q(x)= Q̃(x̃)⩾𝜆j+1 (x̃ j+1
2 + ⋅ ⋅ ⋅ + x̃n

2)=𝜆j+1 |Px|2=𝜆j+1 |x|2.

6. Define

M≔max
|x|=1

Q(x) and m≔min
|x|=1

Q(x).

And notice that for any x∈ℝn: Q(x)= |x|2Q(x/|x|). □

Lemma A.12. Fix t ∈ ( /−12, /12) and let Q3(t, ⋅) be a positive semidefinite
quadratic form in ℝ3×3. Define

Q2(t,G)≔ min
c∈ℝ3

Q3(t, Ĝ+c⊗e3), for all G∈ℝ2×2,

where Ĝ is the matrix in ℝ3×3 given by Ĝ≔G𝛼𝛽 e𝛼⊗ e𝛽 for 𝛼, 𝛽 ∈ {1, 2}
and e1,e2∈ℝ3 are the first two standard basis vectors. Then Q2(t, ⋅) is a
positive semidefinite quadratic form and there exists a linear mapℒ(t, ⋅):
ℝ2×2→ℝ3 such that

Q2(t,G)=Q3(t, Ĝ+ℒ(t,G)⊗e3)

for all G∈ℝ2×2.
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Proof. Fix some matrix G∈ℝ2×2. We omit the parameter t for brevity,
but all the statements below apply pointwise. By convexity a critical point
of Q3 is a minimiser and the same is true of the restrictions to the affine
subspaces

{Ĝ+c⊗e3:c∈ℝ3}={⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛ G11 G12 c1

G21 G22 c2
0 0 c3 ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞
:ci∈ℝ}≃ℝ3.

Therefore, given any G ∈ ℝ2×2, finding the optimal c⋆ = cmin(Ĝ) in the
corresponding subspace is equivalent to solving for c⋆ in

∂Q3
∂c (Ĝ+c⋆⊗e3)=0~ . (A.6)

In fact, we prove that c⋆ = ℒ(G) for some linear function ℒ: ℝ2×2→
ℝ3. Once this is established, we can define the linear map 𝜙(G) ≔ Ĝ +
ℒ(G) ⊗ e3 and Q2[A, B] ≔Q3[𝜙(A), 𝜙(B)], where Q3[⋅, ⋅] is the unique
symmetric bilinear form associated with Q3. Then Q2(G) =Q3(𝜙(G)) =
Q3[𝜙(G), 𝜙(G)] =Q2[G,G] and by linearity of 𝜙, this is a bilinear map.
Consequently Q2(G) is a quadratic form which is additionally positive
semidefinite by construction: Q2(G)=minQ3(Ĝ+c⊗e3)⩾0.
We need only show that ℒ exists and is linear, but instead of com-

puting the derivative in (A.6), we can use the directional derivatives at
Ĝ+c⊗e3 in direction h∈ℝ3. Because

Q3(Ĝ+(c+h)⊗e3) = Q3(Ĝ+c⊗e3)+Q3(h⊗e3)
=o(|h|2)

+2Q3[Ĝ+c⊗e3,h⊗e3],

we have:

∂Q3
∂c (Ĝ+c⊗e3)[h]=2Q3[Ĝ+c⊗e3,h⊗e3] for every h∈ℝ3.

The condition that c⋆ fulfils is therefore

Q3[Ĝ+c⋆⊗e3,h⊗e3]=0 for every h∈ℝ3.

Let now G1, . . . ,G4∈ℝ2×2 be a basis. As argued above, to each one of
the Gi corresponds by convexity a unique ci

⋆. Let now be h ∈ ℝ3 and
G=∑i 𝛼i Gi, 𝛼i∈ℝ, i∈{1, . . . , 4} be arbitrary. We check that ℒ(G)=c⋆
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equals ∑i 𝛼i ℒ(Gi) =∑i 𝛼i ci
⋆. From the previous equation we have on

the one hand:

0=Q3[Ĝi+ci
⋆⊗e3,h⊗e3]=∑i 𝛼i Q3[Ĝi+ci

⋆⊗e3,h⊗e3].

And on the other:

0=Q3[∑i 𝛼i Ĝi+c⋆⊗e3,h⊗e3].

Equating both and cancelling the ∑i 𝛼i Ĝi we obtain

0=Q3[∑i 𝛼i ci
⋆⊗e3−c⋆⊗e3,h⊗e3].

Since h was arbitrary, this concludes the proof and we have a linear map
G↦c⋆=ℒ(G). □

Lemma A.13. Fix t ∈ ( /−12, /12). Let Q3(t, F) ≔ D2 W0(t, I)[F, F] with
W0 fulfilling the Assumptions 2.2 and define the relaxation Q2(t, ⋅) as in
Lemma A.12:

Q2(t,G)≔ min
c∈ℝ3

Q3(t, Ĝ+c⊗e3), for all G∈ℝ2×2,

where Ĝ is the matrix in ℝ3×3 given by Ĝ≔G𝛼𝛽 e𝛼⊗ e𝛽 for 𝛼, 𝛽 ∈ {1, 2}
and e1, e2 ∈ ℝ3 are the standard basis vectors. Then it holds that both
Q3(t, ⋅) and Q2(t, ⋅)

1. are positive semidefinite (hence convex), and
2. vanish on antisymmetric matrices.

Proof.
1. Positive semidefiniteness of Q2(t, ⋅) follows directly from Q3(t, ⋅)
having this property since Q2(t, G) = min Q3(t, . . . ) ⩾ 0. To prove that
Q3(t, ⋅) is positive semidefinite simply notice that Q3(t, ⋅) = D2W0(t, I),
a positive semidefinite matrix because all rotations are minimisers of W0
by Assumption 2.2.e.
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2. Let A=−A⊤∈ℝn×n, t∈( /−12, /12) and 0<𝜀≪1. On the one hand:

W0(t, I+𝜀A) = W0(t, I)⎵
=0

+DW0(t, I)
=0

[𝜀A]+ 12 D2W0(t, I)[𝜀A, 𝜀A]

+o(𝜀2)

= 𝜀2
2 Q3(t,A)+o(𝜀2).

On the other hand, letting F be the projection of I + 𝜀 A onto SO(n) and
G=F−(I+𝜀A) one has, using (A.4) with det(I+𝜀A)>0 for 𝜀≪1 and a
linearisation of the square root (see the proof of Proposition A.9):

|G| = dist(I+𝜀A, SO(n))
= | (I+𝜀A)⊤ (I+𝜀A)√ − I|

= | I+𝜀2 A⊤A√ − I|
= |I+ /12 𝜀2 A⊤ A+o(𝜀2)− I|
= o(𝜀2).

|G|∼𝜀2

I+𝜀A

SO(n)

I+so(n)I

Fig. A.1. The proof of Lemma A.13.b.

Therefore:

W0(t, I+𝜀A)=W0(t,F−G)= 1
2 D2W0(t,F)[G,G]+o(|G|2)=o(𝜀4),

where we used that

D2W0(t,F)[G,G]=D2W0(t, I)[GF−1,G F−1]=Q3(t,G F−1),

and ||||||||||||||||||||
|||||Q3(t,G F−1)||||||||||||||||||||

||||| ∼ |G F−1|2∼ |G|2. But then, by the previous result and
dividing by 𝜀2:

o(𝜀4)= 𝜀
2

2 Q3(t, A)+o(𝜀2)⇒Q3(t,A)=0. □
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Lemma A.14. There exist constants c1,c2>0 such that for all F∈ℝsym3×3,
G∈ℝsym2×2 it holds that

Q3(t,F)⩾c1 |F|2,

and

Q2(t,G)⩾c2 |G|2,

uniformly in t∈( /−12, /12).

Proof. Without loss of generality we can assume |F|=1. Fix any t∈( /−12,
/12) and 1≫ s>0 and use Assumptions 2.2.c and 2.2.e to compute

1
2 Q3(t, sF) ⩾ W0(t, I+ s F)−𝜔(s)

⩾ c1dist 2(I+ sF, SO(3))−𝜔(s)
= c1 |s F|2−𝜔(s).

Dividing both sides by s2 and letting s→0 we obtain the first statement,
while the second one holds by virtue of Q2 being a minimal value of Q3
over a subset of ℝsym3×3. □

Lemma A.15. Let m>0 and B(m)≔{A∈ℝsym2×2: |A|⩽m}. Then

|ℒ(t,A)|⩽C(m) for all A∈B(m) uniformly in t∈( /−12, /12).

Proof. This is an immediate consequence of the uniform bound of Lemma
A.14. We have for all |A|∈B(m):

Q3(t, Â+ℒ(t, A)⊗e3)≳ |Â+ℒ(t, A)⊗e3|2≳ |ℒ(t,A)⊗e3|2− |Â|2,

and the statement follows by Assumption 2.2.b. □

Lemma A.16. Fix t ∈ ( /−12, /12). Let Q3 = Q3(t, ⋅) ≔ D2 W0(I) with W0
fulfilling the Assumptions 2.2. The relaxation Q2=Q2(t, ⋅) from Lemma
A.12 defines a scalar product in L2(𝜔;ℝsym2×2):

⟨A,B⟩≔∫𝜔 Q2[A,B] dx.
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Therefore for any A, B ∈ L2(𝜔; ℝsym2×2) and 𝜀 > 0 the following Cauchy
inequalities hold:

⟨A,B⟩⩽ 12 ⟨A, A⟩+
1
2 ⟨B,B⟩, (A.7)

⟨A,B⟩⩽𝜀 ⟨A,A⟩+ 1
4𝜀 ⟨B,B⟩. (A.8)

Additionally, we have Cauchy-Schwarz' inequality:

|⟨A,B⟩|⩽⟨A, A⟩ /12 ⟨B,B⟩ /12. (A.9)

Proof. ⟨⋅, ⋅⟩Q2 is by construction bilinear and symmetric and it is positive
definite on L2(𝜔; ℝsym2×2) by Lemma A.13. All inequalities are standard:
for the first one use 0 ⩽ ⟨A− B, A− B⟩ = ⟨A, A⟩ + ⟨B, B⟩ − 2 ⟨A, B⟩. For
the second one write ⟨A, B⟩ = ⟨(2 𝜀)1/2 A, (2 𝜀)−1/2 B⟩ ⩽ 2𝜀

2 ⟨A, A⟩ +
(2𝜀)−1
2 ⟨B, B⟩. For the third one, define 𝜆 ≔ ⟨A, B⟩ /⟨B, B⟩ and rearrange

0⩽⟨A−𝜆B⟩=⟨A,A⟩+𝜆2⟨B,B⟩−2𝜆⟨A,B⟩. □

A.3 On geometric rigidity and Korn's inequality

In linear elasticity, the strain tensor is the symmetric gradient of the dis-
placements, so that the energy is roughly ∫Ω |∇s u|2 dx. In order to apply
the direct method of the calculus of variations to prove existence of min-
imisers, one requires bounds on infimizing sequences in order to extract
(weakly) convergent subsequences, then some property (e.g. convexity)
of the space of admissible functions is invoked to show that the limit
remains in it. The bounds are obtained by means of the following:

Theorem A.17. (Korn's first inequality) Let Ω⊂ℝn be an open bounded
Lipschitz set, n ⩾ 2 and let 1 < p < ∞. There exists a constant C(p,
Ω) such that for all w∈W 1,p(Ω;ℝn)

‖∇w‖0,p⩽C(p,Ω) (‖∇s w‖0,p+‖w‖0,p).
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The second result of this form is of more interest to us, because it is the
linear version of the estimate upon which all the proofs of compactness in
the previous chapters rely.

Theorem A.18. (Korn's second inequality) Let Ω ⊂ ℝn be an open
bounded Lipschitz set, n⩾ 2, and let 1 < p<∞. There exists a constant
C(p, Ω) with the following property: For each w ∈ W 1,p(Ω; ℝn) there
exists an anti-symmetric matrix Aw∈so(n) such that

‖∇w−Aw‖0,p⩽C(p,Ω)‖∇s w‖0,p.

Remark A.19. Korn's inequalities do not hold for p=1 [Orn62].

Now, in Lemma A.7 it is shown that ‖∇s w‖0,p=‖dist (∇w, so(n))‖0,p,
so the previous result tells us that we can bound ‖∇w‖ by the distance to
the space so(n)≔ℝskewn×n of the skew symmetric matrices after subtracting
the right antisymmetric matrix. Recall that so(n) is the tangent space to
SO(n) at the identity (see Section A.1.2.2), so the distance to so(n) is a
linearisation of the distance to SO(n).
The nonlinear version by Friesecke, James and Müller [FJM02] of

the previous theorem tells us that subtracting the right rotation one can
bound ‖∇w‖ by the distance to SO(n). This has enabled the application
of Γ-convergence methods to the derivation of rigorous lower dimen-
sional theories. In an analogous role to its linear counterpart, the so-called
geometric rigidity estimate implies the equicoerciveness of the scaled
energies, i.e. precompactness of sequences of bounded energy.A.2 The
result is as follows:

Theorem A.20. ([FJM02, Theorem 3.1], Geometric rigidity) Let Ω⊂
ℝn be an open bounded Lipschitz set, n⩾2. There exists a constant C(Ω)
with the following property: for each w∈W 1,2(Ω;ℝn) there is an associ-
ated rotation Rw∈SO(n) such that

‖∇w−Rw‖0,2⩽C(Ω)‖dist (∇w, SO(n))‖0,2.

A.2. We say that a family of functionals Fh: X →ℝ is equicoercive if for all c ∈ℝ
there exists a compact set Kc⊂X such that {Fh⩽ c}⊂Kc. Or, equivalently (in 1st count-
able topologies), if every sequence (xh) with Fh(xh)⩽c has a convergent subsequence.
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In the same vein that this a nonlinear version of Korn's second
inequality, the following corollary plays the same role wrt. Korn's first
inequality:

Corollary A.21. ([JS13, Theorem A.8]) Let Ω⊂ℝn be an open bounded
Lipschitz set, n⩾2 and let 1< p<∞. There exists a constant C(p,Ω) such
that for all w∈W 1,p(Ω;ℝn)

‖∇w‖0,p⩽C (‖dist (I+∇w, SO(n))‖0,p+‖w‖0,p).

Both estimates hold for p∈(1,∞) [CS06, p.854], but as in the linear
case, not for p=1 [CFM05].
We conclude this section with the following standard Korn-Poincaré

estimate, which is an essential ingredient in the proof of Theorem 3.10:

Corollary A.22. Let

Xu≔{u∈W 1,2(𝜔;ℝ2):∫𝜔∇a u=0 and ∫𝜔 u=0}.
There is a constant C=C(𝜔)>0 such that

‖u‖0,2⩽C ‖∇s u‖0,2 for all u∈Xu.

Consequently, there is another constant C=C(𝜔)>0 such that

‖u‖1,2⩽C ‖∇s u‖1,2 for all u∈Xu.

Proof. Notice that the second statement follows immediately from Poin-
caré's inequality (recall that u∈Xu implies ∫ u=0), Korn's first inequality
(Theorem A.17) and the first statement:

‖u‖1,22 ≲‖∇u‖0,22 ≲‖∇s u‖0,22 +‖u‖0,22 ≲‖∇s u‖0,22 .

We now prove the first estimate. For this we may assume ‖u‖0,2=1 since
for general u one simply applies the result to u / ‖u‖0,2. Suppose then
that the inequality does not hold, that is: we can find scalars Cn→0 and
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functions un∈Xu such that ‖un‖0,2=1 and ‖∇sun‖0,2⩽Cn. By Korn's first
inequality the un are bounded in W 1,2:

‖un‖1,2≲‖∇s un‖0,2+‖un‖0,2⩽C,

hence a subsequence exists (not relabelled), which converges weakly in
W 1,2 to some u0. But the constraints being linear the set Xu is convex,
thus u0∈Xu. Now, the map u↦‖∇s u‖0,22 is w.s.l.s.c.A.3 and we have with
Korn's second inequality (Theorem A.18) that

C min
A∈so(2)

‖∇u0−A‖0,22 ⩽‖∇s u0‖0,22 ⩽ linf
n→∞

‖∇s un‖0,22 =0.

Therefore ∇u0= A ∈ so(2) and u0(x) = A x + b. But, because u0∈ Xu it
holds that 0=∫𝜔∇a u=∫𝜔A so A must be zero, and 0=∫𝜔u so b must be
zero as well, i.e. u0=0.
Finally, by the compact embedding W 1,2(𝜔)↪ L2(𝜔) [AF03, §6.3], a

subsequence of (un) converges strongly in L2 to u0, a contradiction to the
assumption ‖un‖0,2=1. □

A.4 Convergence boundedly in measure

Definition A.23. Let Ω be a 𝜎-finite measure space and let ( fn) be a
sequence in L∞(Ω) converging in measure to f ∈ L∞(Ω). We say that
fn converges boundedly in measure provided that fn→ f in measure and
sup‖ fn‖∞<∞.

Here is the application which we require:

Lemma A.24. Let Ω⊂ℝd be open and bounded, f , fn∈L2(Ω) and fn→ f
boundedly in measure. Let G, Gn ∈ L2(Ω) too and Gn ⇀ G weakly in
L2(Ω). Then fn Gn, fG∈L2(Ω) and

fn Gn⇀ fG in L2(Ω).

A.3. Indeed, it is clearly convex and continuous, so its epigraph is convex and closed,
consequently weakly closed, and this happens iff the function is w.s.l.s.c.
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Proof. Let M≔supn‖ fn‖∞. Observe first that ∫Ω ||||||||||||||||||||
||||| fn Gn||||||||||||||||||||

|||||2 dx⩽M2 ‖Gn‖22<
∞ and, analogously, the product f G∈L2. Therefore these are elements of
the dual (L2)′≃L2 and we may indeed attempt to showweak convergence.
To this end we take 𝜓∈L2(Ω) arbitrarily and estimate the integral

∫Ω (Gn fn𝜓−G f 𝜓)dx = ∫Ω (Gn fn𝜓−Gn f 𝜓)dx

=:An

+∫Ω (Gn f 𝜓−Gf 𝜓 )dx

=:Bn

.

On the one hand, f 𝜓∈L2 thanks to f being uniformly bounded, and the
L2weak convergenceGn⇀G then yields Bn=∫Ω (Gn−G) f 𝜓 dx→0. On
the other hand, we use Hölder's inequality and the fact that weakly con-
vergent sequences are bounded: An ⩽ ‖Gn‖2 ‖ fn 𝜓 − f 𝜓‖2 ⩽ C ‖ fn 𝜓 −
f 𝜓‖2.

To estimate the integral ‖ fn 𝜓 − f 𝜓‖2 we note that the sequence
fn 𝜓 → f 𝜓 in measure because 𝜓 ∈ L2 and the product of sequences
converging in measure (in a finite measure space) converges in measure
as well. Therefore ( fn𝜓− f 𝜓)2→0 in measure too and this last sequence
is dominated by the function M ‖𝜓‖L2

2 , which is integrable because |Ω|<
∞. By the dominated convergence theorem:

∫Ω ( fn𝜓− f 𝜓)2dx→0,

and the proof is complete. □

A.5 Γ-convergence via maps

In Definition 2.5 we employed the technical device of Ph maps to encode
the estimate required for compactness and the lower bounds of Section
2.3. In this section we gather some results and remarks on Γ-convergence
in that context, while repeating some standard arguments where required.
We consider proper functionals

Fh:Y→ℝ and F:X→ℝ,
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such that (Fh)h>0 Γ-converges to F via maps Ph as in Definition 2.5. We
say that a functional F: X → ℝ is proper if F ≢ +∞ and F(w) > −∞
always.

Remark A.25. For the computation of the lower bound, we may suppose
that the sequence (yh)h>0 Ph-converging to w ∈ X has finite energy, i.e.
that Fh(yh) is uniformly bounded. Indeed, by passing to a subsequence
(yh′)⊂ (yh), we have

lim
h′→0

Fh′(yh′)= linf
h→0

Fh(yh),

and since we want to show that the right hand side is greater or equal than
a finite value (the limit energy at w) we may assume that there exists some
C>0 such that C>Fh′(yh′) or the estimate is trivial.

Remark A.26. Again for the computation of the lower bound, it is enough
to show that for every Ph-convergent sequence (yh)h>0, there exists a sub-
sequence (yh′)h′>0 Ph-converging to the same limit with linf

h→0
Fh′(yh′) =

lim
h→0

Fh′(yh′) and such that the lower bound holds. To see why, assume one
has this but the lower bound does not hold to arrive at a contradiction after
extracting a minimising sequence. This implies that it is not a problem to
take subsequences as needed along the way as we do in all the proofs.

The following statement turns out to be very useful for all upper bounds
[Bra06, Remark 2.8].

Lemma A.27. It is enough to define the recovery sequences on a subset
𝒜0⊂X0 which is dense wrt. the topology in which the limit functional is
continuous.

Recall that the three dimensional problems in Ωhmay have non-unique
minimisers or none at all. Therefore we must consider sequences of
almost minimisers, i.e. sequences (yh)h>0⊂Y such that:

lsup
h→0

(Fh(yh)− inf
Y

Fh)=0.
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The standard argument, which can be found in any textbook, for conver-
gence of the almost minimal energies now goes as follows:
1. Boundedness: almost minimising sequences have bounded energy
(Lemma A.28).

2. Compactness: sequences of bounded energy have Ph-convergent sub-
sequences (Lemma A.30).

3. Convergence:Ph-convergent, almost minimising (sub)sequences have
energies converging to the limit energy and their limit is a minimiser
of the limit energy (Lemma A.29).

Lemma A.28. (Boundedness) Any sequence of almost minimisers of Fh

has bounded energy.

Proof. Let (yh)h>0 be a sequence of almost minimisers:

lsup
h→0

(Fh(yh)− inf
X

Fh)=0⇔Fh(yh)= inf
X

Fh+o(1)
h→0

.

Because the limit energy is a proper functional (i.e. ≢∞) there exists w∈
X with F(w) < ∞. Now let (wh)h>0 be a recovery sequence for w, i.e.
Fh(wh)=F(w)+o(1) as h→0, then:

Fh(yh)= inf
X

Fh+o(1)⩽Fh(wh)+o(1)=F(w)+o(1)⩽C. □

Lemma A.29. (Fundamental theorem) Let (yh)h>0 be a sequence of
almost minimisers such that Ph(yh)→w in X as h→0. Then

Fh(yh)→F(w) and F(w)=min
X

F.

Proof. Let ŵ∈X be arbitrary. By Γ-convergence there exists a recovery
sequence (ŷh)h>0. Then:

F(ŵ)= lim
h→0

Fh(ŷh)⩾ lsup
h→0

inf
X

Fh=lsup
h→0

Fh(yh)⩾ linf
h→0

Fh(yh)⩾F(w),

which means that w minimises F. Taking now ŵ = w we see that we
must have equality everywhere, in particular in the last two steps, and
consequently lim

h→0
Fh(yh)=F(w). □

Notice that we can apply the preceding Lemma in the situation of
Chapter 2 and in particular Theorem 2.6.
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A.6 Compactness and identification of the limit strain

We collect here some known results proving compactness of sequences of
scaled energy and providing explicit representations for the limit strains,
as required for the proofs of Γ-convergence in Chapter 2. We recall the
definition of the scaled elastic energies (2.1):

ℐ𝛼h(y)=
1

h2𝛼−2 ∫Ω1 W0(x3,∇h y(x) (I+h𝛼−1Bh(x3))) dx.

The first Lemma shows that there are Ph-converging sequences (Defini-
tion 2.4):

Lemma A.30. ([FJM06, Lemma 1]) Let 𝛼 ∈ (2,∞) and let (yh)h>0⊂Y
have finite scaled ℐ𝛼h energy. For every h>0 there exist constants Rh∈
SO(3) and ch∈ℝ3 such for the corrected deformations

ỹh=𝜌(yh)≔(Rh)⊤yh−ch. (A.10)

there exist rotations Rh:𝜔→SO(3) (extended constantly along x3 to all of
Ω1 outside {0}×𝜔) approximating ∇h ỹh in L2(Ω1). Quantitatively:

‖∇h ỹh−Rh‖0,2,Ω1⩽C h𝛼−1.

By the invariance of the norm by rotations this implies

(Rh)⊤∇h ỹh→ I in L2(Ω1) as h→0.
Furthermore,

‖Rh− I‖0,2,Ω1⩽Ch𝛼−2.

Finally there exists a subsequence (not relabelled) such that for the scaled
and averaged in-plane and out-of-plane displacements from (2.7) there
exist (u,v)∈W 1,2(𝜔;ℝ2)×W 2,2(𝜔) such that, if 𝛼≠3:

u𝛼h⇀u in W 1,2(𝜔;ℝ2) and v𝛼h→v in W 1,2(𝜔),

If 𝛼=3 an analogous result holds with u𝜃h and v𝜃h from (2.8).

Proof. This is exactly a particular case of [FJM06, Lemma 1], estimates
(84) and (85) and estimates (86) and (87), once we prove that if (yh)h>0
have finite scaled ℐ𝛼h energy, then they have finite scaled energy in the
sense of [FJM06].
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Note first that among all choices we can make for the energy density
W which fulfil the assumptions in [FJM06], we can pick dist 2(⋅, SO(3)).
Therefore we will bound this quantity. Write d(F)≔ dist(F, SO(3)). We
begin by using Assumption 2.2.e:

C h2𝛼−2 ⩾ ∫Ω1 W0(x3,∇h y(x) (I+h𝛼−1Bh(x3)))

≳ ∫Ω1 d2(∇h y(x) (I+h𝛼−1Bh(x3))).

Consider now the following:

d2(F (I+h𝛼−1Bh)) ⩾ 1
2 d2(F)− |Fh𝛼−1Bh|2

⩾ 1
2 d2(F)−Ch2𝛼−2 |1+d2(F)|

⩾ 1
4 d2(F)−Ch2𝛼−2.

But then we are done since:

h2𝛼−2≳∫Ω1
1
4 d2(∇h y). □

Lemma A.31. ([FJM06, Lemma 2]) A.4Let 𝛼 ∈ (2, ∞) and let (yh)h>0
be a sequence in Y which Ph-converges to (u, v) ∈ X𝛼 in the sense of
Definition 2.4 with Rh:𝜔→SO(3) (extended constantly along x3 to all of
Ω1 outside {0}×𝜔) such that

‖∇h yh−Rh‖0,2,Ω1⩽C h𝛼−1. (⋆)
Then:

Ah≔ 1
h𝛼−2

(Rh− I)⟶{ 𝜃√ A if 𝛼=3,
A else,

in L2(𝜔;ℝ3×3), (A.11)

where
A≔e3⊗∇̂v−∇̂v⊗e3,

and

Gh≔ (Rh)⊤∇h yh− I
h𝛼−1

⇀G in L2(Ω1;ℝ3×3), (A.12)

A.4. This is almost word for word [FJM06, Lemma 2] with the very minor addition
of the factors 𝜃, 𝜃√ . For other scaling choices see [FJM06, p.208]. Note that this result
is inspired by [Cia97, Theorem 5.4.2], which is itself based on [Cia97, Theorem 1.4.1.c].
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where the submatrix Ǧ∈ℝ2×2 is affine in x3:

Ǧ(x′,x3)=G0(x′)+x3G1(x′) (A.13)
and

G1={− 𝜃√ ∇2v if 𝛼=3,

−∇2v else,
(A.14)

symG0=
⎩⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎧ 𝜃(∇su+

1
2∇v⊗∇v) if 𝛼=3,

∇su if 𝛼>3,
(A.15)

and
∇s u+ 1

2 ∇v⊗∇v=0, if 𝛼∈(2,3).

Proof. See [FJM06, p.208 - 209]. □

A.7 Derivatives galore

Let F:X→Y be a map between Banach spaces and U⊂X open. We say
that F is Gâteaux differentiable at w ∈U if the limit

𝛿F(w; 𝜂)≔ lim
𝜀→0

F(w+𝜀𝜂)−F(w)
𝜀 = d

d𝜀|𝜀=0F(w+𝜀𝜂)

exists for all 𝜂∈X and the map 𝜂↦𝛿F(w;𝜂) is linear and bounded from X
to Y . We say that F is Gâteaux differentiable in U iff for everyw∈U the
map 𝛿F(w)∈ℒ(X,Y). We say that F is continuously Gâteaux differen-
tiable in U if the map w↦𝛿F(w) from U into ℒ(X,Y) is continuous.
The following result relates the directional derivative to the differen-

tial map in the sense of Fréchet. For a proof see e.g. [Wer07, Satz III.5.4].

Lemma A.32. Let F:X→Y be continuously Gâteaux differentiable in an
open set U⊂X. Then F is Fréchet differentiable and its Fréchet differen-
tial at any w∈U is DF(w)=𝛿F(w).

Given some fixed direction, the first Gâteaux derivative or first vari-
ation is just a directional derivative, but for higher orders it is defined as

𝛿n F(w; 𝜂)≔ dn

d𝜀n |𝜀=0F(w+𝜀𝜂),
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whereas the iterated directional derivative is, e.g. for order 2:

d2F(w; 𝜂1, 𝜂2) =
d2

d𝜀1d𝜀2 |𝜀i=0
F(w+𝜀1𝜂1+𝜀2𝜂2)

= 𝛿(𝛿F(w; 𝜂1))(w; 𝜂2)

= lim
𝜀→0

𝛿F(w+𝜀𝜂2; 𝜂1)−𝛿F(w; 𝜂1)
𝜀 .

If the limits exist, this defines for each w ∈ U a map d2F(w) = 𝛿(𝛿(w)):
X×X→Y , which obviously cannot be equal to the map 𝛿2F(w; 𝜂):X→Y .
We have however the following:

Lemma A.33. Let F: X → Y and U ⊂ X open and assume that for each
w ∈ U, the map d2F(w): X × X → Y is a continuous bilinear form. If in
addition the map w↦ d2F(w) is continuous from U to ℒ(X ×X,Y), then
F is twice Fréchet differentiable and its second Fréchet differential at any
w∈U is D2F(w)=d2F(w).

Proof. Since w↦d2F(w)=𝛿(𝛿F)(w)=d(𝛿F)(w) is assumed to be contin-
uous, by Lemma A.32, 𝛿F is Fréchet differentiable and d(𝛿F)=D(𝛿F) on
U. In particular, 𝛿F=dF is also continuous over U, hence 𝛿F=DF, again
by Lemma A.32. Consequently D2F(w)=d2F(w) for all w∈U. □

Finally, we state the classical Implicit Function Theorem, which plays
a fundamental role in Section 3.2.1. For a proof see e.g. [Lan69, p. 125].

Theorem A.34. (Implicit Function Theorem) Let X, Y , Z be Banach
spaces and let W ⊂X,Θ⊂Z be open sets. Let

f :W ×Θ→Y

be a C p map for p⩾1 and assume there is a point (w0, 𝜃0) ∈W ×Θ such
that the partial derivative

∂w f (w0, 𝜃0):W→Y

is an isomorphism and f (w0, 𝜃0)= 0. Then there exists a continuous map
𝜙:Θ0→W defined on an open neighbourhood Θ0 of 𝜃0 such that 𝜙(𝜃0)=
w0 and such that

f (𝜙(𝜃), 𝜃)=0
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for all 𝜃 ∈Θ0. If Θ0 is sufficiently small, then 𝜙 is uniquely determined,
and is also of class C p.

A.7.1 A few computations

Without much attention to technicalities (e.g. differentiation under the
integral sign), in this section we compute the first and second variation
and Fréchet derivatives of the limit functional

I(w)≔ 𝜃
2 ∫𝜔 Q2(∇s u+ 1

2∇v⊗∇v

A

)+ 1
24 ∫𝜔 Q2(∇2 v− I),

which was derived in (2.13) using the t-independent energy

W(t,F)≔W0(F (I+h2 𝜃√ t I)),
with 𝜃>0 and the misfit

Bh(t)= t Id3.

Throughout we assume w∈X≔W 1,2(𝜔;ℝ2)×W 2,2(𝜔).
With the notation of Lemma A.16, ⟨A, B⟩ ≔ ∫𝜔Q2[A, B] and ⟨A⟩ ≔

⟨A, A⟩, we collect some results in preparation for the computations to
follow:A.5

d
d𝜀|𝜀=0 //A+𝜀B //=2⟨A+𝜀B,B⟩|𝜀=0=2⟨A,B⟩,

d
d𝜀|𝜀=0 //A+𝜀B+𝜀2C // = 2⟨A+𝜀B+𝜀2C,B+2𝜀C⟩|𝜀=0

= 2⟨A,B⟩,

and
d2
d𝜀|𝜀=0 //A+𝜀B //=2⟨B⟩,

A.5. Recall that if Q[⋅, ⋅] is a bilinear form in ℝn×n and F,G∈ℝn×n are functions of 𝜀,
then

∂𝜀Q[F,G]=Q[∂𝜀F,G]+Q[F, ∂𝜀G]

as can be readily seen differentiating the expression in coordinates: Q[F,G]=Fij Q ijkl Gkl.
If Q2(⋅) is now a quadratic form with associated symmetric bilinear form Q2[⋅, ⋅] one has

∂𝜀Q2(F)=2Q2[∂𝜀F,F] and ∂𝜀𝜀2 Q2(F)=2Q2[∂𝜀𝜀2 F,F]+2Q2(∂𝜀F).
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d2
d𝜀 |𝜀=0 //A+𝜀B+𝜀2C // = 2⟨2C, A+𝜀B+𝜀2C⟩|𝜀=0

+2⟨B+2𝜀C⟩|𝜀=0
= 4⟨A,C⟩+2⟨B⟩.

First variation: we begin with the first variation of I along 𝜂 = (𝜑,𝜓) ∈
W 1,2(𝜔; ℝ2) × W 2,2(𝜔), applying where necessary the Sobolev embed-
dings W 2,2↪W 1,4 and W 1,2↪L4:A.6

d
d𝜀|𝜀=0 I(w+𝜀𝜂)

= d
d𝜀|𝜀=0 I(u+𝜀𝜑,v+𝜀𝜓)

= 𝜃
2
d
d𝜀|𝜀=0 //∇s u+𝜀∇s𝜑+

1
2 (∇v+𝜀∇𝜓)⊗(∇v+𝜀∇𝜓) //

+ 1
24

d
d𝜀|𝜀=0 ⟨∇

2 v− I+𝜀∇2𝜓⟩

= 𝜃
2
d
d𝜀|𝜀=0 //A+𝜀∇s𝜑+

𝜀
2 ∇v⊗∇𝜓+ 𝜀2 ∇𝜓⊗∇v

𝜀B

+𝜀
2

2 ∇𝜓⊗∇𝜓

𝜀2C

//+ 1
12 ⟨∇

2 v− I,∇2𝜓⟩dx

= 𝜃⟨A,B⟩+ 1
12 ∫𝜔 ⟨∇2 v− I,∇2𝜓⟩

= 𝜃 //A,∇s𝜑+(∇v⊗∇𝜓)sym //+ 1
12 ⟨∇

2v− I,∇2𝜓⟩.

We have then:

𝛿I(w; 𝜂) = 𝜃⟨∇s u+ 1
2∇v⊗∇v,∇s𝜑+(∇v⊗∇𝜓)sym⟩

+ 1
12 ⟨∇

2v− I,∇2𝜓⟩. (A.16)

First Fréchet derivative:With estimates like those in Chapter 3 it is easy to
see that the map (A.16) is linear in (𝜑,𝜓)∈X and bounded, so I is Gâteaux

A.6. Notice that because Q2 vanishes on antisymmetric matrices, we could drop the
symmetrisations but we leave them because they remind of the fact that the bilinear form
is not elliptic on the whole space.

A.7 Derivatives galore 137



differentiable with differential given by the previous equation. It is also
continuous in w = (u, v). Hence I is Fréchet differentiable in X and by
Lemma A.32 its differential Dw I(w) is given by the integral in (A.16).

Second Fréchet derivative: In order to compute Dw
2 I(w) we start with the

iterated directional derivative (but we could also compute d
d𝜀 |𝜀=0D I(u+

𝜀𝜑2,v+𝜀𝜓2; 0)[𝜑1,𝜓1])

d2
d𝜀1d𝜀2 |𝜀i=0

I(u+𝜀1𝜑1+𝜀2𝜑2,v+𝜀1𝜓1+𝜀2𝜓2)=𝛿 (𝛿 I(w;𝜑);𝜓).

Again, the idea is that under suitable conditions the obtained map will be
bilinear, symmetric and continuous and coincide with the second Fréchet
differential. Though mostly trivial, the computations are tedious so we
split them and make use of the fact that terms which are independent of
𝜀1 or 𝜀2 or quadratic in either one vanish when we differentiate. We begin
with the second integrand:

d2
d𝜀1d𝜀2 |𝜀i=0

Q2(∇2 v+𝜀1∇2𝜓1+𝜀2∇2𝜓2− I)

= d2
d𝜀1d𝜀2 |𝜀i=0

{Q2(∇2 v− I)+Q2(𝜀1∇2𝜓1)+Q2(𝜀2∇2𝜓2)+

+2Q2[∇2 v− I, 𝜀1∇2𝜓1]+2Q2[∇2 v− I, 𝜀2∇2𝜓2]
+2Q2[𝜀1∇2𝜓1, 𝜀2∇2𝜓2]}

= 2Q2[∇2𝜓1,∇2𝜓2].

For the first integrand we find (again, terms independent of, or quadratic
in, 𝜀1 or 𝜀2 vanish):

d2
d𝜀1d𝜀2 |𝜀i=0

Q2(∇s u+𝜀1∇s𝜑1+𝜀2∇s𝜑2

+ 1
2∇(v+𝜀1𝜓1+𝜀2𝜓2)⊗∇(v+𝜀1𝜓1+𝜀2𝜓2))

= d2
d𝜀1d𝜀2 |𝜀i=0

Q2(F+𝜀1A1+𝜀2 A2+𝜀12 (. . .)+𝜀22 (. . .)
+𝜀1𝜀2 (∇𝜓1⊗∇𝜓2)sym)

= 2Q2[F, (∇𝜓1⊗∇𝜓2)sym]+2Q2[A1, A2],
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where F = ∇su + /12 ∇v ⊗ ∇v, A1 = ∇s 𝜑1 + (∇v ⊗ ∇𝜓1)sym and A2 =
∇s𝜑2+(∇v⊗∇𝜓2)sym. We bring both computations together and obtain
the map:

[(𝜑1,𝜓1), (𝜑2,𝜓2)] ↦ 𝜃∫𝜔 Q2[∇s u+ 1
2 ∇v⊗∇v, (∇𝜓1⊗∇𝜓2)sym]

+𝜃∫𝜔 Q2[∇s𝜑1+(∇v⊗∇𝜓1)sym,

∇s𝜑2+(∇v⊗∇𝜓2)sym]

+ 1
12 ∫𝜔 Q2[∇2𝜓1,∇2𝜓2].

This is clearly linear on (𝜑i,𝜓i) and because it is also continuous on (u,v),
it is in fact the second Fréchet differential of I by Lemma A.33. Finally,
evaluation at any w∈X and 𝜃=0 yields

Dw
2 I(w; 0)[(𝜑1,𝜓1), (𝜑2,𝜓2)]=

1
12 ∫𝜔 Q2[∇2𝜓1,∇2𝜓2]. (A.17)

Partial derivatives: Finally, at the risk of being a bit repetitious, we collect
the partial derivatives of I, for their use in Theorem 3.10. Setting 𝜓=0 in
(A.16), we have that the first variation of I along 𝜑∈Xu (Definition 2.12)
is

d
d𝜀|𝜀=0 I(u+𝜀𝜑,v)=𝜃 //∇s u+ 1

2 ∇v⊗∇v,∇s𝜑//.

This map is linear in 𝜑 and bounded and it is also continuous on u∈Xu.
Hence I is Fréchet differentiable wrt. u ∈ Xu and by Lemma A.32 its
differential ∂u I at (u,v) is given by the previous integral. Analogously we
set 𝜑=0 in (A.16) and obtain for 𝜓∈Xv:

d
d𝜀|𝜀=0 I(u,v+𝜀𝜓) = 𝜃 //∇s u+ 1

2 ∇v⊗∇v, (∇v⊗∇𝜓)sym //

+ 1
12 ⟨∇

2 v− I,∇2𝜓⟩

And in the same manner as above we conclude that this expression yields
the derivative ∂vI(u,v; 𝜃).
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Appendix B

Notation

≃, ≲ denote equality, resp. inequality, up to a constant which doesn't
depend on the quantities involved.

x=(x′,x3)∈ℝ3,x′∈ℝ2.

[A]≔ A⊤A√ for any matrix A.

[N]≔{n∈ℕ:n<N}.

Asym=sym A= 1
2 (A+ A⊤), the symmetric part of matrix A.

Aant=ant A= 1
2 (A− A⊤), the antisymmetric part of matrix A.

O(n) Orthogonal group: Real n×n matrices A such that A⊤A= I.

SO(n) Special orthogonal group. Real n×n matrices A such that A⊤A= I
and det A=1.

so(n) The set of real n×n antisymmetric matrices.

∇ f =(∂1f , ∂2 f , ∂3f )⊤, a column vector, for f :ℝ3→ℝ.

(∇y)ij=yi, j=∂j yi, i, j∈{1,2,3}, each row ∇⊤yi, if y:ℝ3→ℝ3.

(∇′y)𝜌𝜏=y𝜌,𝜏,𝜌,𝜏∈{1,2} for any y:ℝ3→ℝ3 is the 2×2 gradient or Jacobi
matrix of y wrt. the first two variables.

∇s u= 1
2(∇u+∇⊤u), the symmetrised gradient of u:ℝ2→ℝ2.

∇h y=(∂1y, ∂2 y, /1h∂3y) with y:Ω⊂ℝ3→ℝ3 a deformation.



∇2 v, the Hessian matrix of v:ℝn→ℝ.

Δ2, the bilaplacian operator. In ℝ2: Δ2=∂14+2∂12∂22+∂24.

Ĝ≔G𝛼𝛽 e𝛼⊗ e𝛽 ∈ ℝ3×3, G ∈ℝ2×2, 𝛼, 𝛽 ∈ {1, 2} and e1, e2 ∈ℝ3 are the
standard basis vectors.

∇̂u≔ (∇′u)𝛼𝛽 e𝛼⊗ e𝛽 ∈ ℝ3×3 for u: 𝜔 ⊂ ℝ2→ℝ2, and 𝛼, 𝛽 ∈ {1, 2}, e1,
e2∈ℝ3 the standard basis vectors.

∇̂b ≔ (∇′b)𝛼𝛽 e𝛼 ⊗ e𝛽 ∈ ℝ3×3 for b: 𝜔 ⊂ ℝ2 → ℝ3, and 𝛼 ∈ {1, 2, 3},
𝛽 ∈{1,2},e1,e2,e3∈ℝ3 the standard basis vectors.

∇̂v≔(∂1v, ∂2 v, 0)⊤∈ℝ3 for v:𝜔⊂ℝ2→ℝ.

B̌ ∈ ℝ2×2 is the matrix resulting from the deletion of the third row and
column of any B∈ℝ3×3

A quadratic form Q(⋅) has the associated unique bilinear form Q[⋅, ⋅].

⟨F, G⟩ ≔ ∫𝜔Q2[F, G] and ⟨F⟩ ≔ ⟨F, F⟩ = ∫𝜔Q2(F) for all F, G ∈ L2(𝜔;
ℝ2×2). Sometimes we also write ‖F‖Q2

2 =⟨F⟩.

‖v‖k,p,Ω= ‖v‖Wk,p(Ω). We will omit the domain when it is clear from the
context.

A𝜃≔∇s u𝜃+
1
2 ∇v𝜃⊗∇v𝜃, mostly in Section 2.4.

( f )𝜔≔
1
|𝜔| ∫𝜔 f (x′) dx′ is the average of f over 𝜔.

𝜇,𝜆 are the Lamé constants of an isotropic hyperelastic material.

w.s.l.s.c. “weakly sequentially lower semicontinuous”.

wrt. “with respect to”.

dof “degree of freedom”.

(†),(‡),(⋆) Are references to equations valid only in the local scope (the
innermost environment, section, etc. in which they appear).

142 B Notation



References

ABH+15 Martin S. Alnaes, Jan Blechta, Johan Hake, August Johansson, Benjamin
Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and
Garth N. Wells. The FEniCS Project Version 1.5. Archive of Numerical Software,
3(100), 2015.

ABP88 Emilio Acerbi, Giuseppe Buttazzo, and Danilo Percivale. Thin inclusions in linear
elasticity: a variational approach. Journal für die reine und angewandte Mathematik,
386:99–115, 1988.

ABP91 Emilio Acerbi, Giuseppe Buttazzo, and Danilo Percivale. A variational definition
of the strain energy for an elastic string. Journal of Elasticity, 25(2):137–148, mar
1991.

ABP94 G. Anzellotti, S. Baldo, and Danilo Percivale. Dimension reduction in variational
problems, asymptotic development in Γ-convergence and thin structures in elasticity.
Asymptotic Analysis, 9(1):61–100, jan 1994.

ADD12 Virginia Agostiniani, Gianni Dal Maso, and Antonio Desimone. Linear elasticity
obtained from finite elasticity by Γ-convergence under weak coerciveness conditions.
Annales de l'Institut Henri Poincaré. Analyse non linéaire, 29:715–735, 2012.

AF03 Robert A. Adams and John J. F. Fournier. Sobolev Spaces. Number 140 in Pure
and Applied Mathematics. Academic Press, Department of Mathematics, The Univer-
sity of British Columbia Vancouver, Canada, 2nd edition, 2003.

Alt12 Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer, 6th edition, 2012.
AMZ02 Douglas N. Arnold, Alexandre L. Madureira, and Sheng Zhang. On the range
of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models.
Journal of elasticity and the physical science of solids, 67(3):171–185, jun 2002.

Bar13 S. Bartels. Approximation of Large Bending Isometries with Discrete Kirchhoff
Triangles. SIAM Journal on Numerical Analysis, 51(1):516–525, jan 2013.

Bar15 Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations,
volume 47 of Springer Series in Computational Mathematics. Springer International
Publishing, Cham, 2015.



Bar16 Sören Bartels. Numerical solution of a Föppl-von Kármán model. 2016.
BCDM02 Hafedh Ben Belgacem, Sergio Conti, Antonio DeSimone, and Stefan Müller.
Energy scaling of compressed elastic films - three-dimensional elasticity and reduced
theories. Archive for Rational Mechanics and Analysis, 164(1):1–37, aug 2002.

BD98 Andrea Braides and Anneliese Defranceschi. Homogenization of Multiple Inte-
grals. Clarendon Press, 1998.

Bha09 Rajendra Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathe-
matics. Princeton University Press, jan 2009.

BNRS17 Susanne C. Brenner, Michael Neilan, Armin Reiser, and Li-Yeng Sung.
A C0 interior penalty method for a von Kármán plate. Numerische Mathematik,
135(3):803–832, mar 2017.

BP90 I. Babuška and J. Pitkäranta. The plate paradox for hard and soft simple support.
SIAM Journal on Mathematical Analysis, 21(3):551–576, may 1990.

Bra06 Andrea Braides. A handbook of Γ-convergence. InM. Chipot and P. Quittner, edi-
tors, Stationary Partial Differential Equations, volume 3 of Handbook of Differential
Equations, pages 101–213. Elsevier, 2006.

BS92 Ivo Babuška and Manil Suri. On Locking and Robustness in the Finite Element
Method. SIAM Journal on Numerical Analysis, 29(5):1261–1293, 1992.

BS08 Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite
Element Methods. Number 15 in Texts in Applied Mathematics. Springer New York,
New York, NY, 3rd edition, 2008.

CFM05 Sergio Conti, Daniel Faraco, and Francesco Maggi. A new approach to coun-
terexamples to L1 estimates: Korn's inequality, geometric rigidity, and regularity for
gradients of separately convex functions. Archive for Rational Mechanics and Analysis,
175(2):287–300, feb 2005.

Cia88 Philippe G. Ciarlet. Mathematical Elasticity: Three-Dimensional Elasticity,
volume 1 of Studies in Mathematics and Its Applications. Elsevier, 1988.

Cia97 Philippe G. Ciarlet. Mathematical Elasticity: Theory of Plates, volume 2 of Studies
in Mathematics and Its Applications. North-Holland, 1997.

Cia05 Philippe G. Ciarlet. An Introduction to Differential Geometry with Applications to
Elasticity. Springer, City University of Hong Kong, aug 2005.

CM08 Sergio Conti and FrancescoMaggi. Confining thin elastic sheets and folding paper.
Archive for Rational Mechanics and Analysis, 187(1):1–48, jan 2008.

Con04 Sergio Conti. Low-Energy Deformations of Thin Elastic Plates: Isometric Embed-
dings and Branching Patterns. Habilitationsschreiben, Leipzig University, 2004.

CS06 Sergio Conti and Ben Schweizer. Rigidity and Γ-convergence for solid-solid phase
transitions with SO(2) invariance. Communications on Pure and Applied Mathematics,
59(6):830–868, jun 2006.

Dac07 Bernard Dacorogna. Direct Methods in the Calculus of Variations. Number 78 in
Applied Mathematical Sciences. Springer, 2nd edition, jan 2007.

144 References



dB17a Miguel de Benito Delgado. Implementation of a generalised von Kármán model
for multilayered plates. https://bitbucket.org/mdbenito/lvk, nov
2017.

dB17b Miguel de Benito Delgado. Implementation of a nonlinear Kirchhoff plate model.
https://bitbucket.org/mdbenito/nonlinear-kirchhoff, aug
2017.

dB17c Miguel de Benito Delgado. Implementation of Hermite elements for FEniCS.
https://bitbucket.org/mdbenito/hermite, feb 2017.

DFMŠ17 Bernard Dacorogna, Nicola Fusco, Stefan Müller, and Vladimír Šverák. Vector-
Valued Partial Differential Equations and Applications. Number 2179 in Lecture Notes
in Mathematics. Springer, Cetraro, Italy 2013, 2017.

DNP02 G. Dal Maso, M. Negri, and Danilo Percivale. Linearized Elasticity as Γ-Limit of
Finite Elasticity. Set-Valued Analysis, 10(2-3):165–183, 2002.

FJM02 Gero Friesecke, Richard D. James, and Stefan Müller. A theorem on geometric
rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity.
Communications on Pure and Applied Mathematics, 55(11):1461–1506, 2002.

FJM06 Gero Friesecke, Richard D. James, and StefanMüller. A hierarchy of plate models
derived from nonlinear elasticity by Γ-convergence. Archive for Rational Mechanics
and Analysis, 180(2):183–236, may 2006.

FL07 Irene Fonseca and Giovanni Leoni. Modern Methods in the Calculus of Variations:
Lp Spaces. Springer Monographs in Mathematics. Springer, 2007.

FP15 Lior Falach, Roberto Paroni, and Paolo Podio-Guidugli. A justification of
the Timoshenko beam model through Γ-convergence. Analysis and Applications,
15(02):261–277, aug 2015.

Gal01 Jean Gallier. Geometric Methods and Applications for Computer Science and Engi-
neering. Number 38 in Texts in Applied Mathematics. Springer-Verlag, New York,
2001.

GKC+17 Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmid-
huber. The Sacred Infrastructure for Computational Research. Proceedings of the 16th
Python in Science Conference, pages 49–56, 2017.

GRS07 Christian Grossmann, Hans-Görg Roos, andMartin Stynes. Numerical Treatment
of Partial Differential Equations. Universitext. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

HJ12 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 2nd edition, 2012.

HKO08 Peter Howell, Gregory Kozyreff, and John Ockendon. Applied Solid Mechanics.
Number 43 in Cambridge Texts in Applied Mathematics. Cambridge University Press,
dec 2008.

Hor11 Peter Hornung. Approximation of flatW 2,2 isometric immersions by smooth ones.
Archive for Rational Mechanics and Analysis, 199(3):1015–1067, mar 2011.

References 145

https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/lvk
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/nonlinear-kirchhoff
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite
https://bitbucket.org/mdbenito/hermite


JS13 Martin Jesenko and Bernd Schmidt. Closure and commutability results for Gamma-
Limits and the geometric linearization and homogenization of multi-well energy func-
tionals. ArXiv:1308.0963 [cond-mat], aug 2013.

KP+16 Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
Notebooks – a publishing format for reproducible computational workflows. In
F. Loizides and B. Schmidt, editors, Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pages 87–90. IOS Press, 2016.

Lan69 Serge Lang. Analysis II. Addison-Wesley Pub. Co., jun 1969.

LMP11 Marta Lewicka, L. Mahadevan, and Mohammad Reza Pakzad. The Föppl-von
Kármán equations for plates with incompatible strains. Proceedings of the Royal
Society of London. Series A. Mathematical, Physical and Engineering Sciences,
467(2126):402–426, 2011.

LMP14 Marta Lewicka, L. Mahadevan, and Mohammad Reza Pakzad. Models for elastic
shells with incompatible strains. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, 470(2165):20130604, aug 2014.

LP09 Marta Lewicka and Reza Pakzad. The infinite hierarchy of elastic shell models:
some recent results and a conjecture. ArXiv:0907.1585 [math], jul 2009.

LR95 Hervé Le Dret and Annie Raoult. The nonlinear membrane model as variational
limit of nonlinear three-dimensional elasticity. Journal de mathématiques pures et
appliquées, 74(6):549–578, 1995.

MH94 Jerrold E. Marsden and Thomas J. R. Hughes. Mathematical Foundations of Elas-
ticity. Dover civil and mechanical engineering, California Institute of Technology,
Pasadena, Reprint of the 1983 edition, 1994.

MN16a GourangaMallik and Neela Nataraj. A nonconforming finite element approxima-
tion for the von Kármán equations. ESAIM: Mathematical Modelling and Numerical
Analysis, 50(2):433–454, mar 2016.

MN16b Gouranga Mallik and Neela Nataraj. Conforming finite element methods for the
von Kármán equations. Advances in Computational Mathematics, 42(5):1031–1054,
oct 2016.

MP05 Stefan Müller and Mohammad Reza Pakzad. Regularity properties of isometric
immersions. Mathematische Zeitschrift, 251(2):313–331, jul 2005.

Orn62 Donald Ornstein. A non-inequality for differential operators in the L1 norm.
Archive for Rational Mechanics and Analysis, 11(1):40–49, jan 1962.

Ort04 Christoph Ortner. Γ-Limits of Galerkin Discretizations with Quadrature. Technical
Report 04/26, Oxford University Computing Laboratory, Numerical Analysis Group,
dec 2004.

P15 Roberto Paroni and Paolo Podio-Guidugli. On variational dimension reduction in
structure mechanics. Journal of Elasticity, 118(1):1–13, jan 2015.

146 References



Pak04 Mohammad Reza Pakzad. On the Sobolev space of isometric immersions. Journal
of Differential Geometry, 66(1):47–69, jan 2004.

Pra01 Gangan Prathap. Finite element analysis as computation. 2001.

PT07 Roberto Paroni, Paolo Podio-Guidugli, and Giuseppe Tomassetti. A justification
of the Reissner-Mindlin plate theory through variational convergence. Analysis and
Applications, 05(02):165–182, apr 2007.

PT17 Roberto Paroni and Giuseppe Tomassetti. Linear models for thin plates of polymer
gels. Mathematics and Mechanics of Solids, mar 2017.

PW60 L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex
domains. Archive for Rational Mechanics and Analysis, 5(1):286–292, jan 1960.

Qua12 Alessio Quaglino. Membrane Locking in Discrete Shell Theories. Doctoral dis-
sertation, Georg-August-Universität Göttingen, Göttingen, may 2012.

Sch07a Bernd Schmidt. Minimal energy configurations of strained multi-layers. Cal-
culus of Variations and Partial Differential Equations, 30(4):477–497, dec 2007.

Sch07b Bernd Schmidt. Plate theory for stressed heterogeneous multilayers of finite
bending energy. Journal de Mathématiques Pures et Appliquées, 88(1):107–122, jul
2007.

Sch09 Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Net-
works and heterogeneous media, 4(4):789–812, dec 2009.

Sub18 Vivek Ratnavel Subramanian. Omniboard: a web-based dashboard for Sacred.
sep 2018.

TM05 Roger Temam and Alain Miranville. Mathematical Modeling in Continuum
Mechanics. Cambridge University Press, 2nd edition, 2005.

Ves12 Matthias Vestner. Effective Theories for Internally Stressed Bodies Derived
from Nonlinear Elasticity by Γ-Convergence. Diplomarbeit, Technische Universität
München, Munich, dec 2012.

Wer07 Dirk Werner. Funktionalanalysis. Springer-Lehrbuch. Springer-Verlag, Berlin
Heidelberg, 6th edition, 2007.

References 147



In der Reihe Augsburger Shriften zur Mathematik, Physik und Informatik,

herausgegeben von Prof. Dr. B. Aulbah, Prof. Dr. F. Pukelsheim,

Prof. Dr. W. Reif, Prof. Dr. B. Shmidt, Prof. Dr. D. Vollhardt,

sind bisher ershienen:

1 Martin Miÿlbek Entwiklung eines shnellen Spektralradiome-

ters und Weiterentwiklung herkömmliher

Messverfahren zur Messung der solaren UV-

Strahlung

ISBN 978-3-8325-0208-9, 2003, 139 S. 40.50 €

2 Bernd Reinhard Dynamishes Trapping in modulierten monoto-

nen Potentialen

ISBN 978-3-8325-0516-5, 2004, 154 S. 40.50 €

3 Cosima Shuster Physikerinnen stellen sih vor - Dokumentation

der Deutshen Physikerinnentagung 2003

ISBN 978-3-8325-0520-2, 2004, 164 S. 40.50 €

4 Udo Shwingenshlögl The Interplay of Strutural and Eletroni Pro-

perties in Transition Metal Oxides

ISBN 978-3-8325-0530-1, 2004, 174 S. 40.50 €

5 Marianne Leitner Zero Field Hall-E�ekt für Teilhen mit Spin 1/2

ISBN 978-3-8325-0578-3, 2004, 81 S. 40.50 €

6 Georg Keller Realisti Modeling of Strongly Correlated Ele-

tron Systems

ISBN 978-3-8325-0970-5, 2005, 150 S. 40.50 €

7 Niko Tzoukmanis Loal Minimizers of Singularly Perturbed Fun-

tionals with Nonloal Term

ISBN 978-3-8325-0650-6, 2004, 154 S. 40.50 €



8 Stefan Bettner Beweis der Kongruenzen von Berwik sowie de-

ren Verallgemeinerung und weitere Anwendun-

gen von Torsionspunkten auf elliptishen Kur-

ven

ISBN 978-3-8325-0709-1, 2004, 150 S. 40.50 €

9 Ulrih Miller Rigorous Numeris using Conley Index Theory

ISBN 978-3-8325-0854-8, 2005, 130 S. 40.50 €

10 Markus Lilli The E�et of a Singular Perturbation to a 1-d

Non-Convex Variational Problem

ISBN 978-3-8325-0928-6, 2005, 100 S. 40.50 €

11 Stefan Krömer Nononvex radially symmetri variational pro-

blems

ISBN 978-3-8325-1240-8, 2005, 80 S. 40.50 €

12 Andreas Nikel The Lifted Root Number Conjeture for small

sets of plaes and an appliation to CM-

extensions

ISBN 978-3-8325-1969-8, 2008, 102 S. 33.00 €

13 Torben Stender Growth Rates for Semi�ows with Appliation to

Rotation Numbers for Control Systems

ISBN 978-3-8325-2165-3, 2009, 136 S. 34.50 €

14 Tobias Wihtrey Harmoni Limits of Dynamial and Control

Systems

ISBN 978-3-8325-2796-9, 2011, 205 S. 37.00 €

15 Christian A. Möller Adaptive Finite Elements in the Disretization

of Paraboli Problems

ISBN 978-3-8325-2815-7, 2011, 257 S. 39.00 €

16 Georg M. Reuther Deoherene and Time-Resolved Readout in

Superonduting Quantum Ciruits

ISBN 978-3-8325-2846-1, 2011, 157 S. 35.00 €

17 Ralf Seger Exploratory Model Comparison

ISBN 978-3-8325-2927-7, 2011, 205 S. 60.00 €



18 Olga Birkmeier Mahtindizes und Fairness-Kriterien in gewih-

teten Abstimmungssystemen mit Enthaltungen

ISBN 978-3-8325-2968-0, 2011, 153 S. 37.50 €

19 Johannes Neher A posteriori error estimation for hybridized mi-

xed and disontinuous Galerkin methods

ISBN 978-3-8325-3088-4, 2012, 105 S. 33.50 €

20 Andreas Krug Extension groups of tautologial sheaves on Hil-

bert shemes of points on surfaes

ISBN 978-3-8325-3254-3, 2012, 127 S. 34.00 €

21 Isabella Graf Multisale modeling and homogenization of

reation-di�usion systems involving biologial

surfaes

ISBN 978-3-8325-3397-7, 2013, 285 S. 46.50 €

22 Franz Vogler Derived Manifolds from Funtors of Points

ISBN 978-3-8325-3405-9, 2013, 158 S. 35.00 €

23 Kai-Friederike Oelber-

mann

Biproportionale Divisormethoden und der Algo-

rithmus der alternierenden Skalierung

ISBN 978-3-8325-3456-1, 2013, 91 S. 32.50 €

24 Markus Göhl Der durhshnittlihe Rehenaufwand des Sim-

plexverfahrens unter einem verallgemeinerten

Rotationssymmetriemodell

ISBN 978-3-8325-3531-5, 2013, 141 S. 34.50 €

25 Fabian Re�el Konvergenzverhalten des iterativen proportiona-

len Anpassungsverfahrens im Fall kontinuierli-

her Maÿe und im Fall diskreter Maÿe

ISBN 978-3-8325-3652-7, 2014, 185 S. 40.00 €

26 Emanuel Shnalzger Lineare Optimierung mit dem Shattenekenal-

gorithmus im Kontext probabilistisher Analy-

sen

ISBN 978-3-8325-3788-3, 2014, 225 S. 42.00 €



27 Robert Gelb D-modules: Loal formal onvolution of elemen-

tary formal meromorphi onnetions

ISBN 978-3-8325-3894-1, 2015, 95 S. 33.00 €

28 Manuel Friedrih E�etive Theories for Brittle Materials: A

Derivation of Cleavage Laws and Linearized

Gri�th Energies from Atomisti and Continu-

um Nonlinear Models

ISBN 978-3-8325-4028-9, 2015, 291 S. 39.50 €

29 Hedwig Heizinger Stokes Struture and Diret Image of Irregular

Singular D-Modules

ISBN 978-3-8325-4061-6, 2015, 70 S. 37.00 €

30 Stephanie Zapf Quiver D-Modules and the Riemann-Hilbert

Correspondene

ISBN 978-3-8325-4084-5, 2015, 80 S. 32.50 €

31 Julian Braun Conneting Atomisti and Continuum Models of

Nonlinear Elastiity Theory. Rigorous Existene

and Convergene Results for the Boundary Va-

lue Problems

ISBN 978-3-8325-4363-1, 2016, 179 S. 36.00 €

32 Christian Nolde Global Regularity and Uniqueness of Solutions

in a Surfae Growth Model Using Rigorous A-

Posteriori Methods

ISBN 978-3-8325-4453-9, 2017, 88 S. 37.50 €

33 Martin Jesenko Commutability of Γ-limits in problems with

multiple sales

ISBN 978-3-8325-4478-2, 2017, 145 S. 34.50 €

34 Carina Willbold Model redution and optimal ontrol in �eld-

�ow frationation

ISBN 978-3-8325-4506-2, 2017, 110 S. 38.00 €



35 Johanna Kerler-Bak Dynami iteration and model order redution for

magneto-quasistati systems

ISBN 978-3-8325-4910-7, 2019, 175 S. 35.50 €

36 Veronika Antonie

Auer-Volkmann

Eigendamage: An Eigendeformation Model for

the Variational Approximation of Cohesive

Frature

ISBN 978-3-8325-4969-5, 2019, 151 S. 39.00 €

37 Miguel de Benito

Delgado

E�etive two dimensional theories for multi-

layered plates

ISBN 978-3-8325-4984-8, 2019, 153 S. 38.00 €

Alle ershienenen Büher können unter der angegebenen ISBN im Buhhandel oder

direkt beim Logos Verlag Berlin (www.logos-verlag.de, Fax: 030 - 42 85 10 92) bestellt

werden.





Logos Verlag Berlin

ISBN 978-3-8325-4984-8

ISSN 1611-4256

This work introduces a family of effective plate theories for

multilayered materials with internal misfit. This is done for
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