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Abstract

The exchange of orbit information is becoming more important in view of the increasing
population of objects in space as well as the increase in parties involved in space opera-
tions. The US Space Surveillance Network is an example for a system which obtains orbit
data from measurements provided by a network of globally distributed sensors.

The aim of this thesis was to highlight how the orbit information maintained by a
surveillance system is provided to the users of such a system. Services like collision avoid-
ance require very accurate information, while other servicesmight work with less accurate
data. Individual users or entities might have different privileges concerning data they are
able to access.

An approach was studied, which allows to derive orbit information of predetermined
accuracy from a reference orbit. Themethod is based on a least-squares fit with amodified
geopotential. It was shown that themethodworks for any Earth orbit and also provides the
residuals with respect to the reference, that can be used to construct a covariance matrix
in addition to the state vector information.

While orbit information today is often provided via tables of time-tagged ephemerides,
an approach was studied to use Chebyshev polynomials that allow for the provision of
continuous state vector and covariance matrix information. The major advantage is that
a user of this data does not have to do any extrapolation on his own and thus directly
retrieves the object’s orbit as provided for a given time span.

Representing the orbit in terms of series of polynomial coefficients is referred to as
ephemeris compression. It was shown, that the compression rates can be very high. More-
over, a method to also reduce the data amount by interpolating the variance envelope
functions was studied.

Themethod proposed in this thesis to provide state vector and covariancematrix infor-
mation of predetermined accuracy, gives access to highly accurate information from the
catalogue, where this information is required. On the other hand it can also provide less
accurate information, where the requirements are less restrictive, thereby allowing for a
significantly reduced amount of data to be transferred and stored.





Kurzfassung

Der Austausch von Bahndaten gewinnt zunehmend an Bedeutung: sowohl im Hinblick
auf die steigende Population an Objekten in erdgebundenen Bahnen, als auch die zuneh-
mende Zahl an beteiligten Parteien imBetrieb vonRaumfahrtmissionen. Das amerikanis-
che SSN (Space Surveillance Network) ist ein Beispiel für ein System, welches Bahndaten
aus den Beobachtungen eines global verteilten Sensornetzwerks gewinnt.

In dieser Arbeit wird untersucht, wie Bahndaten eines solchen Systems dessen Nutzern
zur Verfügung gestellt werden. Darauf basierende Dienstleistungen, wie etwa die Kol-
lisionsvermeidung, stellen hohe Ansprüche an die Genauigkeit der katalogisierten Bah-
nen. Andererseits gibt es Dienste, die mit deutlich geringeren Genauigkeiten zuverlässig
funktionieren. Individuelle Nutzer, Gruppen oder auch staatliche Einrichtungen können
unterschiedliche Privilegien im Hinblick darauf besitzen, zu welchen Daten und welcher
Genauigkeit sie Zugang erhalten.

EineMethode zur Ableitung von Bahndatenmit vorab festgelegter Genauigkeit im Ver-
gleich zu einer Referenztrajektorie wird untersucht. Dieser Ansatz basiert auf der Meth-
ode der kleinsten Quadrate und sucht eine Bahnlösungmit modifizierten Störtermen für
das Geopotential. Die Residuen einer solchen Lösung gegenüber der Referenzbahn kon-
nten auch genutzt werden, eine kombinierte Kovarianzmatrix neben der Bahnlösung zu
ermitteln.

Während Bahndaten heute meist in Form von tabulierten Ephemeriden ausgetauscht
werden, wird in dieser Arbeit ein Ansatz mit Tschebyschow-Polynomen verfolgt. Diese
erlauben es, Bahndaten und zugehörige Unsicherheiten in kontinuierlicher Form bere-
itzustellen. Ein großer sich daraus ergebender Vorteil ist, dass ein Nutzer der Daten keine
bahnmechanischen Extrapolationen benötigt und für ein gegebenes Zeitintervall direkt
die Bahnlösung erhält.

Darüber hinaus wird ein Ansatz diskutiert, mit dem die Varianzen der Komponenten
des Zustandsvektors eines Objekts in der Zeit vorwärts gerechnet werden, anschließend
eine Einhüllende für diese berechnet und Letztere dann interpoliert wird.

Die in dieser Arbeit vorgestellte Methode, Bahndaten und zugehörige Unsicherheiten
in verschiedenenGenauigkeitsklassen zur Verfügung zu stellen, verspricht Nutzern hoch-
genaue Daten, wenn diese benötigt werden. Auf der anderen Seite ermöglicht sie eine
deutliche Reduktion desDatenaufkommens, insbesondere fürDienstleistungen undNut-
zer, die vergleichsweise niedrige Anforderungen an die Bahngenauigkeit stellen.
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1

Introduction

With the onset of spaceflight operations, the provision of data and information on objects
residing in the near-Earth space environment has been of ever-growing importance. The
US Space Surveillance Network (SSN) is the most comprehensive combination of globally
distributed sensors to observe, track and catalogue the on-orbit object population. Tasked
by the Joint SpaceOperations Center (JSpOC) under theUnited States Strategic Command
(USSTRATCOM), this network is currently keeping track of more than 17 8001 catalogued
objects.

For many decades, information on individual objects has been provided in a so called
Two Line Elements (TLE) format to users worldwide. Specifically designed for the purpose
of tracking space objects, TLE are based on a simplified general perturbations (GP) theory
resulting in low computational requirements. However, due to the need of high accuracy
information in various practical applications, like geodesy or oceanography, an individual
satellite’s owner and/or operator (O/O) would collect his own measurements to augment
the available data.

Satellites operated in the densely populated orbits between 600 km to 1000 km are rou-
tinely performing collision avoidance manoeuvres. For example, in the year 2013, there
were seven conjunctions with a miss distance of less than 300m for ESA’s Cryosat-2 which
led to two evasive manoeuvres (Klinkrad, 2014).

Until 2009, conjunction analysis was performed by the O/O through comparing their
accurate solutions for the satellite they were responsible for, with the trajectories of ob-
jects from the TLE catalogue. The main problem in this process is that TLE data do not
include any uncertainty measure for the provided state information. In addition, the GP
theory results in typical position errors in the Low Earth Orbit (LEO) region in the order
of magnitude of 100m (Flohrer et al., 2008) at TLE epoch, with the largest error being in
the direction of motion.

For the Space Shuttle and the International Space Station (ISS), NASA performed con-
junction analysis based on Orbital Conjunction Messages (OCMs) issued by USSTRAT-
COM. Those messages contained uncertainty information for both, target and risk ob-
jects, which were derived from Special Perturbations (SP) techniques, known to provide

1https://www.space-track.org, as of December 5, 2016
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accurate numerical orbit predictions. However, the OCM were not available to non-US
entities.

The accidental collision between the two intact spacecraft Cosmos-2251 and Iridium-33
on February 10, 2009, in retrospect, may be considered as a pivotal incident in the way this
process changed. In the aftermath of this event, leading to 1668 and 628 catalogued frag-
ments2 for Cosmos-2251 and Iridium-33, respectively, an internal review of the conjunc-
tion assessment process at USSTRATCOMwas performed, which ultimately resulted in a
law allowing USSTRATCOM to share Space Situational Awareness (SSA) data with non-US
entities. In 2010, USSTRATCOM began providing collision warnings to their partners via
so-called Conjunction SummaryMessages (CSMs) containing state vector and uncertainty
information for both objects at the time of closest approach.

Providing information based on SP techniques significantly improved the collision risk
estimation process. However, the CSM, later being subject to a data format standard-
ization process and becoming to what is today known as the Conjunction Data Message
(CDM), contained only information for the individual conjunction events. With the Space
Surveillance Network (SSN) being a military observation network, users and O/O are still
restricted to using TLE data or own observations for general tasks, while being provided
with accurate SP data in support of conjunction assessment only. The USSTRATCOM is
thus “walking that line between transparency and security” (Bird, 2010).

In 2009, the European Space Agency (ESA) launched its SSA programme with the main
objective to “support Europe’s independent utilisation of, and access to, space through the
provision of timely and accurate information and data [. . .]”3. Being an intergovernmen-
tal organization, a European observation network operated by ESA would inevitably have
to implement a data sharing policy between its member states and individual users, as
again, like for the JSpOC-tasked SSN, sensitive information might be collected, interfer-
ing with national security policies and thereby impeding an open data exchange between
the member states.

1.1. Motivation and scope
One of the key questions for any SSA system is related to how and to what extent collected
data should be provided to its users and customers. With different sensors involved in
taking observations, a space surveillance network is in general a heterogenous system
concerning the amount and quality of data obtained at the different sites. Also, a subset of
the derived information from the observations is classified and thus not to be disclosed
to the public.

Taking a look at how JSpOC is providing information on in-orbit objects, we can see
that while there is a SP catalogue containing the high accuracy data of all objects, that
catalogue is, in general, not accessible. In order to provide orbit information, all orbits

2as of December 5, 2016.
3http://www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/About_SSA, as of
December 5, 2016



1. Introduction 3

are subject to a fitting process, which applies an analytical model to ultimately provide
TLE data to the public (Hejduk et al., 2013; McKissock, 2016).

The problem is that assessing the accuracy associated with TLE and their underlying
analytical model is very difficult. The motivation for this thesis is to extend the already
operational methodology of having a non-public high-accuracy catalogue, with the possi-
bility of deriving orbit information with an assessment of the associated uncertainties. A
method is devised, which allows to have more flexibility in pre-defining the accuracy of
the generated orbit product, as opposed to having only one solution when deriving TLE.

With orbit information of a given accuracy being available, one key question is which
format to use to distribute that information. In the recent years, orbit data messages have
been standardised and provide great flexibility in representing all kind of information
associated with an on-orbit object.

Furthermore, having orbit information available, users require methods for interpola-
tion, as data typically is provided as a set of discrete points referred to as ephemerides.
An approach to provide continuous data would be beneficial, when users do not require
a dedicated software package to recover orbit information at any point in time. This was
another point which motivated this dissertation and a method will be presented, which
not only allows to provide continuous data, but is also compatible with standardised data
messages. In Figure 1.1 a summary is given, showing the information flow from the cata-
logue to the user in the conventional way compared with a method which represents the
motivation for this thesis.

Catalogue of
man-made
objects

Declassification

SGP4 fit TLE

Conventional approach

Fit with predeter-
mined accuracy

Ephemeris
compression

Data
message

New approach

Users

Figure 1.1.: Data flow from the object catalogue to a general user. The conventional approach is
shown for the provision of TLE data, which are the result of fitting the SP ephemeris
with the analytical SGP4 theory (Hejduk et al., 2013; McKissock, 2016). The new ap-
proach gives the motivation for this thesis, including an orbit fit with predetermined
accuracy and a subsequent interpolation, the latter referred to as ephemeris compression.

In the following section, the state-of-the art of collecting and distributing orbital in-
formation is described, including systems that have been operational for many decades,
as well as the ambitious efforts to establish an SSA system in Europe. This provides some
insight into who the users of such a system are and which services there are relying on
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orbit information of differing quality. Based on this, the key questions this thesis shall
adress will be defined in Section 1.3.1, and the methodology is outlined thereafter.

1.2. Background
Comprehensive information on objects orbiting Earth is essential to a wide spectrum of
different users and applications. Hence, in order to obtain the required data, dedicated
sensors are required, which are typically operated within a network of globally distributed
stations.

So called space surveillance systems shall be first described in the following paragraph
in order to understand how observational data is obtained. In the next step, it will be pos-
sible to understand the orbital data products which are to be provided to certain groups
of users. Those users as well as their requirements shall be specified subsequently.

Operational space surveillance systems
The first space surveillance systems, serving to detect, track, catalogue and identify ob-

jects orbiting Earth, were devised and implemented in the context of the first few launches.
With military users having a key interest in such systems becoming operational, the first
ground-based network of sensors, placed at more than 150 different sites, was controlled
by the United States (US) via the National Space Surveillance Control Center (NSSCC) from
the late 1950’s (Hoots et al., 2004). Thefirst version of the Satellite Catalog served to support
ballistic missile early warning systems operated by the US Air Force, as well as to alert US
Navy fleet units of being observed by reconnaissance satellites (Hoots et al., 2004). Grad-
ually, the sensor network and the control structures evolved to become what is known
today as the US SSN operated by JSpOC, the latter being commanded by the USSTRAT-
COM. The SSN is tasked by JSpOC to collect between 380 000 and 420 000 observations
each day (U.S. Strategic Command, 2015) and keep track of more than 17 800 objects.

Today’s workhorse of the SSN is the AN/FPS-85 phased array radar system at Eglin AFB
(see Figure 1.2), after another main contributor, the Air Force Space Surveillance System
(AFSSS), also known as the Space Fence, had been shutdown on September 1, 2013. The
AN/FPS-85 accounts for 30% of the total workload of the SSN and can detect, track and
identify up to 200 satellites simultaneously (PAFB, 2015). This task is accomplished by
its scan coverage of 120˝ in azimuth and from +3˝ to +105˝ in elevation, with the antenna
beam pointing south and being inclined 45˝ with respect to the local horizon (PAFB, 2015),
which allows to track up to 95% of all catalogue objects (Klinkrad, 2006).

While phased array systems operated in surveillance mode would typically be targeting
at objects in low Earth orbits (although, for AN/FPS-85, objects greater than about 25 cm
can be detected up to a distance of 22 000 nautical miles (PAFB, 2015)), passive optical sys-
tems are used to observe deep space objects. Within the SSN, the Ground-based Electro-
Optical Deep-Space Surveillance (GEODSS), theMaui Optical Tracking and Identification
Facility (MOTIF), as well as the newly installed Space Surveillance Telescope (SST) in 2011,
are operational sites used for observing satellites and space debris at higher altitudes. The



1. Introduction 5

(a) Part of the master transmitter antenna
at Lake Kickapoo, Texas, contributing
to the AFSSS until 2013. (Public domain
image, https://commons.wikimedia.
org)

(b) The AN/FPS-85 phased array radar at Eglin AFB,
Florida. (Public domain image, https://commons.
wikimedia.org)

Figure 1.2.: Until September 2013, the workhorses of the SSN had been the AFSSS (a), also known
as the Space Fence, and the phased array at Eglin AFB (b). The discontinuation of the
Space Fence operation involved modifying operational modes at Eglin AFB in order to
maintain routine SSA operations.

(a) The Diego Garcia site, as one
of three GEODSS sites, consists
of three Cassegrain telescopes
and is located in the Indian
ocean. (Public domain image,
https://commons.wikimedia.org)

(b) The new Space Surveillance Telescope (SST), devel-
oped byDARPA, has undergone testing in the last few
years and shall become operational in 2016, support-
ing the SSN from Australia. (Image source: DARPA)

Figure 1.3.: A few examples of optical systems contributing to the SSN.

GEODSS sites are distributed around the globe to enable observations, for example, of the
whole geostationary region. Some of the dedicated optical sensors are shown in Figure 1.3.

A major drawback of ground-based optical systems is that observations can only be
taken at night and under clear weather conditions. In order to sidestep these restric-
tions, the US Air Force is developing the Space Based Space Surveillance (SBSS) system,
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which is a space-based constellation of optical sensors. In 2010, the first SBSS satellite was
launched, carrying a 30 cm telescope (Ball Aerospace, 2015) ought to provide observations
of all geosynchronous objects from its sun-synchronous orbit.

Concurrently with the development of the US SSN, the Soviet Union began with its own
space surveillance programme from the early 1960’s. The (Russian) Space Surveillance Sys-
tem (Sistema kontrolja kosmicheskogo prostranstva, SKKP) has been operated by the military
from the early days, the motivation being basically the same as for the US system: to sup-
port ballisticmissile defence operations (Gavrilin, 2008). Besides the various radar sites on
the territory of the former Soviet Union, which are part of the EarlyWarning System (EWS)
network and of Dnestr, Dnepr or Daryal type, there are also dedicated space surveillance
sensors. Being operated by the 821st Main Space Surveillance Centre, the most important
facilities Okno (“window”) andKrona (“crown”, radiooptichesky kompleks raspoznavaniya
kosmicheskikh obektov) were both built in 1999. While the Krona complex in the Cau-
casus employs both, optical and radar means, the Okno facility in Tajikistan consists of
multiple telescopes to monitor objects at altitudes above LEO.

Assessing the capabilities of the surveillance system is not easy and provided figures
are quite differing. For example, Allahdadi et al. (2013) states that the number of tracked
objects in the Russian catalogue is about 5000. A similar number is provided on the web-
site of GlobalSecurity.org (2015). However, considering the fact that with Krona and Okno
two relatively new systems were added to the network, with the latter specifically designed
for deep-space observations, and noting a statement of a Russian Colonel (A. Nestechuk)
from 2011, stating that four new radar systems will be added to the network till 20204,
it can be argued that the system clearly evolved in the recent years and will continue to
do so, although sensor sites at lower latitudes are still missing. Interestingly, Nestechuk
also gives the number of tracked objects as 12 000, which clearly differs from the numbers
given by the other authors mentioned above.

In contrast to the US system, the data gathered by the Russian network is for military
users only and can not be accessed publicly. However, one can get a quite good impression
of the orbit theory behind the cataloguing by referencing, for example, Khutorovsky (2007)
or Boikov et al. (2009).

While currently only the USA and Russia have comprehensive space surveillance ca-
pabilities, there are many other sensors and networks, like the International Scientific
Optical Network (ISON), or national radar facilities in different countries, providing indi-
vidual observations, tracking support and debris research possibilities, for example, the
German Tracking and Imaging Radar (TIRA) or the European Incoherent Scatter Scien-
tific Association (EISCAT).

The situation in Europe
In Europe, agencies and other users so far have been largely dependent on orbit data,

for different applications, provided by USSTRATCOM. The situation started to change in
the 1990’s, when the French Department of Defense (DoD) started to work on the Grand
4http://www.gazeta.ru/social/2011/09/21/3776721.shtml, accessed on January 7, 2015.
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Réseau Adapté a la Veille Spatiale (GRAVES) system, which became operational in 2001
(Klinkrad, 2006). It is able to perform space surveillance tasks with its phased array trans-
mitters at Dijon and a receiver array, based on Yagi antennae, at Apt and was able to cata-
logue 2200 objects during a one month test in 2001 (Klinkrad, 2006).

In 2009, ESA launched its Space Situational Awareness Preparatory Programme (SSA-
PP), with its overall aim being “to support the European independent utilisation of and
access to space for research services, through providing timely and quality data, informa-
tion, services and knowledge regarding the environment, the threats and the sustainable
exploitation of the outer space surrounding our planet Earth” (ESA Council, 2008). With
the ever increasing number of satellites on orbit and services on Earth relying on the space
infrastructure, like weather or navigation applications, the European SSA, with the latter
being defined as “a comprehensive knowledge, understanding andmaintained awareness
of the (i) population of space objects, of the (ii) space environment, and of the (iii) existing
threats/risks” (ESA Council, 2008), is aiming towards all kinds of user groups, with the
military being only one of them. In 2012, the mandate was extended until 2019, going
from the preparatory phase into the so-called Phase II, which puts increased emphasis on
the two branches Space Weather (SWE) and Near-Earth Objects (NEO).

Contemporaneously, the European Union (EU) has started to promote the development
of an SSA system through its member states. Recognizing the member states’ national
assets, like TIRA or GRAVES, being associated with national security requirements, an
exemplary work was the Support to Precursor Space Situational Awareness Services (SPA)
project under the European Union’s Seventh Framework Program (FP7) studying aspects
of SSA governance and data policy (Valero et al., 2013). As Valero et al. (2013) point out, the
principle behind SSA governance and data policy lies in protecting “the interests of the
EU, its [member states] and allies, while maximizing the exploitation of SSA capabilities.”

While it is still unclear, which systems and sensors will finally contribute to a European
Space Surveillance System, following the current development, it becomes clear that there
will always be information gathered by individual sensors, which might be classified or
sensitive and thus distributed to other member states only under special conditions. A
surveillance system is therefore expected to have a data policy in place, which allows to
separate classified from un-classified (orbit) information. As sensor raw data is supposed
to represent the best available data, it is thus important to have methods and procedures
available allowing the operating entity to forward de-classified and, maybe, also degraded
orbit information to their users.

Orbit determination and satellite catalogue maintenance
The sensors within a space surveillance network collect observational data for the orbit

determination (OD) process, which aims at providing a set of orbital elements for each
tracked object. For the SSN, the publicly available orbital elements are TLE, which contain
doubly averaged Keplerian elements (and mean motion instead of semi-major axis). A
simplified scheme of the cataloguing process chain, showing an exemplary sensor at its
top and the satellite catalogue database as its final product, is shown in Figure 1.4.
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Figure 1.4.: A simplified scheme of the cataloguing process chain. Observational data from a sensor
is processed to finally result in a catalogue update. The data is subject to a data policy
scheme, which may contain a declassification, a conversion or fit to provide orbital
elements, or an ephemeris compression.

The type ofmeasurements obtained depends on the sensor used. Radars would typically
provide information on range, range-rate, elevation and azimuth, while telescopes are
restricted to angles-only observations, i.e. elevation and azimuth, in general. Individual
observations are combined to form a tracklet, which contains all observations of a single
object obtained during one station pass. Single or multiple tracklets are then correlated
with catalogued objects in order to see, whether the observed objectmatches the predicted
trajectory of a catalogued object. If the correlation is successful (denoted as a Correlated
Track (CT)) a catalogue update is possible for the newly obtained data. Therefore, the CT
as well as the State Vector (SV) (in its simplest representation, a state vector combines the
radius and velocity vector for a given epoch, often also referred to as an ephemeris) from the
catalogue are passed to a process known as Statistical Orbit Determination (or Precise Orbit
Determination), which uses estimation techniques to incorporate the new information into
the SV update.
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For unknown objects, an Uncorrelated Track (UCT) is passed to the Initial Orbit Deter-
mination (IOD), which provides a first orbital arc, allowing for follow-up observations and
subsequent orbit refinement through statistical orbit determination.

The data centre is responsible for tasking sensors, e.g. for observing objects that require
a catalogue update. Finally, data may be provided to users subject to a data policy scheme.

An important design parameter for an SSA system is the update interval of the catalogued
objects. Due to orbit determination uncertainties andmodelling errors in the propagation
techniques, the computed trajectory will degrade over time with respect to the true orbit.
In order to re-acquire an object and being able to correlate it with its catalogue entry, it
is thus necessary to re-observe it. A fundamental quantity to assess when it is required
to update the existing orbit information for an object is the Fisher information (Frieden,
1998). It measures the available amount of information about the state vector of an object,
which is assumed as a random variable. Being a function of the object’s orbit, the Fisher
information allows to derive how often an object needs to be re-observed. In practice,
however, the update interval is shorter, as satellites performmanoeuvres, ormore frequent
observational information is required for single objects. The latter is typically associated
with collision avoidance (CA) operations, where orbit information has to be valid for a
time span sufficient to verify, implement, upload and execute a manoeuvre (Krag et al.,
2010).

If orbit determination is performed by means of a batch least squares process, an addi-
tional quantity, the fit span, needs to be defined as the number of observations taken into
account for a single orbit update. It is important to note that, while update intervals may
be quite short, fit spans used for each updatemay overlap and are therefore not necessarily
linked to the update cycle.

Orbit determination accuracy
The most accurate Orbit Determination (OD) results today are obtained for a very lim-

ited set of geodesy and oceanography satellites. The combination of Satellite Laser Rang-
ing (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)
and Global Positioning System (GPS) measurements, as well as a fit span of several days
(e.g. 10-day orbital arcs are used for TOPEX/Poseidon (IDS website, 2015)) provides solu-
tions with an accuracy on the order of 1 cm in the radial component5. So-called Precision
Orbit Ephemerides (POEs) are generated with a further delay of several weeks, in order to
incorporate the latest environmental information (IDS website, 2015).

For near real-time data, Klinkrad (2006) provides examples for the OD accuracy of ESA’s
ERS-2 and Envisat satellites, both were operated in sun-synchronous orbits. The radial
position accuracy (standard deviation) is 0.5m, while the other components are 1.0m in
out-of-plane and 3.0m in along-track direction (Klinkrad, 2006). The corresponding ve-
locity errors are 1.0mm/s for out-of-plane and along-track directions and 3.0mm/s in
radial direction (Klinkrad, 2006).

5http://ids-doris.org/organization/about-ids.html, accessed on January 15, 2015.
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While the previous examples are valid for single satellites under certain conditions,
specifying the capabilities of a surveillance network is difficult. For a given object of the
catalogue, the orbit determination result will be strongly impacted, for example, by the
number of observations and dedicated trackings, the orbit itself, or the size and area-to-
mass ratio of the object. Rough estimates of the bias and noise characteristics of some
SSN sensors are given by Vallado and McClain (2013). For example, the AN/FPS-85 (Eglin)
radar is given with a range measurement noise of 32.1m, while the corresponding values
for azimuth and elevation are 552 and 532, respectively. While for a single measurement,
using these values, a satellite at 1000 km altitude would be associated with an error of
about 260m in azimuth and elevation direction, this information is not comparable to
the OD results, which process multiple observations using SP techniques.

Deriving SP catalogue uncertainties from data messages
Taking into account all relevant perturbations, including all secular and periodic contri-

butions, and integrating the equations of motion numerically, SP have become a standard
today. USSTRATCOM’s SP orbits are classified, but, as a result of the Iridium-Cosmos col-
lision in 2009, in July 2010 USSTRATCOM started sharing so-called CSMs with non-USG
entities, especially with satellite O/O. In April 2014, the CSM was replaced by the stan-
dardised CDM, its format being defined by the Consultative Committee for Space Data
Systems (CCSDS) (CCSDS 508.0-B-1, Blue Book, 2013). With the main intention being to
support Collision Avoidance (CA) operations, an operational CDM, as provided by JSpOC
provides the variances and covariances of the position vector for a specific conjunction
event at the time of closest approach (TCA). Although CDM information contains prop-
agated values for the covariance matrix, it is still possible to roughly estimate the order of
magnitude of the SP state vector errors at epoch. As an example, average values for the
position uncertainties were obtained in a detailed CSM analysis for ESA’s Assessment of
Risk Event Statistics (ARES) tool and showed large variations for different orbits and ob-
ject sizes (Sánchez-Ortiz et al., 2013). The results range from large objects (RCSą0.1m2)
with 1-σ uncertainties in the order of magnitude of 10m to errors for small objects in the
km-regime (Sánchez-Ortiz et al., 2013).

Uncertainties in the TLE data
The public subset of the TLE catalogue as provided by USSTRATCOM, results from an

analytical (or General Perturbations (GP)) theory, which was pioneered by Brouwer and
later adapted by Lane, Cranford and Hujsak (Hoots and Roehrich, 1980). The currently
used models are Simplified General Perturbations (SGP4) for all orbits with a period of
T ă 225 min, and SimplifiedDeep-space Perturbations (SDP4) for deep-space objects with
T ľ 225 min (Hoots and Roehrich, 1980).
Until 2013, the SGP4/SDP4 models were directly applied to the observations, in parallel

with the SP techniques, to obtain an orbit fit over the observation span. The mean Keple-
rian elements were found for a TLE epoch which was close to the latest observation and
typically near the ascending node of the orbit.
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Table 1.1.: Averaged results for component uncertainties (in metres) in satellite-centered UVW
frame from orbit determination with TLE as pseudo-observations based on catalogue
snapshot from 2008-01-01. (Flohrer et al., 2008)

Perigee altitude / km Direction Standard deviation / m

e ă 0.1 e ą 0.1

i / deg i / deg
ă 30 30 to 60 ą 60 ă 30 30 to 60 ą 60

ă 800
Radial (U) 67 107 115 2252 629 494
Along-track (V) 118 308 517 4270 909 814
Cross-track (W) 75 169 137 1421 2057 1337

800 to 25 000
Radial (U) 191 71 91 1748 1832 529
Along-track (V) 256 228 428 3119 1878 817
Cross-track (W) 203 95 114 971 1454 1570

ą 25 000
Radial (U) 357 - - 402 4712 -
Along-track (V) 432 - - 418 6223 -
Cross-track (W) 83 - - 83 1208 -

According to Bowman, 2014, that process changed in the early months of 2013: For a
“great majority of objects” (Bowman, 2014), SP were now used to first obtain an accurate
ephemeris for the fit span. The next step is to perform a 3-day prediction of the ephe-
meris, where also solar indices and the Disturbance storm time (Dst) index of the JB2008
model are forecast. The extrapolated ephemerides are then used to generate a fit with the
SGP4/SDP4 model to provide the TLE, with the TLE epoch now being at the beginning of
the predicted ephemerides.

From an operational point of view, the new procedure allows to maintain only one SP
catalogue, while GP-based TLE data sets may be generated on demand from SP epheme-
rides and do not require their own catalogue, which was already outlined by Schumacher
and Hoots (2000) and Wilkins et al. (2000) shortly after SP techniques started being inte-
grated into routine operations.

Recalling themotivation for the development of the SSN, the TLE data format was orig-
inally intended for tracking purposes. Being the only comprehensive space object data
source, however, it is widely used for all kind of applications, also in conjunction analysis.
In the latter case, covariance information is required, but it is unavailable in the TLE for-
mat. Thus, several studies in the past have focused on estimating uncertainties in the TLE
data, e.g. Kelso (2007), Flohrer et al. (2008), Levit and Marshall (2011), Aida and Kirschner
(2011) or Kahr et al. (2013). As an example, the average results for different orbit classes
from Flohrer et al. (2008) are shown in Table 1.1.

The results in Table 1.1 were obtained by generating pseudo-observations using TLE
and the SGP4/SDP4 theory. The orbit determination, based on SP techniques, then pro-
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vided a fit for an orbital arc of 24 h with the residuals (as shown in Table 1.1) representing
the combined errors of both, the analytical theory behind SGP4/SDP4 and the numerical
theory used for the fit (Flohrer et al., 2008). A general difficulty using such an approach is
to select a suitable weighting matrix (see also Section 3.4.1). In Flohrer et al. (2008) a diag-
onal weight matrix was used, where the three radius components had equal weights. The
velocity components weights were scaled by 10´3 compared with the radius components
and were also of equal size.

It can be seen in Table 1.1 that for low-eccentricity (eă0.1) orbits, the radial and cross-
track position errors in most cases are in the order of magnitude of 100m, while the
along-track component may be in error by up to about 500m. For high-eccentricity orbits
(eą0.1) the obtained errors were up to a few kilometres in some cases.

The above procedure assumes that TLE are unbiased and individual objects are consis-
tently tracked, which might not be true (Vallado and Cefola, 2012). In fact, the new proce-
dure to generate TLE data, as employed byUSSTRATCOM in 2013, was already analysed by
Wilkins et al. (2000) and the results showed a major improvement in accuracy for the sub-
set of SLR satellites analysed in that work. For high-altitude objects the accuracy of 1 km to
5 km, for a propagation of a few days, was reduced by a factor of 5 to 10 (Wilkins et al., 2000).
The GP theory thus seems to provide better results, after the raw observations have been
already smoothed by SP techniques (Wilkins et al., 2000). Also, as the SGP4/SDP4 model
is used to generate a fit on a forecast trajectory with numerical accuracy, the propagation
error of the analytical theory can be reduced (Wilkins et al., 2000).

Identification of orbital data users and associated requirements
In contrast to the US and Russian surveillance system, the initial design for the Eu-

ropean SSA system is based on the requirements of a wide range of different users (or
customers), also because SSA is defined in a much broader context as stated above. Ac-
cording to Bobrinsky (2009), the following entities could be included:

European governments (EU, national, regional)

European space agencies

Spacecraft operators (commercial, academic and governmental)

Academic and research institutions

Space insurance and space industry

Energy industry, including surveying, electricity grid operators, electrical power
suppliers

Network, telecommunication and radar system operators

Space weather service providers

European and other air traffic control and navigation service providers

European and international rescue and disaster-response authorities

United Nations and other international bodies
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Defence sector / defence security

Of course, the identified users and user groups are in need of different information and
rely on several distinct services the SSA system has to provide. A general overview on the
basic products, services and user groups for the Space Surveillance and Tracking (SST)
segment of the SSA system is provided in Figure 1.5, based on Krag et al. (2010).
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Figure 1.5.: Services, products and expected user communities for a generic SST system includ-
ing data policy control filters. Note that red-colored boxes represent segment services
which are provided as required. (according to Krag et al. (2010)).

As can be seen, a catalogue of on-orbit objects is the basis ofmost services and the result-
ing products, for example the Tracking and Impact Prediction (TIP) message specifically
used in the Re-entry service domain. In the context of this thesis, the provision of orbits
and covariances shall be focused on, which are associated with two expected communities
(general public and operators) in Figure 1.5 through dedicated data policy control filters.
In addition, orbits and covariances are also accessed indirectly via the Mission Characteri-
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sation and Collision Avoidance services. The data policy control filters are the top layer, as
seen by the users, and shall fulfill several tasks. First of all, following the idea of combining
available national assets (sensors) into a European system, the design should incorporate
national security requirements. These might restrict users from exchanging sensitive in-
formation across national borders, which would be the case if individual sensors are also
used in the defence branch and observations or processed orbit data is only allowed to
be forwarded with a degraded accuracy. One very popular example might be the past use
of Selective Availability (SA) for the GPS satellites being owned and operated by the US
government, where signals were deliberately degraded resulting in a limited position ac-
curacy significantly below the system capabilities. Also, the examples of the Russian (not
accessible to the public) and the US system (SP data not accessible, except for CDMs) show
that there is an incentive to restrict a full catalogue access.

From a commercial point of view, it might be advantageous to provide orbits and co-
variances in different accuracy regimes. Users in need of high-accuracy trajectories would
pay a different price than those who can afford using orbits with less accuracy within their
applications.

The above mentioned concept is similar to the one applied by USSTRATCOM, where
SP ephemerides are for military users only, while less accurate TLE are provided to the
general public. However, especially for CA operations, missing information on the uncer-
tainty in the provided TLE data poses some problems, as illustrated in an Envisat example
by Krag et al. (2010): On January 21, 2010, Envisat was supposed to have a close encounter
with a 3.8 t upper stage, where the miss distance was only 48m, but analysis of the TLE
data showed a radial separation of 346m. Only additional tracking, using the TIRA radar,
revealed a radial separation of only 15m, which was confirmed by the CSM information
and ultimately resulted in an avoidance manoeuvre.

Based on the user requirements, the critical design and cost drivers can be analysed,
where the following were identified by Krag et al. (2010):

The lower diameter cut-off above which catalogue coverage has to be provided for a
defined coverage level,

the accuracy of the orbit information provided and

the overall technical availability of the system.

As the focus of this thesis shall be on orbit information accuracy, the second of the above
requirements shall be explained in more detail in the following.

The overall achievable accuracy for any on-orbit object is limited by the quantity and
quality of the observations obtained. Especially the use of SP over GP techniques provides
for a shift from “amodel-limited system to a data-limited system” (Schumacher andHoots,
2000). With SPmodels having an inherent error on the order ofmagnitude of a fewmetres
(Schumacher and Hoots, 2000), this basically sets the level for the maximum achievable
accuracy of a system, although there are still deviations to be expected for varying object
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size, high-eccentricity orbits or even the small subset of satellites equipped with sensors
to provide solutions in the cm-regime using SLR, GPS and DORIS.

While these numbers are valid for the orbit state at or close to the orbit determination
epoch, the accuracy tends to degrade over time when the state is being propagated. For an
operational system it is therefore important to define an update cycle, which makes sure
that the propagation remains within a pre-defined accuracy envelope.

For an SP catalogue, the accuracy envelope can be evaluated by referencing the covari-
ance information. According to Krag et al. (2010), collision avoidance appears to be the
most demanding service regarding the definition of an accuracy envelope. With the tar-
get satellite orbit determined with an accuracy of 1m to 10m (Klinkrad, 2006; Krag et al.,
2010), the orbits of the chaser objects should be provided in a comparable accuracy regime
(Krag et al., 2010).

1.3. Research approach
1.3.1. Objectives
The European SSA system is currently being developed following an approach oriented
towards a broad range of different users. Design criteria are obtained from the expected
services the system is intended to provide (Figure 1.5). For the SST segment, it has been
identified that CA operations pose the most demanding requirements regarding the ac-
curacy of the orbit data in the catalogue, both for the state at orbit determination epoch
as well as for the required update intervals due to accuracy degradation, when states are
propagated.

The cataloguing based on SP models, as described for the US system, provides highly
accurate solutions, while TLE data, as a result from an analytical (GP) model, are dis-
tributed to the public for all kinds of applications. While the US approach shows that
there seems to be a motivation in providing different users with orbital information of
varying accuracy, using TLE is associated with some shortcomings. The most significant
one is that TLE come without any metric on the inherent error. Several authors have thus
suggested that a catalogue of orbital objects ideally should provide information on the ac-
curacy associated with the individual products: according to Vallado and McClain (2013),
a surveillance system could provide data “with an accuracy the user requires”.

This has several advantages: First, for a commercial system, a product differentiation al-
lows for a different pricing according to the quality of the provided data. Although the
data provided by JSpOC is freely available at the moment, a possible commercialization
does not seem unreasonable in view of the recent contract awarded by the Pentagon to An-
alytical Graphics Inc. (AGI) for the provision of orbit data through its Commercial Space
Operations Center (ComSpOC) service augmenting the existing JSpOC (SpaceNews, 2015).

On the other hand, even without a commercial idea in mind, a product differentiation
can be desirable. Providing highly accurate ephemerides and associated uncertainties im-
plies a significantly increased amount of data to be transferred and stored, as opposed to
using TLE for tracking purposes only. For example, Oltrogge and Kelso (2011) analysed
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that ephemerides in LEO have to be provided in about three minute steps to preserve a
50m position accuracy level via interpolation.

The first objective or scientific question of this thesis shall thus be defined as:

(1) Is it possible to derive, from available high-accuracy data, a solution with a pre-
defined accuracy tailored to the user’s needs?

An important tool to perform such an analysis is an orbit propagator based on nu-
merical integration. While there are many such tools available, only very few have been
designed specifically with an SST context in mind. Of those, only one or two are known to
the author of including the assessment of process noise in the propagation of the covari-
ancematrix. Moreover, access to the source code andmanipulations thereof were required
for the specific analyses to meet objective (1).

(2) Design an orbit propagation tool based on numerical integration for state vector
and covariance extrapolation, as well as the means to assess process noise. This
propagation tool shall be specifically designed to be used in an SST system.

With a method to provide orbits with pre-defined accuracy at hand, the result will
be ephemerides that can be provided to the users via standardised orbit data messages,
like the Orbit Ephemeris Message (OEM) or the Orbit Parameter Message (OPM) (CCSDS
502.0-B-2, 2009). However, this means that the user still has to take care of interpolating
in between the data points, likely to result in a degradation of the accuracy present in the
delivered data message. It is thus desirable for the user to extract orbit information from
the data message at any point in time without introducing errors. This leads to the next
objective:

(3) Provide the means to establish a data message containing continuous information
making use of current data message standards.

While standardisedmessages like the OPM define the structure to provide information
on the orbit uncertainty in terms of the covariance matrix, this information typically is
either distributed in an incomplete state (e.g. only a subset of the full matrix as was the
case for the CDM provided by JSpOC until January 19, 2016) or completely missing. The
covariance matrix, which is a direct result of the orbit determination process is part of the
SP catalogue.

(4) Investigate a method to also provide interpolated covariance matrix information
associated with the obtained state vectors of predetermined accuracy.

1.3.2. Methodology
The defined objectives required to study several interdisciplinary topics, which are out-
lined in a mindmap shown in Figure 1.6. The theoretical background of many of those
topics needs to be adressed. It was decided to combine the background with the obtained
results, where appropriate, as opposed to have the full theoretical background first and
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associated chapters in this thesis.
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the findings in later chapters. This was considered to be less confusing to the reader, in
view of the sometimes non-related contents, while at the same time being a more enjoy-
able read to those who already have some background on the subject. One example is
the introduction to process noise resulting from the geopotential series truncation and
coefficients uncertainties, which is presented together with exemplary results.

The numerical propagation tool Neptune , introduced in Chapter 2, was carefully de-
signed focusing on its potential use within a space surveillance system and the associated
cataloguing process. The force model was selected to match current orbit determination
capabilities, but also to be in line with current standards and guidelines for orbit propaga-
tion. The integration of both, the state vector and the covariance matrix, was designed to
meet performance requirements for a catalogue of several thousand objects. In addition,
the assessment of the cross- and auto-correlation of the process noise, was included to
allow for a more realistic prediction of the covariance matrix - which is essential for the
services an SST system provides.

The next step was to design and implement an algorithm which allows to derive or-
bits of predetermined accuracy with respect to a reference trajectory generated by the
Networking/Partnering Initiative (ESA research programme with industry and academia)
(NPI) Ephemeris Propagation Tool with Uncertainty Extrapolation (NEPTUNE)6.

This approach is justified by the fact that even in an operational system, raw orbit mea-
surements are likely to be processed first by a numerical theory, and only the resulting
smoothed results are then used in subsequent processing.

The method to generate orbits with predetermined accuracy is based on a modifica-
tion of the geopotential perturbations and will be referred to as Geopotential Adaptation
Method to Bias Trajectories (GAMBIT) in the following.

In order to provide the GAMBIT-derived data with the associated covariance matrix,
interpolation techniques were developed (Chapter 5). These allow for continuous orbit
information for a given time interval within a data message. The interpolation of a com-
puted envelope function for the variances of the state vector results in a significant com-
pression ratio.

The implications for the operational context are analysed and discussed in Chapter 6,
bringing all the developed methods together and showing how parts of an SSA system
data policy layer containing the ideas from this thesis might look like.

6The Networking/Partnering Initiative by ESA aims at supporting the development of advanced space-
related technologies in research institutes and universities and strengthen the links between ESA
and European institutions (http://www.esa.int/Our_Activities/Space_Engineering_Technology/
Networking_Partnering_Initiative, accessed on October 17, 2016).
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Orbit dynamics and forcemodelling

One of the key elements of a space surveillance system is the orbit propagation technique
employed in the orbit determination process. While the first surveillance systems in the
US and the Soviet Union were using fast analytical techniques, also known as GPmethods,
with today’s computational limitations virtually non-existing, it is common to use so-
called SP techniques, which perform the numerical integration of an arbitrarily detailed
force model.

In this chapter, the force model of the numerical propagation tool Neptune (Network-
ing/Partnering Initiative (ESA research programme with industry and academia) (NPI)
Ephemeris Propagation Tool with Uncertainty Extrapolation) is described, which was de-
veloped as the important core element for the subsequent analyses in this dissertation.
The major requirement in the design of Neptune was to focus on its use within a space

Figure 2.1.: Neptune logo.

surveillance context, while at the same time being compatible with prevailing interna-
tional standards and recommended practices, like ISO 11233:2014 (ISO, 2014) or ANSI/AIAA
S-131-2010 (ANSI/AIAA, 2010).

The force model has been selected to cover all major perturbations that allow to obtain
orbit solutions in the 10m regime, as outlined in Section 1.2 for the space surveillance
context. However, it is not a trivial task to decide on which perturbations are relevant and
which ones can be neglected. Especially, if the tool is going to be applied to any object and
orbital region, even small perturbations may result in a secular drift and thus become im-
portant due to an accumulation of errors. The selected force model represents a trade-off,
as many perturbations require very complex modelling. For example, the Yarkovsky ther-
mal radiation requires detailed knowledge about the material properties of the object,
heat conduction through the structure, and its attitude motion. Nevertheless, the Nep-
tune software was designed in a very modular way, so that additional perturbations can
be conveniently included.
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As Neptune was required to be applicable to any Earth orbit, another important step
is to select an appropriate numerical integration technique. While a fixed step integra-
tion works seamlessly for near-circular orbits, using a varying-step method for high-
eccentricity orbits is beneficial.

The following list gives an overview on the characteristics of Neptune , while the sub-
sequent sections will provide more details:

State vector integration: variable-step, multi-step, double-integration in Predict-
Evaluate-Correct (PEC) mode.

Covariance matrix integration: Formulation using variational equations, with RK4
integration of the state error transition matrix.

Non-spherical geopotential: Three different models are supported: EIGEN-GL04C,
EGM96 and EGM2008.

Atmospheric drag: Density via the NRLMSISE-00 model and horizontal winds by
the HWM07 model.

Gravitational perturbations by the Sun and the Moon using DE-405 and -421 ephe-
merides.

Solar Radiation Pressure (SRP) with a conical Earth shadow including umbra and
penumbra regions based on a spherical Earth.

Earth radiation pressure in the visual (albedo) and infrared regime.

Solid Earth and ocean tides.

Reference frames: GCRF/ITRF according to the IAU 2006/2000A theory.

Besides a 3-Degrees-of-Freedom (DOF) numerical propagation for the state vector, Nep-
tune has also the capability to propagate the covariance matrix, which is an essential step
in the filtering process within the statistical orbit determination, but is also beneficial
for the GAMBIT method presented in Chapter 4. An introduction into the implemented
models and methods for Neptune is provided in the following sections. More detailed
information, especially related to the implementation with respect to accepted best prac-
tices, is given in Annex A.

2.1. Numerical integration of the equations of motion
The equations of motion are defined in an inertial cartesian reference frame. Using Cow-
ell’s formulation (Cowell and Crommelin, 1909) to combine the perturbations with New-
ton’s gravitational law, they can be written as:

:r “ ´ μ

r2
r
r

` ap, (2.1)

here, ap is a superposition of the accelerations acting on the satellite due to the modelled
perturbations. The formulation in Equation 2.1 allows for a simple numerical integration,
a technique referred to as Special Perturbations.
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A variable-step double-integrationmulti-step Störmer-Cowellmethod (Berry, 2004) was
selected, which is appropriate for space surveillance applications: as Berry (2004) points
out, one of the main criteria for the selection of the integrator is the number of force
function evaluations.

With the force model being very complex, the integrator should tend to minimise the
number of evaluations. At the same time, the overhead of the integrator itself is negligible.
In fact, for Neptune the force model function evaluation takes up more than 90% of the
total runtime. Furthermore, as the method is not variable order and double-integration1,
the additional stability gained thereby allows to have a minimum number of function
evaluations per step: the integrator follows a PEC scheme, with only one evaluation per
step.

A variable stepsize is advantageous, especially for eccentric orbits, where stepsize con-
trol with pre-defined tolerances allows to take larger steps when the object is at apogee.

A brief overview on the integrator is given in the following sections. For a detailed
description of the method, refer to Berry (2004).

2.1.1. Prediction
The first step in the integration is the prediction of a new position vector rp

n`1 based on
a set of k backpoints. The general formulation predictor is given by Lundberg (1981) for a
k-th degree polynomial Pk,n ptq interpolating the backpoints, which is integrated twice in
time:

rp
n`1 “ rn ` hn`1 9rn `

ż tn`1

tn

ż t̄

tn

Pk,n ptq dtdt̄, (2.2)

with hn`1 being the current stepsize. Introducing modified divided differences for the
polynomial, Berry (2004) is able to compute the double integral and derives the following
formulation for the predictor of the variable-step Störmer-Cowell integrator:

rp
n`1 “

ˆ
1 ` hn`1

hn

˙
rn ´ hn`1

hn
rn´1 ` h2

n`1

kÿ
i“1

ˆ
gi,2 ` hn`1

hn
g1

i,2

˙
φi̊ pnq, (2.3)

here, φi̊ pnq are functions of the modified divided back differences and the stepsizes for
the individual steps between the backpoints, while gi,2 and g1

i,2 are stepsize-dependent
coefficients.

A second integration is required to obtain the velocity vector. The Shampine-Gordon
predictor (Shampine and Gordon, 1975) is used:

9rp
n`1 “ 9rn ` hn`1

kÿ
i“1

gi,1φi̊ pnq. (2.4)

Although one could use this predictor to obtain both radius and velocity vectors by sub-
sequent single-integration, this would introduce additional round-off errors, which are
minimized by the double-integration approach.
1The radius vector is obtained directly upon double integration of the acceleration.
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2.1.2. Correction
After having obtained a predicted position vector rp

n`1, a new function evaluation is per-
formed at that point, resulting in a new acceleration. Using that value together with the set
of k backpoints, a new interpolation polynomial of degree k can be used for the corrector
formula, which is the final step in the PEC cycle.

The variable-step Cowell predictor is:

rn`1 “ rp
n`1 ` h2

n`1

ˆ
gk`1,2 ` hn`1

hn
g1

k`1,2

˙
φ

p
k`1pn ` 1q. (2.5)

Similarly, the Shampine-Gordon corrector providing the velocity vector is obtained
from (see also Annex B.1.3):

9rn`1 “ 9rp
n`1 ` hn`1gk`1,1φ

p
k`1pn ` 1q. (2.6)

2.1.3. Stepsize control
At each step, the local error is kept below a user-defined tolerance, which is a combination
of an absolute tolerance, εabs, and a relative tolerance, εrel . The local error for single (su-
perscript s) and double integration (superscript d) is computed as the difference between
the corrector results (Equation 2.6 and Equation 2.5, kth degree polynomial) and a correc-
tor using the set of n ` 1 points interpolated by a polynomial of degree k for the velocity
and position vectors, respectively.

εs
l “ 9rn`1 ´ 9rn`1 pkq , (2.7)

εd
l “ rn`1 ´ rn`1 pkq . (2.8)

The components of the local error are then combined in a weighted sum of squares at
each step and compared to the tolerance εmax:gffe 3ÿ

i“1

ˆ
εs

l,i

ws
i

˙2

ď εmax, (2.9)

with
εmax “ max pεrel , εabsq , (2.10)

and the weight functions
ws

i “ | 9ri| εrel

εmax
` εabs

εmax
. (2.11)

The above equations are similar for double integration (see Annex B.1.4), containing the
position instead of the velocity vector components.

The step is successful, if Equation 2.9 is fulfilled for both the single and double integra-
tion formulation. Otherwise, the step is repeated with half the stepsize. If this happens
three times in succession, the integration is reset and starts as a first-order method again
(see also Section 2.1.4). In general, such a restart will be required at discontinuities like
shadow boundary crossings, manoeuvres, etc.
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After a step was successful, the stepsize for the next step is computed to keep the local
error as close as possible to the tolerance. Using hn`2 “ ρhn`1, assuming that the divided
differences are slowly varying and that all preceding steps were taken with hn`2, Shampine
and Gordon (1975) derive an equation for the stepsize factor ρ for single integration. Sim-
ilarly, Berry (2004) provides an analogous formulation for double integration:

ρs{d “
˜

0.5εmax

ζ
s{d
l

¸ 1
k`1

(2.12)

The approximated local error ζ
s{d
l is the error, that would be made if the previous steps

had been taken with hn`1. It is computed for both, single and double integration and the
smaller of both values is selected. See Annex B.1.4 for more details.

The calculated value of ρ is bounded between 0.5 and 2.0, so that the stepsize is doubled
for all values ρ ě 2.0 and halved for ρ ď 0.5. While Shampine and Gordon (1975) designed
their method in a way preferring constant stepsizes, thereby reducing the overhead for
the re-computation of the integrator coefficients, Berry (2004) points out that due to the
very expensive force model, the additional integrator overhead can be neglected in favour
of having a fast increase of the stepsize towards larger values. Therefore, Berry (2004)
recommended to have the same boundaries at ρ “ 0.5 and ρ “ 2.0, without any further
restrictions for values in between.

2.1.4. Initialization
An important aspect for multi-step integration is the initialization or startup procedure.
With only the initial state vector being available at t0, either a set of backpoints have to
be computed before starting the multi-step integration, or the integrator has to start as
a variable order method. For the former approach, it is possible to use a single-step in-
tegrator, or even a Taylor series representation, until the required number of backpoints
are found and then switch to the multi-step integration. The variable order startup is
designed to start as a first-order method with small stepsizes and both the order and the
stepsize are increased in subsequent steps.

The Störmer-Cowell method used for Neptune , is based on a variable-order startup
(Berry, 2004). The initial stepsize is found by estimating the local error of a first-order
method (Berry, 2004):

h «
c

εmax

|:r0| (2.13)

For a more conservative estimate, that value is divided by four and the individual compo-
nents of the acceleration vector are weighted:

h “ 1
4

gfffe εmaxcř3
i“1

´
:r0,i
ws

i

¯2
. (2.14)
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An upper boundary equal to the first requested output is set on h, in case the accelerations
at the initial point are close to zero. A lower boundary to reduce round-off error is also
required and set to 4εmt0, where εm is the machine epsilon.

While the initial step size in Equation 2.14 is computed for single integration, the double
integration formulation of Equation 2.14 is analogous:

h “ 1
4

gfffe εmaxcř3
i“1

´
9r0,i

wd
i

¯2
, (2.15)

using the velocity vector instead of the acceleration and the double-integration weight
functions associatedwith the velocity. The Störmer-Cowell integrator thenuses the smaller
of both values in order to stay within the requested tolerance.

The first order predictor then is:

rp
1 “ r0 ` h9r0 ` 1

2
h2:r0, (2.16)

and the corrector:
r1 “ rp

1 ` 1
6

h2φ2 p1q . (2.17)

In order to have a faster startup, the initialization will only double (halve) the stepsize, if
a step succeeds (fails). For additional stability, a second function evaluation is introduced,
resulting in a PECE cycle. After the first successful step, the variable-step Störmer-Cowell
integrator is started, beginning with a first-order polynomial, increasing the order after
each successful step until a set of nine backpoints is available and the method continues
as an eighth-order polynomial without further changing the order.

2.1.5. Interpolation
In principle, the integrator can be configured to have a stepsize corresponding to the
requested output time. As this implies that the stepsize could be smaller than the one ob-
tained from the stepsize control according to the error tolerance, an unnecessary increase
in computation cost would be introduced. Therefore, Shampine andGordon (1975) give an
interpolation formula to find the output value at the requested time tI , which is between
the points n and n ` 1. Using the pk ` 1qth degree polynomial for the set of backpoints,
the interpolated value is found via (Shampine and Gordon, 1975):

9rI “ 9rn`1 `
ż tI

tn`1

Pk`1,n`1 ptq dt (2.18)

Performing a similar derivation as for the predictor (Annex B.1.2), one obtains for the
single integration:

9rI “ 9rn`1 ` hI

k`1ÿ
i“1

gI
i,1φi pn ` 1q , (2.19)

with the interpolation stepsize hI “ tI ´ tn`1 and another set of coefficients, gI
i,1, which

need to be computed for the interpolation, see also Annex B.1.5.
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Figure 2.2.: Stepsize for a 24 h propagation of a MEO navigation satellite. Force model: 12 ˆ 12
geopotential, drag, SRP, luni-solar gravity. Left: Two different levels for the error tol-
erance are shown, εrel{εabs “ 10. Right: Comparison showing the Shadow Boundary
Transit Correction (SBTC).

Analogously, Berry (2004) derives the interpolation formula for the double integration:

rI “
ˆ

1 ` hI

hn`1

˙
rn`1 ´ hI

hn`1
rn ` h2

I

k`1ÿ
i“1

ˆ
gI

i,2 ` hI

hn`1
gI1

i,2

˙
φipn ` 1q. (2.20)

2.1.6. Integrator optimization
The numerical integration presumes continuous and sufficiently smooth functions for
the accelerations obtained from the force model. However, this cannot always be guaran-
teed for the propagation of Earth orbits. For instance, orbital manoeuvres introduce a step
change in the acceleration at manoeuvre start and end. Another example is the re-entry
phase of a satellite, where elements like solar panels might break off due to an excessive
drag load, again resulting in a step increase for the acceleration of the parent spacecraft,
as parameters like mass and cross-section change instantaneously.

Besides those special cases, there are orbit perturbations that cause a step increase in
the acceleration with periods on the order of the orbital period. The major contribution,
especially for high-altitude orbits, is due to SRP, where shadow boundary transits cause
either a step in the second (for umbra-only models) or the third derivative (for umbra-
penumbramodels), respectively. This is exemplarily shown for a 12 hMediumEarth Orbit
(MEO) in Figure 2.2, which also illustrates the stepsize control of the integrator. In the
left figure, two examples are shown for a relative tolerance of εrel “ 10´10 and εrel “
10´11, respectively, with εrel{εabs “ 10 in both cases. The 24 h propagation (« two orbital
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revolutions) shows the initialization phase in the beginning, starting with a variable-order
integrator and small stepsizes, followed by an increase in the stepsize to above 10min in
both cases. The shadow phases for the two revolutions can be clearly seen by the pair of
integrator resets at the shadow entry and exit (shortly after 5 h and at about 17 h into the
propagation). Moreover, for εrel “ 10´10, the integrator accepts larger stepsizes (which is
expected) and, while the stepsize decreases significantly at the shadow boundary transits,
there are fewer resets (h « 0 s) when compared with the εrel “ 10´11 case.

An integrator reset, which is also shown in a close-up for the second shadow entry in
Figure 2.2 on the right plot, implies a significant amount of force model evaluations for
the start-up and the subsequent stepsize increase. In the example, there are 37 steps, until
the stepsize again takes on values greater than 10 s. The adverse effect on the integrator
performance is not only the additional required runtime, but also additionally accumu-
lated round-off error.

A method for fixed-step integration was proposed by Lundberg et al. (1991), referred to
as ShadowBoundary Transit Correction (SBTC) hereafter, which, upon detecting a shadow
boundary transition, performs an update on the set of backpoints: for a shadow entry, the
acceleration due to SRP is subtracted from the backpoints, while for the shadow exit they
are added to the backpoints, thus guaranteeing a smooth interpolation polynomial.

Horstmann et al. (2015) applied this algorithm to the variable-step Störmer-Cowell in-
tegrator. An example is shown in Figure 2.2 on the right, where the correction (using
the same error tolerance) does result in a significant stepsize decrease, but a reset can be
avoided. Furthermore, the number of steps for the time interval shown in Figure 2.2 is
distinctively lower when compared with the uncorrected integration. Horstmann et al.
(2015) estimated a run-time performance gain of a few percent for high-altitude orbits
using the SBTC.

2.2. Coordinate and time systems
In orbital mechanics, the use of different coordinate and time systems is unavoidable,
which is mainly because the equations of motion are most conveniently solved in an in-
ertial frame, while force model evaluations, for example for the geopotential or drag per-
turbations, are relative to a co-rotating Earth-fixed frame.

Moreover, with many different entities and organizations being involved in SST ap-
plications and related services, the compliance with international standards for data ex-
change and associated reference frames is compulsory.

Based on the resolutions of the International Astronomical Union (IAU) and Interna-
tional Union of Geodesy andGeophysics (IUGG) the International Earth Rotation andRef-
erence Systems Service (IERS) realised and defined a celestial and a terrestrial reference
frame (Luzum and Petit, 2010). It is important to differentiate between reference systems

and reference frames: While a reference system is the conceptual definition of a coordinate
system, a reference frame is the actual realization, using observations, station coordinates,
etc. (Seidelmann, 2006).
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The International Celestial Reference System (ICRS) was defined by the IAU Resolution
A4 (1991) andwas refined in 2000 and 2009 (Luzum and Petit, 2010). For Earth applications,
a geocentric reference system is advantageous, with the Geocentric Celestial Reference
System (GCRS) being the Earth-centered counterpart of the ICRS (Luzum and Petit, 2010).

The International Terrestrial Reference System (ITRS) is based on the IUGGResolution
2 (1991) (Luzum and Petit, 2010). The transformation between these two system accounts
for three different effects:

The motion of the celestial pole wrt. the celestial reference system (precession of the
ecliptic and the equator, as well as nutation),

the rotation of the Earth and

the polar motion.

The transformations are typically referred to as the Celestial Intermediate Origin (CIO)
approach, which has been defined in the IAU 2000/2006 resolutions (Luzum and Petit,
2010). In particular, this means that the IAU-2000 Nutation theory and the IAU-2006 Pre-
cession, the latter based on the P03 model (Capitaine et al., 2003; Wallace and Capitaine,
2006), are the recommended models. The conversion uncertainty is on the order of mag-
nitude of milliarcseconds (mas), with 1 mas corresponding to a displacement of 3 cm at a
distance of one Earth radius (Coppola et al., 2011).

The realisation of the ITRS, the International Terrestrial Reference Frame (ITRF), is
regularly revised, with the axes definitions based on a weighted combination of a varying
number of precisely known station coordinates. Since 1984, twelve versions have been
published, from ITRF88 to ITRF2008 (Luzum and Petit, 2010). Using the Earth Orienta-
tion Parameters (EOP) provided and regularly updated by the IERS for the current realisa-
tion, ITRF2008, this frame is the Earth-fixed frame used in this thesis, wherever the ITRF
or a body-fixed frame are referenced.

The realisation of the ICRS, the International Celestial Reference Frame (ICRF), is de-
fined for the barycentre of the solar system. The Geocentric Celestial Reference Frame
(GCRF) has the same orientation as the ICRF, but has its origin at the centre of mass of
the Earth. The axes are realised from Very Long Baseline Interferometry (VLBI) observa-
tions of extragalactic radio sources (Luzum and Petit, 2010).

It should be noted that while the GCRF and ITRF and the IAU 2000/2006 conversion are
the IAU-recommended method for astrodynamics applications, many of the operational
systems today are still using the former IAU-76/FK5 reduction, whichwas the IAU standard
until 1998 (Vallado et al., 2006b). In Figure 2.3, both reduction2 methods are comparedwith
each other. Both inertial frames coincide for the reference epoch J2000.0 with an error
between the FK5 pole and the ICRS pole of ˘50 mas (Luzum and Petit, 2010).

Unless stated otherwise, the frame conversions performed for the analyses in this thesis
were based on the IAU 2000/2006 resolutions.
2The series of translations and rotations relating the terrestrial to a celestial frame are referred to as reduc-
tion formulas.(Seidelmann, 2006)



28 2.2. Coordinate and time systems

Conversion between GCRF and ITRF

The transformation between the GCRF and the ITRF is accomplished via three consec-
utive rotations:

rGCRF “ Q ptq ¨ R ptq ¨ W ptq ¨ rITRF “ TGCRF
ITRF ¨ rITRF, (2.21)

where Q ptq is the combined bias-precession-nutation matrix, R ptq is accounting for the
Earth’s rotation and W ptq for the polar motion. The time parameter t used in the conver-
sion, according to Luzum and Petit (2010), is defined as the number of Julian centuries (in
Terrestrial Time (TT)) since the date 2000 January 1.5, while tTT is the current Julian day
in TT:

t “ tTT ´ 2451545.0 TT
36 525

(2.22)

Terrestrial time (TT), sometimes also referred to as Terrestrial Dynamical Time (TDT), is
the “independent argument for apparent geocentric ephemerides” (Seidelmann, 2006). It
uses the SI second and has a constant offset to International Atomic Time (Temps Atomique
International) (TAI):

TT “ TAI ` 32.184s (2.23)

The individual steps for the transformation, as well as the intermediate frames called
Celestial Intermediate Reference Frame (CIRF) and Terrestrial Intermediate Reference
Frame (TIRF), are shown in Figure 2.3.

The required steps to convert from the GCRF to the ITRF are shown again in Figure 2.4,
where the intersection between the two principal planes, the ecliptic and the equator, is
shown for all intermediate steps for the indicated date. The precession-nutation step is
separated into three single rotations by Vallado et al. (2006b), where the quantities E and
d are:

E “ arctan
Y
X

(2.24)

d “ arctan

d
X2 ` Y2

1 ´ X2 ´ Y2 (2.25)

The reduction from the Earth-fixed frame (ITRF) to the intertial Earth-centered frame
(GCRF), according to the IAU 2000/2006 resolution, includes three steps, withmore details
given in Annex C):

1. The polar motion, which is the difference between the Celestial Intermediate Pole
(CIP) and the IERS Reference Pole (IRP), comprises three consecutive rotations. The
first two reduce the polar coordinates xp and yp, which are the measured polar co-
ordinates of the CIP in the ITRF. The third rotation, which is only required for the
IAU 2000/2006 approach, is around the z-axis, with the angle s1 being the so-called
Terrestrial Intermediate Origin (TIO) locator, that “provides the position of the TIO
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International Terrestrial Reference Frame (ITRF)

Polar motion
W “ f

`
xp, yp

˘

Pseudo Earth Fixed frame (PEF)

Earth rotation
R “ f pθGASTq

True of Date frame (TOD)

Nutation (IAU-80)
N “ f pΔψ, Δεq

Mean of Date frame (MOD)

Precession (IAU-76)
P “ f pζ, θ, zq

Geocentric Celestial Reference Frame (GCRF)

Precession-nutation (IAU 2000/2006)
Q “ f pX, Y, sq

Celestial Intermediate Reference Frame (CIRF)

Earth rotation angle
R “ f pθERAq

Terrestrial Intermediate Reference Frame (TIRF)

Polar motion
W “ f

`
xp, yp, s1˘

Figure 2.3.: Reduction of the terrestial coordinates. On the left, the IAU 2000/2006method (Luzum
and Petit, 2010) and on the right the former recommendation, IAU-76/FK5 (McCarthy,
1996).

on the equator of the CIP corresponding to the kinematical definition of the ’non-
rotating’ origin (NRO) in the ITRS when the CIP is moving with respect to the ITRS
due to polar motion.” (Luzum and Petit, 2010).

2. The Earth rotation angle (ERA) accounts for the sidereal rotation of the Earth, being
the angle between CIO and TIO and defining Universal Time corrected for polar
motion (UT1) by convention (Luzum and Petit, 2010). It consists of a single rotation
around the CIP.

3. The precession and the nutation theories describe the motion of the CIP in the
GCRF. The combined effect is described in the IAU 2000/2006 approach by the
quantities X and Y, as well as s, the “CIO locator” which provides the position of
the CIO on the equator of the CIP (Luzum and Petit, 2010).

From a computational point of view, the series representation (Annex C.1) of the vari-
ables X, Y and s is quite demanding, as they have to be re-computed at every force model
evaluation during the numerical integration. A very promising approach, as demonstrated
by Coppola et al. (2011), is to use tabulated values for those quantities resulting in a sig-
nificantly reduced computational burden. This approach has also been implemented in
Neptune (Lange, 2014). Exemplary results for propagation times are shown in Table 2.1.
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Figure 2.4.: Visualisation of the transformation from celestial to inertial frame according to the
IAU 2000/2006 method (Vallado et al., 2006b).

Table 2.1.: Propagation time for different orbits withNeptune , comparing full series computation
of the IAU 2000/2006 CIO approach versus interpolated results. The full forcemodel in-
cluded 36ˆ36 geopotential, atmosphere, luni-solar gravity, SRP, tides and albedo. Com-
putations performed on an Intel® Core™ i7 (2.67 GHz).

Configuration hp / km e i / deg Series / s Interp. / s

LEO, full, 1 week 400.0 0.0 54.0 10.1 4.6
LEO, full, 1 month 800.0 0.0 98.6 37.4 18.0
GTO, full, 1 month 400.0 0.723 28.0 7.0 3.1
GEO, full, 1 year 35 786.0 0.0 0.0 9.0 4.1

LEO, 2-body, 1 week 400.0 0.0 54.0 1.7 0.1
LEO, 2-body, 1 month 800.0 0.0 98.6 7.7 0.3
GTO, 2-body, 1 month 400.0 0.723 28.0 3.6 0.2
GEO, 2-body, 1 year 35 786.0 0.0 0.0 4.3 0.2

For a full force model, using a 5th order Lagrange interpolation for the tabulated data
results in half the time required for the full series computation. For a two-body prop-
agation, the computation time even reduces by a factor of about 20 using tabulated and
interpolated data.

2.3. Gravitational perturbations
Newton’s law of universal gravitation describes the relative motion of celestial bodies un-
der the influence of gravity. It is valid for point masses, but can also be applied for spheri-
cally symmetric bodies with uniformmass distribution. For arbitrary shaped objects, one
has to consider gravitational perturbations, which can be formulated as a superposition
on Newton’s law (Equation 2.1).

For Earth-orbiting objects, themain characteristic of gravitational perturbations, as op-
posed to non-gravitational perturbations described in Section 2.4, is that one can approx-
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imate the satellites and debris objects as point masses, which results in a minimum num-
ber of parameters required to describe them.

Gravitational perturbations include the non-spherical shape of the Earth (the geopo-
tential), solid and ocean Earth tides, the gravitational attraction of the Sun, Moon and the
solar system planets or the General relativity correction.

While the geopotential is the major perturbation for most of the objects in the LEO
up to the Geostationary Earth Orbit (GEO) region, especially due to the effect of Earth’s
oblateness, lunisolar gravitational perturbations are of particular importance for orbits
at higher altitudes. Tides, on the other hand, have to be considered, as soon as the orbit
determination process results in solutions better than a few tens of metres in position ac-
curacy at epoch, while the general relativity correction is relevant in the sub-metre regime.

2.3.1. Non-spherical geopotential of the Earth
The non-spherical part of the geopotential can be formulated as an infinite sum of spher-
ical harmonics with degree n and order m as a function of the geocentric radius r, the
geocentric latitude φgc and the longitude λ (Kaula, 2000):

U
`
r, φgc, λ

˘ “ μ

r

8ÿ
n“2

nÿ
m“0

ˆ
RC

r

˙n

pCn,m cos pmλq ` Sn,m sin pmλqq Pn,m
`
sin φgc

˘
(2.26)

Stokes coefficients

The spherical harmonic coefficients (or Stokes coefficients) Cn,m and Sn,m result from an
iterative least squares fit on a set of gravity field measurements, which are obtained from
satellite tracking measurements and/or surface gravity data (Förste et al., 2008). In Fig-
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Figure 2.5.: Mean value of the normalised spherical harmonic coefficients, as well as the nor-
malised standard deviations for different gravity models as a function of the geopo-
tential degree.
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ure 2.5, themean values μn of the normalised harmonic coefficients as a function of degree
n are shown, as given by Kaula (2000):

μn “
gffe 1

2n ` 1

nÿ
m“0

´
C2

n,m ` S2
n,m

¯
. (2.27)

Kaula (2000) also provided an approximation to estimate the mean value for any degree n:

μn « 10´5

n2 . (2.28)

In addition, the mean standard deviations of degree n are shown in Figure 2.5 for the
three different gravity models implemented in Neptune . The degree error variances are
computed as (Lemoine et al., 1998):

σ2
n “

nÿ
m“0

`
σ2 `

Cn,m
˘ ` σ2 `

Sn,m
˘˘

. (2.29)

Recursive formulation for computing the Legendre functions

In the formulation of the geopotential via Equation 2.26, the associated Legendre func-
tions, Pn,m, need to be evaluated. They can be computed directly according to their defi-
nition given in Equation 2.30, but this is a laborious task, even for computers.

Pn,m pxq “ p´1qm `
1 ´ x2˘m{2 dm

dxm Pn pxq . (2.30)

A much easier way to obtain the results for given degree and order, is to use recursions.
According to Montenbruck and Gill (2000), using the relation x “ sin φgc:

Pm,m pxq “ p2m ´ 1q
a

1 ´ x2Pm´1,m´1 (2.31)
Pm`1,m pxq “ p2m ` 1q xPm,m pxq (2.32)

Pn,m pxq “ 1
n ´ m

pp2n ´ 1q xPn´1,m pxq ´ pn ` m ´ 1q Pn´2,m pxqq , @n ą m ` 1, (2.33)

with the required initial values to start the iteration:

P0,0 pxq “ 1 (2.34)
P1,0 pxq “ x “ sin φgc (2.35)

P1,1 pxq “
a

1 ´ x2 “ cos φgc. (2.36)

An important point is that a recurrence formulation may become instable after many
consecutive evaluations. This happens, for example, if differences of two nearly equal
numbers are processed, or if there are small divisors (Vallado and McClain, 2013).

In order to have a stable recurrence for the Legendre polynomials, a scheme as shown
in Figure 2.6 has to be followed with Equation 2.31 through Equation 2.33 (Montenbruck
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Pn,1

P2,2
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Pn,2

. . .

. . . Pn,n

Equation 2.31

Equation 2.32, Equation 2.33

Figure 2.6.: Using a recurrence formulation for the Legendre functions.

and Gill, 2000; Brumberg, 1995). An interesting analysis on the stability of different recur-
rence formulations for the Legendre functions was done by Lundberg (1985). The analy-
sis showed that, especially for high degree computations, the recurrence formulation in
Equation 2.33 was superior to other formulations in terms of stability.

Just to show an example, Figure 2.7 gives the difference between the approach as de-
scribed above, i.e. using Equation 2.31 through Equation 2.33 in combination with the
scheme shown in Figure 2.6, and a different recurrence formulation (e.g. as given by Long
et al. (1989)), without a specific scheme:

Pn,0 pxq “ 1
n

pp2n ´ 1q xPn´1,0 pxq ´ pn ´ 1q Pn´2,0 pxqq , n ě 2 (2.37)

Pn,m pxq “ Pn´2,m pxq ` p2n ´ 1q
a

1 ´ x2Pn´1,m´1 pxq , m ‰ 0, m ă n (2.38)

Pn,n pxq “ p2n ´ 1q
a

1 ´ x2Pn´1,n´1 pxq , n ‰ 0 (2.39)

It can be seen in Figure 2.7 that selecting a typical geopotential degree between 30 and 40
may already introduce significant errors, which indicate that from 15 available digits only
7 or 8 actually contain useful information. The latter is especially true for those terms,
where m « n

2 , while there is no difference between the two methods for zonal pm “ 0q or
sectorial pn “ mq terms. It can also be noted that for even higher degrees the error tends
to grow exponentially.
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Figure 2.7.: Relative error between two different recurrence computation methods for the geopo-
tential degree being between 30 and 40. The first method used Equation 2.31 through
Equation 2.33 in combination with the scheme shown in Figure 2.6, which is consid-
ered to be stable according toMontenbruck andGill (2000); Brumberg (1995); Lundberg
(1985). The second method uses the recurrence formulation given by Equation 2.37
through Equation 2.39. Both, the geopotential degree and order were combined as the
independent variable x according to x “ n ` m

n`1 .

Accelerations in body-fixed frame

The accelerations of the non-spherical geopotential, which are required for the evaluation
of Equation 2.1, are obtained by differentiating the potential with respect to the radius
vector, the latter given in a body-fixed frame:

ab f “ BU
Brb f

“ BU
Br

ˆ Br
Brb f

˙T

` BU
Bφgc

ˆBφgc

Brb f

˙T

` BU
Bλ

ˆ Bλ

Brb f

˙T

(2.40)

The result obtained from Equation 2.40 is the inertial acceleration of the satellite ex-
pressed in an Earth-fixed frame, so that only the rotations to an inertial reference frame
are required (Long et al., 1989):

aGCRF “ TGCRF
ITRF aITRF (2.41)
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The partial derivatives for the evaluation of Equation 2.40 are given by Vallado and Mc-
Clain (2013):

BU
Br

“ ´ μ

r2

8ÿ
n“2

nÿ
m“0

ˆ
RC

r

˙n

pn ` 1q pCn,m cos pmλq ` Sn,m sin pmλqq Pn,m
`
sin φgc

˘

BU
Bφgc

“μ

r

8ÿ
n“2

nÿ
m“0

ˆ
RC

r

˙n

pCn,m cos pmλq ` Sn,m sin pmλqq ˆ

ˆ `
Pn,m`1

`
sin φgc

˘ ´ m tan φgcPn,m
`
sin φgc

˘˘
BU
Bλ

“μ

r

8ÿ
n“2

nÿ
m“0

ˆ
RC

r

˙n

mPn,m
`
sin φgc

˘ pSn,m cos pmλq ´ Cn,m sin pmλqq
(2.42)

Finally, the accelerations in the body-fixed frame can be computed from:

ax,b f “
¨
˝1

r
BU
Br

´ rz

r2
b

r2
x ` r2

y

BU
Bφgc

˛
‚rx ´

˜
1

r2
x ` r2

y

BU
Bλ

¸
ry ´ μrx

r3 (2.43)

ay,b f “
¨
˝1

r
BU
Br

´ rz

r2
b

r2
x ` r2

y

BU
Bφgc

˛
‚ry `

˜
1

r2
x ` r2

y

BU
Bλ

¸
rx ´ μry

r3 (2.44)

az,b f “ 1
r

BU
Br

rz `
b

r2
x ` r2

y

r2
BU
Bφ

´ μrz

r3 (2.45)

2.3.2. Third body gravitational perturbations
The gravitational perturbations due to solar system bodies are governed mainly by the
Sun and the Moon for Earth-orbiting objects. The acceleration of a so-called third body
can be directly expressed with Newton’s gravitational law:

a3b “ GM3b

˜
r3b ´ rS

|r3b ´ rS|3 ´ r3b

|r3b|3
¸

, (2.46)

with r3b and rS being the geocentric radius vector of the third body and the satellite, re-
spectively.

For most applications, it is sufficient to consider only lunisolar contributions, as the
accelerations due to the other celestial bodies are smaller by several orders of magnitudes.
For example, the acceleration ratio Sun to Jupiter is:

a@

aE
“ M@

ME

r3
E

r3
@

« 105. (2.47)

For a circular LEO at 400 km altitude and 54˝ inclination, the additional error introduced
by Jupiter in the propagation would be on the order of 10m after one day.
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The ephemerides of solar system bodies are publicly available via the Development
Ephemerides (DE) series provided by the Jet Propulsion Laboratory (JPL)3. A convenient
way is to use the Spacecraft Planet Instrument C-matrix Events (SPICE) toolkit provided
by NASA’s Navigation and Ancillary Information Facility (NAIF). The ephemerides are re-
covered from a SPICE Kernel (SPK) file in the GCRF. The specific gravitational constants
for the solar system bodies are also provided in order to be consistent with the polynomial
series.

2.3.3. Tides
The spherical harmonics coefficients (Section 2.3.1) are, in general, provided for a tide free
geopotential. This means that the observed instantaneous crust is reduced by removing
total tidal deformations, resulting in a tide free crust, which is also the reference for the
ITRF (Luzum and Petit, 2010). Solid Earth tides result in accelerations comparable to the
geopotential contributions of the spherical harmonics at degree n « 15 and can be even
more important than solar radiation pressure in the LEO regime (Montenbruck and Gill,
2000).

Solid Earth tides

The changes in the geopotential as induced by solid Earth tides, are modelled by intro-
ducing variations to the spherical harmonics coefficients Cn,m and Sn,m (Luzum and Petit,
2010). Using the frequency-independent nominal Love numbers knm, the solid Earth tide
contributions can be computed from (Luzum and Petit, 2010):

˜
ΔCnm

ΔSnm

¸
“ knm

2n ` 1

ˆ
GM3b

GMC

˙ ˆ
RC

r3b

˙n`1

Pnm psin φ3bq
˜

cos pmλ3bq
sin pmλ3bq

¸
. (2.48)

The above equation has to be evaluated twice, to obtain the solar and lunar contributions,
respectively. The normalised Legendre functions are computed for the geocentric latitude
and longitude of both the Sun (φ@, λ@) and the Moon (φK, λK).

Note that Equation 2.48 provides the variations of the normalised coefficients, while
the geopotential might be implemented for computations based on unnormalised values.
The following relationship is used for the (de-)normalisation:

Πnm “
d

pn ` mq!
p2 ´ δ0mq p2n ` 1q pn ´ mq!

(2.49)

where δ0m is the Kronecker delta, with δ0m “ 1 if m “ 0 and zero otherwise. The normal-
isation is then achieved by:

˜
Cnm

Snm

¸
“ Πnm

˜
Cnm

Snm

¸
, and Pnm “ Pn,m pxq

Πnm
. (2.50)

3http://ssd.jpl.nasa.gov/?horizons, accessed on September 29, 2015.
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Substituting Equation 2.50 into Equation 2.48 one obtains the corrections to the unnor-
malised coefficients:˜

ΔCn,m

ΔSn,m

¸
“

˜
ΔCnm

ΔSnm

¸
1

Πnm

“ 1
Π2

nm

knm

2n ` 1

ˆ
GM3b

GMC

˙ ˆ
RC

r3b

˙n`1

Pnm psin φ3bq
˜

cos pmλ3bq
sin pmλ3bq

¸

“ knmδ0m
pn ´ mq!
pn ` mq!

ˆ
GM3b

GMC

˙ ˆ
RC

r3b

˙n`1

Pnm psin φ3bq
˜

cos pmλ3bq
sin pmλ3bq

¸

(2.51)

Tides of second degree (n “ 2) introduce changes in the geopotential coefficients of
fourth degree. Luzum and Petit (2010) gives the corrections for the normalised values.
The result for unnormalised coefficients is obtained from Equation 2.48 using the trans-
formation from Equation 2.50:˜

ΔC4m

ΔS4m

¸
“ 1

Π4mΠ2m

kp`q
nm

5

ˆ
GM3b

GMC

˙ ˆ
RC

r3b

˙3

P2m psin φ3bq
˜

cos pmλ3bq
sin pmλ3bq

¸

“ kp`q
2m δ0m

p2 ´ mq!
p2 ` mq!

d
9 p4 ´ mq p3 ´ mq
5 p4 ` mq p3 ` mq

ˆ
GM3b

GMC

˙ ˆ
RC

r3b

˙3

P2m psin φ3bq ¨

¨
˜

cos pmλ3bq
sin pmλ3bq

¸
, (2.52)

with the above equation being evaluated for m “ 0, 1, 2.

Solid Earth pole tide

Another correction is applied for the pole tide, which is due to the centrifugal effect of polar
motion (Luzum and Petit, 2010). Again, the unnormalised corrections are:

ΔC21 “ ´1.721 ¨ 10´9 pm1 ´ 0.0115m2q (2.53)
ΔS21 “ ´1.721 ¨ 10´9 pm2 ` 0.0115m1q (2.54)

The quantities m1 and m2 are defined as the deviations of the polar motion variables xp

and yp from their running averages. Figure 2.8 shows the position error introduced during
propagation when omitting solid Earth tides, which is on the order of several metres for
a few days of propagation.

Ocean tides

The reaction of Earth’s water mass to the gravitational forces of the Sun and the Moon is
referred to as ocean tides, which provide a contribution of about 10% to 15% compared
to solid Earth tides, as suggested by Casotto (1989). Due to the very complex nature of the
watermotion, ocean tidemodels are typically represented bymodels with a broad range of
frequencies and amplitudes in the spectrum. Luzum and Petit (2010) discuss the different
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Figure 2.8.: Solid Earth and ocean tides example for an 800 km orbit (i “ 98.7˝, e “ 0.001). The
position error is computed for a trajectory comparison against a two-body propagation.

models recommended by the IERS. Luzum and Petit (2010) also give an example for the
influence of ocean tides: For a satellite in an 800 km orbit (i “ 98.7˝, e “ 0.001) and one
day of propagation, the error is on the order of several cm and reaches up to 20 cm. This
is also shown in Figure 2.8.

2.4. Non-gravitational perturbations
The point mass assumption is inadequate in the modeling of non-gravitational pertur-
bations. Additional parameters are required to account for several forces due to the in-
teraction of the orbiting object’s surfaces with the environment. If thermal and optical
properties of a spacecraft are known, a detailed surface model allows to account for all the
effects in a precise 6-DOF propagation. For space debris and spacecraft with unknown
properties, those parameters are typically solved for in the orbit determination process.
Examples for such parameters are the drag coefficient cD or the SRP coefficient cR.

2.4.1. Atmospheric drag
The acceleration due to the object’s movement in the Earth’s atmosphere can be described
by the drag equation:

aD “ ´ρ

2
cD Ac

m
vrel |vrel| , (2.55)

with the total density ρ, the velocity vrelrelative to the Earth’s atmosphere, the object’s
mass m, the cross-section Ac being the orthographic projection of the object’s surface in
the direction of vrel and cD being the drag coefficient.

The drag coefficient generally assumes values between cD “ 2.0 . . . 2.2under freemolec-
ular flow conditions and the above definition of the cross-section.
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Figure 2.9.: Example for the position difference in the Orbit Centered Reference Frame (OCRF) be-
tween a force model comprised of drag (NRLMSISE-00) and wind (HWM07) compared
with a drag only model. The orbit is circular at 300 km altitude with an inclination of
60˝.

Typically, for debris fragments, all of the quantities, m, Ac and cD are unknown and
cannot be determined independently from observations. It is thus convenient to combine
them in the so-called ballistic coefficient4:

B “ cD Ac

m
. (2.56)

The density is obtained from thermospheremodels, like the widely usedNRLMSISE-00
(Naval Research Laboratory Mass Spectrometer and Incoherent Scatter (Extended), Earth
atmosphere model) applicable to altitude regimes down to Earth’s surface (Picone et al.,
2002). The empirical model accounts for long-term effects, like annual and semiannual
variations, and for short-term variations on diurnal, semidiurnal and terdiurnal scale. The
NRLMSISE-00 model is very convenient for propagation purposes, as it requires only few
input parameters: besides the position in the ITRF, the solar acitivity proxy F10.7 (the solar
radiation at a wavelength of 10.7 cm measured on ground) and the geomagnetic activity
planetary index, Ap, are required.

The relative velocity vrel is the difference between the velocities of the object and the
atmosphere. The latter, co-rotating with the Earth, is superimposed by winds, which can
be modelled up to altitudes of 500 km using the Horizontal Wind Model HWM07 (Drob
et al., 2008). The contributions due to wind can be on the order of 100m/s at high latitudes
(Drob et al., 2008). In Figure 2.9, an example is given for a 300 km orbit with 60˝ inclina-
tion, showing the influence of horizontal wind. It can be seen that the position error in
the along-track component is on the order of 100m after 24 h of propagation. The error
4The ballistic coefficient is often also defined in a reciprocal way: B “ m

cD Ac
. It is therefore important to be

aware of how it is defined when working with this quantity.
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in the along-track component reduces to about 1m for the same example, if the altitude
is increased to 400 km, corresponding to the orbit of the ISS.

2.4.2. Solar radiation pressure
Solar photons absorbed by or reflected from the satellite’s surfaces provide an impulse
change and thus a perturbative acceleration. These forces due to SRP are of compara-
ble magnitude to atmospheric drag at altitudes of about 600 km and are the main non-
gravitational perturbation for higher orbits.

It is essential to have amodel for both, the incoming solar flux at the satellite’s position,
as well as the surfaces and their optical properties.

The solar flux is typically given at a mean solar distance of 1 ua for the complete solar
spectrum, often also referred to as the solar constant. The solar constant has been revised
in 2011 and is given by Kopp and Lean (2011):

Φ@ “ p1360.8 ˘ 0.5q W
m2 (2.57)

The solar radiation pressure is obtained by dividing the solar constant by the speed of
light:

P@ “ Φ@

c
“ 4.5391 ˆ 10´6 N

m2 . (2.58)

For an absorbing sphere, the resulting force is now simply computed by multiplying the
solar radiation pressure with the illuminated cross-section. The general case is for a set of
individually oriented surfaces, which together define the satellite macro model. The in-
coming photons interact with the surfaces and are either reflected (specularly or diffusely)
or absorbed. The geometry, defining the unit vector e@ pointing to the Sun, the surface
normal vector n0 and the solar incidence angle φinc between these two vectors, is shown
in Figure 2.10.

A@

φinc

n0

e@ to Sun
¨

Figure 2.10.: Definition of the incidence angle for oriented surfaces.

The force due to absorption by a surface of area A is in the Sun’s direction and thus
equal to:

Fabs “ ´P@cA A cos φince@ (2.59)
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For a specular reflection, no impulse is transferred parallel to the surface. The resulting
force is only in surface normal direction. Due to the specular reflection, the impulse in
normal direction is twice the initial impulse:

Fr,s “ ´2P@cR,s A cos2 φincn0 (2.60)

The cosine function is squared to first account for the orientation of the surface with re-
spect to the Sun and second for the momentum transfer in normal direction. The diffuse
reflectivity is modelled by assuming a Lambert distribution (Klinkrad and Fritsche, 1998;
Vallado and McClain, 2013):

Fr,d “ ´P@cR,d A cos φinc

ˆ
2
3

n0 ` e@

˙
(2.61)

The absorption coefficent cA, specular reflectivity coefficient cR,s and diffuse reflectivity
coefficient are interrelated:

cA ` cR,s ` cR,d “ 1 (2.62)

Combining the above equations and summing over all illuminated surfaces, one finally
obtains the acceleration due to solar radiation pressure in the inertial frame:

aSRP “ ´ P@

m

ˆ
1; AU

rS@

˙2 nsr fÿ
i“1

Ai cos φinc ,i

´
2

´ cR,d,i

3
` cR,s,i cos φinc,i

¯
n0,i ` p1 ´ cR,s,iq e@,i

¯
(2.63)

Shadow model

For many orbits it is important to consider eclipse conditions, which occur when the
Sun gets occulted by the Earth. In some cases, also effects of the lunar eclipses can be
considered for high-fidelity modeling (Escobal and Robertson, 1967; Srivastava et al., 2015).
While analytical and semi-analytical theories often involve a cylindrical umbra-only (fully
occulted solar disk) shadow region to allow for an analytical computation of the boundary
crossings (e.g. Aksnes (1976)), in numerical integration it is convenient to use a conical
model with umbra and penumbra (partial occultation) regions, as shown in Figure 2.11.
The acceleration due to solar radiation pressure, as given by Equation 2.63, is multiplied
with the shadow function ν, which is either ν “ 1 in full sunlight, ν “ 0 in the umbra, and
assumes values between 0 and 1 in the penumbra region (Montenbruck and Gill, 2000).

For the geometry shown in Figure 2.11b, Montenbruck and Gill (2000) give a simple
method to compute the shadow function value.

ν “ 1 ´ A
πa2 , (2.64)

with A being the occulted segment of the apparent solar disk and a the apparent radius
of the Sun.

The trigonometric function to compute A results in what is referred to and shown
as the true shadow function in Figure 2.12. The shadow function was evaluated for an
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Figure 2.11.: Conical shadowmodel with umbra and penumbra (left) and the occultation of the Sun
by the Earth as seen from the satellite (right).

occultation happening in the direction of the connecting line of the two bodies. In Fig-
ure 2.12, one can also see that it is convenient to assume a linear transition from full
sunlight to eclipse condition across the penumbra region. The latter is the main assump-
tion for the SBTC method (Lundberg et al., 1991), which has also been implemented in
Neptune (Horstmann et al., 2015) and computes state vector corrections via a simple in-
tegral of the triangular area below the linear shadow function. In fact, the difference of
the integrals for the true shadow function and the linear approximation are very small: for
Earth orbits they are always below 0.5%, as shown in Table 2.2. As the shadow function is
a linear scaling factor (between 0 and 1) for the acceleration, the errors for the latter are
also those shown in Table 2.2.

While the shadow models described so far all assume a spherical Earth without an at-
mosphere, effects due to Earth’s flattening and the refraction and absorption of Sun light
by the Earth’s atmosphere, causing a different transition as seen from the satellite from
full sunlight to eclipse, have to be considered for precise applications. Both effects are
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Figure 2.12.: Real shadow function for circular cross-sections of occulting bodies compared with
a linear penumbra model in LEO and GEO region.

Table 2.2.: Integral error for the comparison of the linear shadow function with the model for
circular cross-sections of the occulting bodies. The occultation happens in the direction
along the connecting line of the two bodies centers of mass.

Orbit radius / km Error / %

6878 -0.05
8378 -0.07

26 000 -0.23
42 164 -0.38

384 000 -3.34

comparable in a certain sense: the refraction is due to an atmospheric layer of a few tens
km, which is in the same order of magnitude as the deviation of Earth’s figure from a
sphere (Vokrouhlicky et al., 1996).

A flattened Earth causes a time shift in the penumbra entry and exit and leads to a
shorter eclipse in total. However, as was analyzed by Vokrouhlicky et al. (1996), this leads
only to short-periodic variations in the along-track direction, where the authors showed
that for the sample case of LAGEOS (Laser Geodynamics Satellites) the displacements are
on the order of 1 cm (Vokrouhlicky et al., 1996). The assumption of a spherical Earth for
modeling of the SRP is thus justified in the space surveillance and tracking context, while
it has to be considered for applications requiring very precise orbit solutions.

Due to the atmospheric refraction, the satellite will see the full solar disk for a longer
time. The latter is distorted and part of the solar radiation is absorbed during the passage
through Earth’s atmosphere, which results in a complex transition process. These effects
were also rigorously analyzed by Vokrouhlicky et al. (1993) and for LAGEOS they estimated
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a change in semi-major axis of about 1.7 cm over a shadow-crossing interval of about 100
days - compared to a spherical Earth model without atmosphere.

2.4.3. Earth radiation pressure
Another important source of radiation affecting the orbit of a satellite, is coming from
the Earth. It can be subdivided into two distinct wavebands: a shortwave contribution in
the visible regime from reflected sunlight (also referred to as Albedo), and emitted radi-
ation from the Earth in the Infrared (IR) regime. While the former is of a very complex
nature, with the satellite’s exposure to lit and unlit surfaces of the Earth, the latter is nearly
invariant with respect to the illumination conditions on Earth (Knocke, 1989).

At very low altitudes between 200 km to 300 km the magnitude of Earth Radiation Pres-
sure (ERP) accelerations is about 35% of the SRP accelerations (Knocke, 1989). For increas-
ing altitude, this value decreases, so that Knocke (1989) gives a range between 10% to 25%
of the direct SRP magnitude for most Earth satellites.

A model to obtain the perturbative effect on the satellite’s orbit due to ERP consists
of the following steps: The incident solar radiation on a surface element of the Earth is
subject to either specular or diffusive reflection (or a combination thereof ) as a function
of the surface properties and the incidence angle. While snow-covered areas, the seas and
clouds can be well approximated as specularly reflecting elements, especially at high solar
zenith angles, land masses are typically of a more diffusive nature (Barlier et al., 1986).
The reflected radiation is then interacting with the satellite’s surfaces, in a similar way as
shown for the SRP in Equation 2.63.

Different approaches exist to model the reflective interaction of incident sunlight with
the Earth, ranging from assuming a perfectly specular reflection of the whole visible Earth
(Vokrouhlicky et al., 1994), a zonal albedo model for the visible and IR regime (Knocke,
1989), up to a high-fidelity modeling with spherical harmonics in latitude and longitude
(Sehnal, 1979).

Vokrouhlicky et al. (1994) andKnocke (1989) have shown that even simplifiedmodels can
appropriately describe the observed semi-major axis variations in the orbit of LAGEOS.

Therefore, the model given by Knocke (1989) shall be briefly outlined here as a suitable
method in the space surveillance context.

The visible cap of the Earth is subdivided into plates with the local normal pointing in
the radial direction at the geographical coordinates of the plate’s center. A central spher-
ical cap is modelled directly below the satellite, while the other plates are distributed on
two ring segments around that cap, as shown in Figure 2.13. While the ring segments
may be defined in an arbitrary way, Knocke (1989) introduces the concept of equal projected
attenuated areas. This area is defined as:

Aprj,i “ dAi cos αik

π |sik| , (2.65)

where Ai is the surface area of the i-th Earth plate, αik is the view angle from the plate i to
the satellite surface element k, and sik is the distance.
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(a) Geometry for ERP model
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Figure 2.13.: Modelling Earth radiation pressure according to Knocke (1989). The visible cap is
further subdivided into a circular surface directly below the satellite and concentric
ring elements, where all Earth surface elements have the same projected attenuated

surface area.

Using the projected attenuated areas, which are equal for the individual segments as
well as for the central cap, the computation of the resulting acceleration simplifies signif-
icantly, resulting in (Knocke, 1989):

aERP “ K pa, eq
nsegÿ
i“1

nsr fÿ
k“1

Aprj,i Ak cos φinc

´
2

´ cR,d,k

3
` cR,s,k cos φinc,i

¯
n0,k ` p1 ´ cR,s ,kq si,k

¯
.

(2.66)
Note that the formulation in Equation 2.66 makes use of the same satellite model already
introduced in the previous section. The contributions of the individual ring segments
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and the central caps are evaluated for each surface element of the satellite. The incoming
radiation from the surface element of the Earth is described by the function:

K pa, eq “ P@

m

´
κa cos θinc ` e

4

¯
, (2.67)

where a is the albedo and e the emissivity of the surface element. Themultiplier κ is either
one, if the surface element is illuminated by the Sun and zero otherwise. Both, the albedo
and emissivity are given by Knocke (1989) as functions of the geocentric altitude φgc and
time:

a “ a0 ` a1 ptq P1
`
sin φgc

˘ ` a2P2
`
sin φgc

˘
(2.68)

e “ e0 ` e1 ptq P1
`
sin φgc

˘ ` e2P2
`
sin φgc

˘
, (2.69)

where

a1 ptq “ c0 ` c1 cos
ˆ

2π
t ´ t0

TC

˙
` c2 sin

ˆ
2π

t ´ t0

TC

˙
(2.70)

e1 ptq “ k0 ` k1 cos
ˆ

2π
t ´ t0

TC

˙
` k2 sin

ˆ
2π

t ´ t0

TC

˙
. (2.71)

In the above equations, Pn are the nth degree Legendre polynomials, TC is the orbital
period of the Earth (TC “ 365.25 d), t0 is the epoch of the periodic terms and a0, a2, e0,
e2, ci and ki are the parameters for this model. It accounts for seasonal effects and purely
zonal variations.

An example, showing the influence of radiative accelerations on a real orbit, is shown
in Figure 2.14 for POE obtained for the Jason-1 5 satellite.

For the precise orbit determination of the altimetry mission a goal of 1 cm radial Root
Mean Square (RMS) (and total RMS in the cm-regime, Luthcke et al. (2003)) was achieved
by combining GPS, SLR and DORIS measurements. The selected orbit at 1336 km reduces
the effects of atmospheric drag and the geopotential. The inclination of 66˝ and the fact
that the orbit is not sun-synchronous, minimizes the effects of repeating tidal frequencies.

The POEs of Jason-1 were used in the validation process of Neptune . In order to
perform the orbit comparison appropriately, one has to make sure that the force models
of the Precise Orbit Determination (POD) and Neptune are aligned and the optical and
thermal properties of the satellite are reasonably modelled. While the former may be
achieved, the latter is the complicated part - thus, it was decided to perform the POE-
based validation in a more qualitative way based on a cannon-ball model with estimated
coefficients. The dimensions of the box-shaped satellite with two solar array wings are
given in Figure 2.14a. An average cross-section of 10m2, a drag coefficient of cD “ 2.2 and
an SRP coefficient of cR “ 1.3 were assumed, and the effects of solar and Earth radiation
pressure analysed, as shown in Figure 2.14b through Figure 2.14d (the reference epoch in
all plots is March 24, 2002). It can be seen that if both, SRP and ERP are switched off
5obtained from the LEGOS-CLS via the International DORIS Service (IDS) website: http://ids-doris.
org/welcome.html, accessed on October 27, 2015.
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Jason-1 properties1

Altitude 1336 km
Inclination 66˝

BOL mass 500 kg
Dimensions 2.2mˆ0.9mˆ0.9m
Solar panels area 9.6m2

1(NASA, 2001)

(a) Jason-1 properties
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Figure 2.14.: Example showing the influence of SRP and ERP for the Jason-1 satellite for a time
span of 24 h.

(Figure 2.14b), the along-track error after a day of propagation is on the order of 60m,
while the radial error increases to more than 10m. Including SRP in Figure 2.14c, the
along-track error decreases significantly to about 20m, while the radial and cross-track
components are below 5m. Finally, if ERP is considered (Figure 2.14d), the along-track
component is further reduced to 10m, while radial and cross-track errors remain at the
same level.
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Estimation techniques

3.1. Uncertainty propagation
An essential part of orbital information in an operationally employed satellite catalogue
are the uncertainties associated with the state vectors. While the orbit determination pro-
cess provides the fit residuals as a measure of uncertainty at orbit epoch, the propagation
of those errors is crucial for the services provided by an SST system, especially for the
collision avoidance service.

The problem of uncertainty propagation can be approached in several different ways,
including:

State transition matrix integration With the systemdynamics being linearisedwith respect
to a reference trajectory, it is possible to work with the state transition matrix, a
concept very familiar from control theory for linear systems (Maybeck, 1979).

Gaussian Mixture Model The non-linear propagation of the uncertainties can be accom-
plished via the combination of probability density functions for state variables and
the computation of their evolution (Giza et al., 2009).

Expansion techniques The time evolution of stochastic processes can be described via
polynomial or Taylor expansions, a concept introduced by Wiener (1938). Those
methods might be either intrusive, performing the propagation based on differen-
tial algebra (Berz, 1999; Di Lizia et al., 2008; Armellin et al., 2010); or non-intrusive,
where the system dynamics are replaced by an expansion of the uncertainties in
truncated series (Jones et al., 2013; Riccardi et al., 2015).

Monte Carlo sampling Being also non-intrusive, theMonte Carlomethod is used to prop-
agate a large number of sample points within given uncertainty bounds. It considers
the full dynamics and reconstructs the variances and covariances from the propa-
gated samples. An example for the sequential orbit estimation is the Sigma Point

Filtering (Lee and Alfriend, 2007).

The state transitionmatrix will be an important element in the GAMBITmethod, based
on finding a least-squares solution, hence it will be introduced in the following section.
Monte Carlo sampling can be used to verify the correct implementation of the variational
equations and the integration process to some extent: it is important to keep inmind that
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there will be differences arising from the non-linear state propagation when compared to
a linearised model.

The propagation of the uncertainties, which are part of the covariance matrix, are im-
portant for sequential filters, like the Extended Kalman Filter (EKF). The time update of
the Kalman filter requires the assessment of the process noise.

Both Nazarenko (2010) and Wright (1981) point out that there is a problem with mod-
elling it as white noise, as basically all relevant perturbation models come with time-
correlated errors. Although computationally expensive, a proper modelling of the non-
Gaussian noise can be beneficial in the orbit determination solution, a concept introduced
in Section 3.4.4. Although neglected in many applications, accounting for process noise,
especially in sequential filters, significantly reduces the effect of filter smugness (Vallado
andMcClain, 2013): The covariancematrixmay diverge and become very small, increasing
the risk of the filter starting to neglect any new observations and thus not incorporating
new information into the orbit determination process any longer.

As the integration of the differential equations in the formulation of the covariance
matrix integration are linked to the integration of the state vector, Section 3.4.5 provides
an example for a possible implementation as used in Neptune .

3.2. State space representation
The uncertainty propagation problem is typically approached by using a state space rep-
resentation. For a very detailed description of the associated concepts, referencing the
textbook of Tapley et al. (2004) is highly recommended, which also served as the basis for
the following derivation.

The n-dimensional state vector x ptq of a satellite can be defined as

x ptq “
»
—– r ptq

v ptq
c

fi
ffifl , (3.1)

with r ptqand v ptqbeing the radius and velocity vector, respectively, while c is a multi-
dimensional vector of constant parameters to be solved for in the orbit determination
process. Examples for those parameters are the drag and SRP coefficients. Due to the non-
linear nature of orbital motion, which is directly seen from Equation 2.1, the conversion of
the second-order differential equations of motion into a vector of first-order differential
equations is written as

d
dt

x ptq “ f px, tq . (3.2)

As the state, in general, cannot be observed directly, an additional equation, the measure-
ment model (Maybeck, 1979), is required to map the state vector to the observations:

y ptq “ g px, tq ` ε, (3.3)

here, ε is the error in the observation. With y ptq being p-dimensional and, in general,
p ă n (number of individually observed quantities is smaller than the number of state
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vector components), the number of observations m in the orbit determination context
guarantees that m ¨ p " n.

A linearisation is obtained by introducing a reference trajectory, denoted by an index r,
and to introduce the deviations as

Δx ptq “ x ptq ´ xr ptq , (3.4)
Δy ptq “ y ptq ´ yr ptq , (3.5)

which are assumed to be small - a concept familiar to Encke’smethod for perturbed orbits.
Expanding Equation 3.2 and Equation 3.3 about the reference state gives

9x ptq “ f pxr, tq `
ˆBf px, tq

Bx ptq
˙

r
px ptq ´ xr ptqq ` O

´
Δx ptq2

¯
, (3.6)

y ptq “ g pxr, tq `
ˆBg px, tq

Bx ptq
˙

r
px ptq ´ xr ptqq ` O

´
Δx ptq2

¯
` ε, (3.7)

or, combined with Equation 3.4 and Equation 3.5 and neglecting higher-order terms:

Δ 9x ptq “
ˆB 9x ptq

Bx ptq
˙

r
Δx ptq , (3.8)

Δy ptq “
ˆBg px, tq

Bx ptq
˙

r
Δx ptq ` ε. (3.9)

Defining the system matrix A ptq as

A ptq ”
ˆB 9x ptq

Bx ptq
˙

r
(3.10)

and the output matrix as

H ptq ”
ˆBg px, tq

Bx ptq
˙

r
(3.11)

the homogeneous part of the state space representation is obtained for the linearized sys-
tem:

Δ 9x ptq “ A ptq Δx ptq , (3.12)
Δy ptq “ H ptq Δx ptq ` ε. (3.13)

The general solution for Equation 3.12 is:

Δx ptq “ BΔx ptq
BΔx0

Δx0 (3.14)

“ B px ptq ´ xr ptqq
B px0 ´ xr,0q Δx0 (3.15)

“ Bx ptq
Bx0

Δx0 (3.16)
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given the initial condition x pt0q “ x0 and noting that the reference state is constant in
the partial derivative in Equation 3.15. Now the state error transition matrix Φ can be
introduced, which translates the state error Δx ptq from t0 to t:

Φ pt, t0q ” Bx ptq
Bx0

(3.17)

Differentiating Equation 3.16 provides

Δ 9x ptq “ 9Φ pt, t0q Δx0, (3.18)

which, together with Equation 3.16, can be substituted into Equation 3.12:

9Φ pt, t0q Δx0 “ A ptq Φ pt, t0q Δx0, (3.19)

finally providing a differential equation for the state transition matrix1, which will later
be integrated numerically for the propagation of the covariance matrix:

9Φ pt, t0q “ A ptq Φ pt, t0q (3.20)

The main advantage of solving for the state transition matrix using Equation 3.20 over
the direct solution of Equation 3.12 is that the state transition matrix allows for a sim-
ple formulation of the covariance matrix propagation and the determination of the best
estimate of the state vector (Tapley et al., 2004).

The influence of system or process noise, which is characterised by the unmodelled
accelerations, is provided by another term leading to the general formulation of the state
space representation:

Δ 9x ptq “ A ptq Δx ptq `B ptqu ptq , (3.21)

here, u ptq is the process noise, while B ptq is the input matrix, which converts the unmod-
elled accelerations into the quantities of the state vector.

A particular solution to Equation 3.21 can be found via the variation of constantsmethod,
starting with the product of the state transition matrix Φ pt, t0q and an unknown function
C ptq:

Δx ptq “ Φ pt, t0qC ptq . (3.22)

Differentiating:
Δ 9x ptq “ 9Φ pt, t0qC ptq ` Φ pt, t0q 9C ptq , (3.23)

and substituting into Equation 3.21 provides

9Φ pt, t0qC ptq ` Φ pt, t0q 9C ptq “ A ptq Δx ptq `B ptqu ptq . (3.24)

This equation can be re-written by substituting the already known relationships for the
time derivative of the state error transition matrix, Equation 3.20, and Equation 3.22:

A ptq Φ pt, t0qC ptq ` Φ pt, t0q 9C ptq “ A ptq Φ pt, t0qC ptq `B ptqu ptq , (3.25)
1In fact, for the linearised system, it is also referred to as the state error transition matrix.
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which results in
Φ pt, t0q 9C ptq “ B ptqu ptq . (3.26)

The solution is now obtained by integration:

C ptq “ C0 `
ż t

t0

Φ´1 pξ, t0qB pξqu pξq dξ. (3.27)

Substituting the result for C ptq from Equation 3.27 into Equation 3.22 results in:

Δx ptq “ Φ pt, t0qC0 `
ż t

t0

Φ pt, t0q Φ´1 pξ, t0qB pξqu pξq dξ, (3.28)

which can be simplified using the following properties of the state transition matrix:

Φ pt, t0q Φ´1 pξ, t0q “ Φ pt, t0q Φ pt0, ξq “ Φ pt, ξq , (3.29)

as well as the initial condition C0 “ x0 to finally provide the general solution for the
inhomogeneous Equation 3.21:

Δx ptq “ Φ pt, t0q Δx0 `
ż t

t0

Φ pt, ξqB pξqu pξq dξ. (3.30)

The result in Equation 3.30 is also referred to as the matrix superposition integral (Gelb,
1974), where the second term describes how an input (here: process noise u) at a time ξ

translates into a state vector change at time t.

3.3. The covariance matrix
The elements of the state vector are a result of the orbit determination process. As such,
the state vector components are always associated with uncertainties and can be assumed
as random variables.

Thematrix containing the variances of the elements on its diagonal and the covariances
of the ith and jth element in row i and column j, is called the covariance matrix. It is defined
as:

P “ E
”
px ´ E rxsq px ´ E rxsqT

ı
. (3.31)

3.4. Differential correction
The GAMBIT method, which has been developed in this thesis and will be presented in
Chapter 4, is based on an algorithm calledDifferential Correction: An initial estimate for the
state vector is being iteratively refined in a batch least squares process for a given set of new
observations. Therefore, the theoretical background will be provided in Section 3.4.1.

Due to the properties of the cost function occurring in the least squares process for
typical orbits, convergence is not always guaranteed (see Chapter 4 for an example). An
optimization technique, known as the Levenberg-Marquardt algorithm (LM), makes the
process more robust by controlling the convergence process. It will be introduced in
Section 3.4.2.
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3.4.1. Non-linear least squares
For the determination of a satellite’s orbit, a set of measurements of the trajectory at dis-
crete times is available, which have to be processed to obtain the state vector of that object
for a given epoch. This leads to a non-linear least squares problem due to the non-linear
nature of the equations of motion (Equation 3.2). As the methods presented in Chapter 4
are processing a batch of data (or observations) in order to obtain an estimate, they are re-
ferred to as batch least squaremethods, as opposed to sequential methods, e.g. the Kalman
filter.

The problem consists inminimising the cost function or performance index J pxq (Gelb,
1974) by selecting an appropriate state vector x, according to:

J pxq “ 1
2

¨ εT ¨ W ¨ ε “ 1
2

¨
mÿ

i“1

wii ¨ ε2
i , (3.32)

here, the observation error ε, or observation residual, is obtained as the difference between
the observation and the computed measurement. Assuming a diagonal weight matrix W,
its components wii allow for individual observations being weighted according to their
quality and type.

For the linearisedmeasurementmodel from Equation 3.13 the observation residuals are
given as:

ε “ Δy ptq ´H ptq ¨ Δx ptq . (3.33)

Non-linear optimisation problems are solved iteratively, so that the best estimate of the
state, x̂, will result from a series of different state vectors (x0, x1, . . .) converging towards
that solution. For a minimised cost function, one can thus write:

J pΔx̂q “ 1
2

¨ pΔy ´H ¨ Δx̂qT ¨ W ¨ pΔy ´H ¨ Δx̂q (3.34)

Aminimum of the scalar is obtained, when the derivative with respect to the best estimate
is zero (or null vector) and the Hessian of J is positive definite (Gelb, 1974; Tapley et al.,
2004):

B J
Bx̂

“ 0 and Δx̂T ¨
ˆ B2 J

Bx̂2

˙
¨ Δx̂ ą 0, @Δx̂ ‰ 0

After differentiating and setting to zero, the following result is obtained:

HT ¨ W ¨H ¨ Δx̂ “ HT ¨ W ¨ Δy (3.35)

The second derivative of the cost function is

B2 J
Bx̂2 “ HT ¨ W ¨H, (3.36)

a symmetric n ˆ n matrix, which will be positive definite, if H is full rank. This is guar-
anteed as long as the number of linearly independent observations is greater than the
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dimension of the state vector (Tapley et al., 2004). As positive definite matrices are always
invertible 2, the result for the best estimate can be obtained via

Δx̂ “
´
HT ¨ W ¨H

¯´1 ¨HT ¨ W ¨ Δy. (3.37)

Solving iteratively for the best estimate

x̂k`1 “ x̂k ` Δx̂k, (3.38)

corresponds to the Gauss-Newton method, which is of quadratic convergence, when x̂k is
close to the local minimum (Madsen et al., 2004):

|εk`1| “ O `|εk|2˘
, when |εk| is small. (3.39)

In general, however, it is of linear convergence (Madsen et al., 2004):

|εk`1| ď a ¨ |εk|, when |εk| is small; 0 ă a ă 1. (3.40)

It has to be noted, however, that convergence for the Gauss-Newton method is not guar-
anteed. Moreover, there is not even a guarantee for local convergence, which is clearly the
case for linear least squares via Newton’s method.

3.4.2. Levenberg-Marquardt algorithm
The Levenberg-Marquardt method (LM) is also known as a damped or trusted region ap-
proach to obtain the least-squares solution. It is considered to be more robust than the
Gauss-Newtonmethod presented in the previous section, whichmeans that it is very likely
to converge even under unfavourable initial conditions.

Writing, for convenience, the step of the LM method as hLM “ Δx̂, Levenberg (1944)
introduced the following modification to Equation 3.37:

hLM “
´
HT ¨ W ¨H` λLM ¨ I

¯´1 ¨HT ¨ W ¨ Δy. (3.41)

The damping parameter λLM has several effects:

For λLM ą 0, the inverse in Equation 3.41 will be positive definite, ensuring that the
update step will be in descent direction (Madsen et al., 2004).

For λLM being very large, the step is in steepest descent direction (negative gradient):

hLM » 1
λLM

¨HT ¨ W ¨ Δy. (3.42)

which means that a short step in descent direction will be made. This is the desired
behaviour, if the current iterate is far from the solution (Madsen et al., 2004).

2If the positive definite matrix A was not invertible, there must be a non-zero x such that A ¨ x “ 0. This
means that xT ¨ A ¨ x “ 0, contradicting the assumption that A is positive definite.
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For very small λLM, the stepwill be similar to the one obtained via theGauss-Newton
method (Equation 3.37). This is beneficial for the final (almost quadratic) conver-
gence.

It can thus be stated, that the LM interpolates between two differentmethods, the steepest
descent and the Gauss-Newton.

The choice of the initial damping parameter upon initialisation of the method, λLM ,0,
can be related to the Fisher information Z “ HT ¨ W ¨H (Madsen et al., 2004):

λLM ,0 “ χ0 max
i

´
zp0q

ii

¯
, (3.43)

where χ0 is a tuning parameter of the algorithm and zii are the diagonal elements of
the Fisher information matrix Z. Madsen et al. (2004) provide a scheme for the update
of the damping parameter λLM during the iteration. It is controlled by the gain ratio
ρLM(Madsen et al., 2004):

ρLM “ J px̂kq ´ J px̂k ` hLMq
L p0q ´ L phLMq , (3.44)

assuming that there is amodel L of the behaviour of J in the neighbourhood of the current
iterate x̂k, which can be a Taylor expansion of J around x̂k:

J px̂k ` hLMq » L phLMq ” J px̂q ` hT
LM ¨HT ¨ W ¨ Δy ` 1

2
¨ hT

LM ¨HT ¨ W ¨H ¨ hLM (3.45)

For the denominator in Equation 3.44 one obtains:

L p0q ´ L phLMq “ 1
2

¨ hT
LM ¨

´
λLM ¨ hLM ´HT ¨ W ¨ Δy

¯
. (3.46)

It is important to note that Equation 3.46 will be always positive, as both, hT
LMhLM and,

considering Equation 3.37, also ´hT
LM ¨ HT ¨ W ¨ Δy are positive. In general, one would

expect the predicted decrease in the cost function (denominator in Equation 3.44) to be
higher than the actual decrease (nominator in Equation 3.44), which is due to the damping
for the latter. Hence, higher values for ρLM mean that there is a good approximation by
the model or, even better, the decrease in the cost function has been even larger than
predicted, so that for the next step, the damping via λLM can be reduced. On the other
hand, small or even negative values for ρLM indicate to increase the damping.

Nielsen (1999) provides an update scheme for λLM based on the gain ratio, which is done
without any additional evaluations of the cost function (Algorithm 3.1). The damping
parameter will be quickly increased by doubling, each time a step fails. For accepted steps,
the maximum reduction of λLM is dividing it by three. By selecting these specific values
(2 and 1

3 ), it cannot happen, that λLM will bounce back and forth between two values. The
bridging function connecting those two values allows for a smoother performance and
even a faster convergence, as Nielsen (1999) points out.
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Algorithm 3.1: Update of the Levenberg-Marquardt damping parameter.
if ρLM ą 0 then

λLM :“ λLM ¨ max
´

1
3 , 1 ´ p2ρLM ´ 1q3

¯
;

ν :“ 2;
else

λLM :“ λLM ¨ ν;
ν :“ 2 ¨ ν;

end

3.4.3. Propagation using the State Transition Matrix
Using the linearised system in the state space representation, as introduced in Section 3.2,
the expected value of the state vector is equal to the reference orbit:

E rxs “ xr ptq . (3.47)

Substituting this result and Equation 3.4 into Equation 3.31, the covariancematrix at a time
t can be written as:

P ptq “ E
”
Δx ptq Δx ptqT

ı
. (3.48)

With the matrix superposition integral from Equation 3.30, one obtains:

P ptq “ Φ pt, t0q P0Φ pt, t0qT ` Qxu ptq ` Qxu ptqT ` Quu ptq , (3.49)

where the first term is the time update of the covariance matrix from t0 to t, with

P0 “ P pt0q “ E
”
Δx pt0q Δx pt0qT

ı
, (3.50)

the matrix Qxu is the cross-correlation of the state vector x at t0 and the process noise u
at time t:

Qxu ptq “ Φ pt, t0q ¨
ż t

t0

E
”
Δx pt0q ¨ u pηqT

ı
¨B pηq ¨ Φ pt, ηq dη, (3.51)

and the last term is the auto-correlation function of the noise:

Quu ptq “
ż t

t0

ż t

t0

Φ pt, ξq ¨B pξq ¨ E
”
u pξq ¨ u pηqT

ı
B pηqT ¨ Φ pt, ηqT dξdη. (3.52)

The state transition matrix used for the time update of the covariance matrix can be
obtained via a numerical integration of Equation 3.20. An implementation example for
the propagator Neptune will be briefly outlined in Section 3.4.5.

Whilemany applications implement the time update of the covariancematrix assuming
the state at t0 and the noise as uncorrelated and, furthermore, no time correlation for the
noise, some authors (Nazarenko, 2010; Wright et al., 2008) have emphasized that especially
for orbit propagation, those assumptions do not hold. Therefore, the next section shall
provide a short introduction into modelling process noise accounting for noise and state
vector cross-correlation as well as for noise auto-correlation.
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3.4.4. Process noise
The propagation of a perturbed orbit is based on force models which are manifold, in-
cluding: uncertainties in the coefficients of the geopotential; the representation of the
geopotential through a truncated series; the stochastic nature of solar and geomagnetic
activity; uncertainty in the ballistic coefficient; simplifications in modelling the optical
properties; etc.

Most of the abovementioned effectsmay be described by a stochastic process. Formany
systems, such a process is well approximated by Gaussian white noise and is referred to
as State Noise Compensation (SNC). A more sophisticatedmodelling, where process noise
parameters are included in the orbit determination as solve-for parameters, is referred to
as Dynamic Model Compensation (DMC). Both methods are described in detail by Tapley
et al. (2004).

However, as Nazarenko (2010) points out, the analysis of the geopotential model reveals
that the resulting errors are time-correlated and therefore non-Gaussian, a property gen-
erally denoted as coloured noise.

Both, the auto-correlation and cross-correlation functions, being part of Equation 3.52
and Equation 3.51, respectively, are provided by Nazarenko (2010) for the geopotential.
While accelerations due to the geopotential, in theory, can be computed to an arbitrary
accuracy via Equation 2.26, in practice the series is truncated for computational reasons,
thereby introducing errors on the order of the omitted coefficients. Moreover, even the
considered spherical harmonics up to degree n and order m introduce errors through the
errors in the determination of the Stokes coefficients.

Auto-correlation function of the geopotential model errors

For the geopotential, the process noise vector u results from the errors in the acceleration
obtained from the model and can be conveniently defined in the orbit reference frame:

u ptq “ pΔ f U , Δ f V , Δ f WqT , (3.53)

here, Δ f U is the error in the force model in radial, Δ f V in along-track and Δ f W in orbit
normal direction, respectively.

The auto-correlation function can then be written as:

E
”
uuT

ı
“ E

»
—– Δ f 2

U Δ f UΔ f V Δ f UΔ f W

Δ f VΔ f U Δ f 2
V Δ f VΔ f W

Δ f WΔ f U Δ f WΔ f V Δ f 2
W

fi
ffifl «

¨
˚̋1 0 0

0 1
2 0

0 0 1
2

˛
‹‚KU . (3.54)

In the above equation, the first matrix expression contains the required derivatives.
Nazarenko (2010) shows, that all non-diagonal terms are zero and provides the variances
on the diagonal. The outer right expression in Equation 3.54 is the final result after intro-
ducing a simplification due to the similarity between the three components. The function
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K pr, ψq is the auto-correlation function of two points separated by a central angle ψ on a
sphere of radius r (Nazarenko, 2010):

K pr, ψq “
´ μ

r2

¯2 8ÿ
n“2

ˆ
RC

r

˙2n pn ` 1q2 p2n ` 1q
2

´
ΔC2

n,m ` ΔS2
n,m

¯
Pn,0 pcos ψq , (3.55)

where the angular distance can be computed as a function of the geocentric latitude φgcand
longitude λ:

cos ψ “ sin φgc,1 sin φgc,2 ` cos φgc,1 cos φgc,2 cos pλ1 ´ λ2q . (3.56)

The sum in Equation 3.55 is with respect to the degree of the geopotential. The quantities
ΔCn,m and ΔSn,m for a given degree n are combined according to (see also Equation 2.27
and Equation 2.28):

´
ΔC2

n,m ` ΔS2
n,m

¯
“

$’’&
’’%

2
2n ` 1

nÿ
m“0

`
σ2 `

Cn,m
˘ ` σ2 `

Sn,m
˘˘

, if n ď nmax

10´5

n2 if n ą nmax

(3.57)

This means that the standard deviations of the harmonic coefficients are summed up to
a sufficiently high maximum degree of the geopotential considered in the propagation
(n ď nmax), while the harmonic coefficients are used for n ą nmax. As Nazarenko (2010)
points out in his analysis based on the EGM96 model, the computation of the series in
Equation 3.55 can be carried out in two ways:

For nmax being small, the series will be truncated early, so that the error due to omis-
sion will be dominated by larger terms, with the influence of terms of increasing
order quickly declining. This means that the series with respect to the geopotential
degree would be evaluated up to n « 30 . . . 40.

For the geopotential being considered to a high degree for high precision compu-
tations, the truncation sets in late and the amount of terms that are non-negligible
will be higher than in the case above. In order to reduce computational burden,
Nazarenko (2010) recommends to use Kaula’s rule (Kaula, 2000) for an efficient eval-
uation (see Equation 2.28).

In Figure 3.1 the normalized auto-correlation function is shown as a function of the an-
gular distance for different orbit altitudes and two different values for nmax. The normal-
ization is with respect to the value at ψ “ 0:

k pr, ψq “ K pr, ψq
K pr, ψ “ 0q (3.58)

It can be seen, that the correlation is non-negligible and has higher values for increasing
orbital altitude and decreasing degree of the geopotential.
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Figure 3.1.: Normalized auto-correlation function used to compute noise contributions from
geopotential model errors. The shown results are for geopotential degrees n “ 12
(left) and n “ 36 (right), for different altitudes.

The normalised auto-correlation function k pr, ψq is shown in Figure 3.2 for the argu-
ment of true latitude u pξq of the orbit under consideration (i.e. at epoch t0) against the ar-
gument of true latitude u pηq of the same orbit and subsequent revolutions. It can be seen,
that for u pηq “ u pξq the normalised function value is k “ 1, as expected. However, it can
also be noted, that for u pηq ‰ u pξq, the function value is not always zero - which would be
the case for the Gaussian white noise assumption. One also finds that normalised auto-
correlation function is k “ 1 at those points, where subsequent groundtracks intersect.
For most orbits, this happens twice per revolution, resulting in the elliptic patterns for
u pηq and u pξq in different orbit revolutions. In Figure 3.2c one can see, that for repeat-
ing groundtracks, as is the case for every second orbit for GPS navigation satellites, the
auto-correlation function will provide significant contributions for the evaluation of the
integral in Equation 3.52.

By computing that integral, the matrix Quu ptq is finally obtained and is added to the
propagated covariance matrix at time t, the latter containing only the modelled time evo-
lution of the uncertainties via the variational equations. Thus, the covariance matrix at
each propagated step will be larger than would be the case without noise. A few examples
are shown in Figure 3.3 for the standard deviation of the radial position error. An initial
standard deviation of 1m in radial direction was assumed, while all other elements of the
covariance matrix were set to zero, in order to have a simplified example. It can be seen
that the radial error remains bounded for subsequent revolutions, with a maximum of
about 3m, if one propagates without noise. However, as soon as the matrix Quu ptq is con-
sidered, the radial error increases significantly, especially if the altitude is lower and the
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(c) nmax “ 8, h “ 26 578 km (GPS)

Figure 3.2.: Normalised auto-correlation function k of the current orbit revolution, given by ar-
gument of true latitude u pηq, with the current and two subsequent orbits, given by
u pξq. Shown for different altitudes and maximum degree of the geopotential; same
inclination of i “ 55˝ for all orbits.
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Figure 3.3.: Radial error (1σ) for different altitudes, comparing covariancematrix propagation with
and without considering noise for varying degree of the geopotential. An initial radial
error of 1m at t0 was assumed.

series for the geopotential is truncated for lower degrees. In the example in Figure 3.3b
one can also see that the result is almost the same with and without Quu ptq for n “ 36.

Cross-correlation function of the geopotential model errors and the state vector errors at
epoch

Nazarenko (2010) also points out that the integral for the cross-correlation between the
state vector at epoch and the geopotential model errors is not zero in general and needs
to be computed in Equation 3.51 for a more realistic assessment of the associated uncer-
tainties. With

E
”
Δx pt0qu ptqT

ı
‰ 0, (3.59)

the evaluation of the cross-correlation integral is analogously to the above scheme for
the auto-correlation function. For more details the interested reader is recommended to
study the book of Nazarenko (2010).

3.4.5. Integration example: Neptune
To conclude on the propagation part, this section provides an overview on how the differ-
ent computations for the state vector and the covariance matrix are actually performed.
Many authors settle the issuewith the remark that the differential equations for the covari-
ance matrix in Equation 3.20 are conveniently solved together with the integration of the
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Figure 3.4.: Example for the parallel integration of state vector (top) and the covariancematrix (cen-
ter), where the latter is shown as a RK4 method. Individual steps are shown on a time-
line, including the requested output steps (bottom).

accelerations from the force model for the state vector. However, this is not trivial when a
variable-step approach is used for the state vector computation, as done in Neptune (see
Section 2.1): the step size is controlled according to the accepted tolerance and solving for
the state transition matrix in Equation 3.20 might require a completely different step size.

Therefore, the idea is to separate the propagation of the covariance matrix and the state
vector in the essential part, which is the integrator. This comes with another advantage, as
the variable-step Störmer-Cowell integrator presented in Section 2.1 has a large overhead
compared to other methods: For the (at least) 36 differential equations of the state transi-
tionmatrix, the force model evaluation (in terms of the variational equations) can be quite
fast, as typically only the two-body solution and the oblateness of the Earth (characterised
by the J2 coefficient) have to be considered. Using a complex integrator would thus lead
to an unfavourable ratio of integrator overhead to force model computations.

It is therefore convenient to select a self-starting andfixed-step integrator to solve Equa-
tion 3.20. An example is shown in Figure 3.4 for the RK4 method, which requires three
evaluations of the force model: at t0, t0 ` h

2 and t0 ` h, where h is the integration step
size. For example, in the two-body case, the derivative of the state transition matrix at t0,
9Φ pt0, t0q, can be evaluated as:

9Φ pt0, t0q “ A2b pt0q Φ pt0, t0q “ A2b pt0q “ B 9x
Bx

“

¨
˚̊̊
˚̊̊
˚̊̊
˝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

BaxBrx

BaxBry

BaxBrz
0 0 0

Bay
Brx

Bay
Bry

Bay
Brz

0 0 0
BazBrx

BazBry

BazBrz
0 0 0

˛
‹‹‹‹‹‹‹‹‹‚

(3.60)
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with

Bax

Brx
“ 3μ

r2
x

r5 ´ μ

r3 (3.61)

Bay

Bry
“ 3μ

r2
y

r5 ´ μ

r3 (3.62)

Baz

Brz
“ 3μ

r2
z

r5 ´ μ

r3 (3.63)

Bax

Bry
“ Bay

Brx
“ 3μ

rxry

r5 (3.64)

Bax

Brz
“ Baz

Brx
“ 3μ

rxrz

r5 (3.65)

Bay

Brz
“ Baz

Bry
“ 3μ

ryrz

r5 . (3.66)

In the Equations 3.61 - 3.66, the state vector r is the required input quantity. Now, Figure 3.4
shows, how the results from the state vector integration can be beneficially used for a fast
integration of the state transition matrix: The variable-step Störmer-Cowell integrator
(shown at the top in Figure 3.4) performs its first step from t0 to t. Assuming that the
covariance matrix with a fixed step integration proceeds with a smaller step size, i.e. h ă
t ´ t0, the required state vector inputs for the state transitionmatrix at t0, t0 ` h

2 and t0 ` h
are obtained via a fast interpolation (Section 2.1.5), without any force model evaluation.
Hence, the integration of the differential equations for the state transition matrix is very
fast, even for very small step sizes.

Computation of the matrix Quu

Besides the derivation of amethod to assess coloured noise due to the errors in the geopo-
tential, Nazarenko (2010) also analyses computational issues in-depth. Using non-singular
orbit elements (NSO) for the computation of Equation 3.52, it is possible to pre-compute
the matrix Quu for the entire propagation span and interpolate for the requested output
times. In order to be combined with the propagated covariance matrix in cartesian space
(CS), a transformation is required:

PCS “ J ¨ PNSO ¨ JT, (3.67)

where the Jacobian J contains the partial derivatives of the radius and velocity vector with
respect to the non-singular orbit elements.
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Methods providing orbit information
of predetermined bounded accuracy

With the broad theoretical framework derived in the previous chapters, the methodology
to derive orbits of a given accuracy shall be presented in the following.

The first step is to define what is expected from such a method in Section 4.1. The
motivation for using such a method in an SST system is once more emphasized by the
examination of the currently used technique in the operational SSN to derive TLE in Sec-
tion 4.2.

Different approaches to obtain orbit information with degraded accuracy, which fulfill
the defined goals, shall be presented in Section 4.3.

4.1. Pre-considerations and method requirements
For an operational space object catalog, being the core element of an SST system (see
Figure 1.5), it is self-evident to store data and information with the best possible accuracy
for each object. The individual services such a system supports rely on this data, but
for many of them also less accurate data is fully sufficient. For example, passive optical
telescopes may still acquire a satellite for tracking, even if only coarse orbit information
like propagated orbits from TLE are used as a priori information.

One can thus imagine a functionality, which takes the most accurate orbit information
from the catalogue and, in a still to be defined manner, converts it to a product that is
sufficient for the corresponding service. For the entity operating such a system, that func-
tionality would allow for more diversified services. On the other hand, working with less
accurate solutions often (depending on the applied methodology) allows for having less
data to transfer and to process: for instance, if an object had to be tracked during a night,
highly accurate ephemerides would have to be provided in one-minute steps, e.g. via an
OEM, while a simple TLE could have the same effect with only two short lines of data.

4.1.1. Accuracy, precision and trueness
The first important point to be addressed is the term accuracy itself. What do we mean
when we speak of an orbit being accurate? Intuitively, this should seem to be a palpable
concept for the reader. However, there are also terms like precision and trueness, which are
often synonymously or interchangeably used in literature.
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a) good trueness,
poor precision

b) poor trueness,
good precision

c) good trueness,
good precision

Figure 4.1.: Accuracy, precision and trueness visualised. While accuracy is poor in a) and b), when
either precision or trueness are poor, one can consider a solution to be accurate only
if it has a good trueness and precision, as shown in c).

The scientific method requires us to have a clear understanding what accuracy means
and how it is discriminated against precision or trueness. The ISO 5725-1:1994 (ISO, 1994)
defines:

Accuracy closeness of agreement between a test result ormeasurement result and the true
value.

Trueness closeness of agreement between the expectation of a test result or measurement
result and a true value.

Precision closeness of agreement between independent test/measurement results obtained
under stipulated conditions.

The meaning of these definitions can be easily visualised, as shown in Figure 4.1. Accord-
ing to the ISO definition, accuracy is thus a combination of precision and trueness and can
be considered superordinate to the latter two. If either precision or trueness are poor,
accuracy will be poor as well. Only if both, precision and trueness are good, one can also
speak of a good accuracy.

With the above reasoning in mind, it is thus convenient to refer to a method that pro-
vides orbit information of degraded or, more neutral, predetermined accuracy, irrespective
of how the specific method is defined. One can imagine different methods affecting the
trueness, the precision or both.

4.1.2. Reference orbit
In the previous section, the term accuracy has been defined by means of a comparison of
a test result to a true value. The true value which is required to assess the accuracy, is not
accessible in practice, and needs thus to be replaced by an agreed reference value (ISO,
1994).

The most convenient reference orbit for the SST system is the catalogued orbit of an
object, i.e. the most accurate solution available. It is important to note that such a refer-
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ence will always be a result of a POD process and thus itself subject to varying levels of
trueness and precision depending on several factors, including the orbital regime, orbit
coverage, quality and quantity of measurements, etc.

Specifying a very good predetermined accuracy for an orbit, in the context of this study,
is thus always relative to the reference trajectory and by no means to the (non-observable)
true path an object follows. The range of possible solutions for the catalogued reference
trajectories was discussed in Section 1.2.

4.1.3. Assessing the accuracy relative to a reference
For amethod thought of as providing a product of predetermined accuracy, it is important
to understand, what the given accuracy figure is referring to. In principle, the closeness
of agreement to the reference trajectory can be interpreted in many ways, so that it is
essential to select an appropriate method to assess it.

For instance, one could compare the reference trajectory to the obtained orbit solution
with a certain accuracy at a given point in time: the orbit determination epoch, after one
day of propagation, after one revolution, etc. However, such an approach has the drawback
that the selected instant in timemight be associated with a significantly different solution
when comparing with another time, e.g. after half a revolution - it can be even worse,
considering the periodic nature of the osculating elements.

It should thus be the goal to define themethod such that the predetermined accuracy is
meaningful to a broad range of services working with the product. Observing that services
like Collision Avoidance, Search and Initialisation, or Re-entry Prediction typically need
ephemerides covering a span of several days in advance, it seems to be appropriate to
derive the closeness of agreement between reference and product for a given time span.

Root Mean Square

A convenient way to assess the accuracy for a given time span is to compute the RMS of
the component differences in an orbit-centered reference frame (radial, along-track and
cross-track) for a pre-defined number of time steps n:

ΔrRMS
j “

gffe nÿ
i“1

1
n

`
ri,j ´ r̂i,j

˘2, j P tU, V, Wu , (4.1)

ΔvRMS
j “

gffe nÿ
i“1

1
n

`
vi,j ´ v̂i,j

˘2, j P tU, V, Wu , (4.2)

where r̂ and v̂ denote the radius and velocity vector of the reference trajectory, and the
coordinates U, V and W refer to the radial, along-track and cross-track components, re-
spectively. The predetermined accuracy can now be defined, for instance: “The RMS of the

difference between the provided trajectory and the catalogue reference in the along-track direction is

in the range between 100m to 500m for a time span of 7 days.”

While the RMS is defined component-wise, there can be difficulties in defining the
threshold values independently, especially in view of correlations between the compo-
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nents. This problem still prevails, even if a combination like the Residuals Sum of Squares
(RSS) is used, e.g.:

ΔrRSS “
gffe 3ÿ

i“1

`
ΔrRMS

i

˘2 (4.3)

Encompassing volume

Amethod commonly used as a first step in the operational collision avoidance, is to define
a perimeter around a target satellite and screen for chasing objects entering such an en-
compassing volume for a given time span (e.g. Anz-Meador (2004), Klinkrad et al. (2005)).
Typically, one would define maximum values in an orbit-centered reference frame, i.e. in
radial, along-track and cross-track direction. The famous pizza box used in the conjunc-
tion screening for the ISS is defined with 2 km up and down in radial direction and 25 km
in along- and cross-track directions1.

The degraded orbit solution would then be provided such that the difference to the ref-
erence trajectory will be always within the defined volume for the time span the trajectory
is provided for.

Statistical distance

Being a measure of the distance between a given point and a statistical distribution, the
Mahalanobis distance (Mahalanobis, 1936) is a metric which takes into account the uncer-
tainties in the reference orbit. It is defined as:

dM “
?

ΔxT ¨ P´1 ¨ Δx, (4.4)

here, in the context of this thesis, Δx would be the difference between the reference orbit
and the solution with degraded accuracy. The covariance matrix P of the reference orbit
is directly available from the object catalogue.

This will automatically result in a lower Mahalanobis distance for reference orbits that
come with higher initial uncertainties from the orbit determination, while better solu-
tions will also require a closer fit of the method with adapted accuracy for the same dis-
tance threshold.

4.1.4. Further method requirements
In Section 1.3.1, the rationale for the method to provide solutions of predetermined ac-
curacy was outlined. Besides the aspects of commercialisation through the generation of
diversified products with different accuracy from one single catalogue solution, orbit in-
formation might be of dual-use. This means that the highly accurate solution should not
be disclosed to any other party without the appropriate clearance.

One can thus impose the requirement to design amethod that does not allow to deduce
the original (highly accurate) orbit solution from the provided (degraded) orbit informa-
tion.
1These values were also used during the LISA Pathfinder Launch and EarlyOrbit Phase (LEOP) in the routine
screening by ESA’s Space Debris Office in December 2015.
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Also, themethod should be designed to be as flexible as possible in selecting themethod
metric (e.g. RMS ranges for the vector components or the Mahalanobis distance) as well
as the fit span used in the comparison with the reference trajectory.

4.2. Two-line elements
The most prominent example of orbit information with reduced accuracy are the TLE
provided by USSTRATCOM. Being based on the analytical SGP4/SDP4 theory, TLE made
up the GP catalogue from the early 1970s (Vallado et al., 2006a) and ran in parallel with
the SP catalogue from the late 1990s (Schumacher and Hoots, 2000). With significantly
improved computational performance, the highly accurate SP vectors finally took over as
the primary data source and there was no need anymore to run both catalogues in parallel.

From 2013 onwards, USSTRATCOM started to derive TLE from the orbits in the SP
catalogue (Bowman, March 2014). Having to maintain only one catalogue was not the only
advantage, however: with the original observations being already pre-processed and thus
smoothed by a numerical theory, the analytical fit on the SP solution was shown to have a
much better chance of following the object’s orbit (Wilkins et al., 2000).

Although one cannot state that TLE are provided with predetermined accuracy, and
indeed it is a very challenging task to assess that accuracy, it is a similar concept: There
is a catalogue containing highly accurate information (which is not public and can only
be accessed via dedicated Orbital Data Requests (ODRs) for specific events) with publicly
available TLE data derived from that catalogue. A batch least squares technique is used to
estimate the doubly averaged Kepler elements for the orbit update, similar to the method
proposed in this thesis.

An example for deriving TLE parameters is shown in Figure 4.2 for ESA’s ERS-2mission.
Using POE as the reference, a fit span of about five orbits2 with data in 30-second-steps
served as the input to update a TLE from the previous day (TLE epoch: 1995-09-06 17:45:07).
In 1995, the POD for ERS-2 was based on SLR and altimeter data (the new Precise Range
AndRange-rate Equipment (PRARE) instrument augmented the products from 1996), with
the residuals in the radial component being in the order of 5 cm (Ries et al., 1999).

For the estimation process, the weight matrix W was diagonal with all radius compo-
nents weighted by 1.0 and all velocity components by 10´4, similar to the approach in
Flohrer et al. (2008).

It can be seen in Figure 4.2 that the residuals for the individual position components
are in the expected order of magnitude when comparing with the figures from Table 1.13:
the RMS is 97m, 237m and 146m in U, V and W direction, respectively.

It is also interesting to note that at the selected reference epoch (1995-09-07 01:00:00)
there is already a deviation in all three components, which emphasizes that the Differen-
tial Correction (DC) is an optimisation for the whole fit span. Thus, even if the reference
epoch would be set to the epoch of the SP epoch of the catalogued state, the DC process

2ERS-2 had a revolution period of approximately 100min.
3with ERS-2 being at an altitude of h « 780 km, i “ 98.5˝, e ă 0.1.
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Figure 4.2.: Example showing the update of a TLE data set from 1995-09-06 17:45:07 to a reference
epoch set to 1995-09-07 01:00:00. POE from ERS-2 in 30-second-steps were used as
pseudo-observations for a fit span of about 7 hours and 40 minutes. The difference
between the analytical SGP4/SDP4 theory and the POE is shown in the radial, along-
track and cross-track components for the fit span.

will make sure that it will be adapted accordingly in favour of reaching an optimisation
minimum for the entire fit span.

4.3. Orbit information with scaleable accuracy
The algorithm to derive orbits with predetermined (or scaleable) accuracy shall be based
on modifying the geopotential degree and order of the propagator and then perform a
least squares fit on the reference orbit with themodified forcemodel. It is called GAMBIT
and works as shown in Figure 4.3. It starts with selecting a fit span for a given reference
orbit, where the latter can be based on a propagation of a catalogued state vector with
full force model. In order to match a predetermined accuracy, e.g. given via an RMS
(see Section 4.1.3), the geopotential degree and order are reduced and a DC fit is initiated.
If the method converges in the envisaged accuracy range, the iteration is considered as
successful and is stopped. Otherwise, it can be assumed that the selected values for the
geopotential degree and order are not optimal, and the process is repeated, starting with
a newmodification of the force model by either increasing or decreasing the geopotential
degree and order.

The method stops with no success, as soon as the maximum number of iteration steps
has been reached. In addition, there could be a combination of a given reference orbit and
a specified accuracy range that does not have a solution, whichmeans that no suitable pair
of geopotential order and degree is available (not shown in Figure 4.3). This also represents
an unsuccessful stopping criterion.
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Figure 4.3.: Basic algorithm outline to derive an orbit with GAMBIT.

4.3.1. Modifying the geopotential
The first question to be adressed is related to which accuracy levels can be achieved. The
geopotential is defined for integer values for the degree and order in the series expansion.
Therefore, one cannot achieve any arbitrary difference, e.g. in RMS, between the reference
trajectory and the desired orbit solution.

For the LEO region, an example for near-circular orbits with an inclination of 30˝ and
varying altitude is shown in Figure 4.4. While for less accurate solutions, e.g. for a geopo-
tential of 2 ˆ 2 or 3 ˆ 3 (degree ˆ order), the step in accuracy degradation is quite signifi-
cant, a much higher resolution is obtained for higher values of n.

It is possible to get a higher resolution by not having the restriction of a symmetric geopo-
tential (i.e. n “ m). This would mean to truncate the geopotential series for a given mmax

with m ď mmax ď n. An example is shown in Figure 4.5. Again, circular orbits in the LEO
region have been analysed, this time with an inclination of 54˝. The symmetric poten-
tial solutions are shown with dashed lines in Figure 4.5. It can be seen that the regions
in-between those solutions can, to some extent, be covered by omitting certain tesserals.

An example for the position residuals of such an orbit fit for a given RMS in the radial
component of 30m to 80m is shown in Figure 4.6, computed for the orbit of Sentinel-
1A4. It can be noted that the radial position residuals show variations of up to 136m, while
the along-track and normal component residuals can reach up to 517m and 290m, re-
spectively. This was obtained for a 3 ˆ 3 geopotential based on a reference trajectory with
nr “ 36.

4.3.2. Analysis of method parameters
The methodology outlined in the previous section presupposes the proper selection of
a set of algorithm parameters. First of all, convergence for a standard least squares ap-
4693 km altitude, 98.2˝ inclination
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Figure 4.4.: Achievable accuracy levels for a symmetric geopotential (n ˆ n), comparing a reference
trajectory (36 ˆ 36) with solutions of varying geopotential degree and order for different
altitudes. All orbits are near-circular and have an inclination of i “ 30˝.
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Figure 4.5.: Varying order of geopotential for fixed n. Here, n ˆ m means that all tesserals are in-
cluded for ni ă n, while only the contributions due to tesserals at degree n are omitted.
The reference trajectory was propagated with nre f “ 24 for an inclination of 54˝.

proach, as introduced with the differential correction method, is not always guaranteed
to converge. One approach to improve this is the Levenberg-Marquardt method. Its in-
fluence in finding the locally optimum solution, shall be demonstrated in the following.
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Figure 4.6.: Example of applying the algorithm to a real orbit. A TLE-derived state for Sentinel-1A
was used to generate the reference trajectory. The success criterion was RMS-based for
the radial component, restricting it to the range 30m to 80m. For a 3 ˆ 3 geopotential
the radial RMSwas 68m, along-track 204mand cross-track 116m. Reference trajectory:
full force model, n “ 36; Fit for 15 orbits, 307 samples (pseudo-obs).

Levenberg-Marquardt

The differential correction method is searching for the minimum of the cost function, as
defined via Equation 3.32, by iteratively adapting the state vector. The search space has at
least six dimensions for finding the optimum position and velocity vector. A visualisa-
tion by restricting it to only two of the position vector coordinates is shown in Figure 4.7
and serves as a strong argument in explaining the effectiveness of the LM in the orbital
mechanics context. It can be seen, that the gradient in radial direction is extremely steep
compared to the normal and along-track directions. This leads to a valley perpendicular
to the radial direction, along which the minimum has to be found. One would thus pre-
fer a method which takes larger steps along the valley and small steps in radial direction,
in order to not step across the minimum. The search for the least squares solution via
the Gauss-Newton method does exactly the opposite, which is the reason for convergence
problems when using this method alone.

For the LEO region, an analysis was performed, first without and then with the LM
method, to illustrate the effect of the LM damping parameter. The results are shown
in Figure 4.8. It can be seen, that a pure differential correction (Gauss-Newton method)
encounters problems for the low-inclination orbits, where convergence failed in all those
cases where the z-values are negative in Figure 4.8.

Using a starting value of λLM “ 10´8 for the LM already solved most problems, as can
be seen in Figure 4.8b. For the remaining cases, where a failed scenario is indicated, there
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Figure 4.7.: Value of cost function (or performance index) as defined in Equation 3.32. A 12 ˆ 12
geopotential fit was computed based on a reference trajectory with the same geopoten-
tial degree and order.
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Figure 4.8.: Difference between computing the non-linear least squares solution with (b) and with-
out LM (a) in the LEO region. The required geopotential degreewas iteratively searched
for based on an RMS criterion for the radial component, which had to be between 30m
to 80m.

was no solution found between 30m and 80m for the RMS in the radial component. This
only indicates, that for a symmetric geopotential, this interval was selected as too narrow.
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A variation of the damping parameter was also analysed and it was found that already for
λLM “ 10´6, the situation deteriorates, and many low-inclination bins cannot be solved,
similar to the example without LM in Figure 4.8a.

Mahalanobis distance example

While in the previous sections, the RMS was used as the metric for finding the geopoten-
tial order and degree of the reduced force model, it is also possible to use a more statisti-
cally motivated criterion: the Mahalanobis distance, as introduced in Section 4.1.3, is then
required to stay below a certain maximum value for the desired solution. This allows to
have one single threshold, which takes into account the variances of the reference orbit
and the associated correlations.

The Mahalanobis distance, in fact, can be geometrically interpreted as a way of trans-
forming Euclidean distances of multivariate variables taking according to their variances.
While for a given Euclidean distance in three-dimensional space all points from the center
describe a sphere, the Mahalanobis distance would correspond to all points being on the
surface of an ellipsoid. If the variances in all three directions are unity, the Mahalanobis
distance is equal to the Euclidean distance.

Using an ephemeris and an associated covariance for ESA’s Cryosat-2 satellite5, the refer-
ence was generated using a full force model with a 36 ˆ 36 geopotential. TheMahalanobis
distance was then computed (via Equation 4.4) as the statistical distance of an orbit with
reduced force model with respect to the propagated covariance matrix of Cryosat-2. The
results are shown in Figure 4.9a. While for a 12 ˆ 12 geopotential, the solution stays still
very close to the reference, one can observe a drift by further reducing the force model,
which is due to the neglected zonal harmonics.

An advantage of such an approach is that it directly scales with the initial uncertainty
in the reference orbit solution: If the orbit determination result for the reference comes
with high covariance, a given threshold for theMahalanobis distance will assure that such
an orbit will not be degraded as much as would be the case for an orbit with high accuracy.

In Figure 4.9b, the evolution of the uncertainties in the components of the radius vec-
tor shows, that the scaling is dependent on the propagation: especially the along-track
error grows secularly with time. This effectively means, that for states being close to the
epoch (and thus close to the initial covariance), the Mahalanobis distance is computed for
a reference trajectory with less uncertainty, as opposed to states far from the epoch.

Fit span and sample size

From the orbit determination two more parameters are known that may have a strong
influence on the solution: the fit span and the sample size, or the number of pseudo-
observations within that span. In order to determine how different values affect the so-
lution, a sensitivity analysis was performed. The results are exemplarily shown for the
Cryosat-2 orbit (as given in the previous section) in Figure 4.10. While very short fit spans
in the order of one orbital revolution are very sensitive to variations in the fit span, this
5Mean altitude: 717 km, Inclination: 92˝.
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Figure 4.9.: Example for the evolution of the Mahalanobis distance for a geopotential of varying
degree and order. The reference trajectory had a geopotential of 36 ˆ 36. The propa-
gated standard deviations of the radius vector, using an initial covariance matrix from
a CDM, are shown in the right figure.

changes for fit spans across several orbits. It is very interesting to note that the selected
number of pseudo-observations for a given fit span, on the other hand, does not strongly
affect variations. This allows to draw the conclusion that there is a relatively large space
fromwhich the pair fit span and sample size can be selected without significantly affecting
the performance of the algorithm.

4.3.3. Obtaining the covariance matrix
A great advantage of applying the DC method, which is also used in the orbit determina-
tion, is the fact, that the covariancematrix of the solution is readily available as the inverse
of the Fisher information (Equation 3.37):

PDC “
´
HT ¨ W ¨H

¯´1
. (4.5)

However, this does not mean, that this is a real covariance matrix. First of all, it can only
be a covariance matrix, if the weight matrix contains the reciprocal measurement errors
in the observations (Tapley et al., 2004).

As in the presented method cartesian state vectors are used as pseudo-observations,
one possible solution is to introduce another iteration after the first one has successfully
converged. The second iterationwould use the obtainedRMSwith respect to the reference
trajectory as input to setup the weight matrix and perform the fit again.
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Figure 4.10.: Cryosat example: showing how fit span and number of sampled points affect the so-
lution.

Having a weight matrix that directly reflects the (pseudo-)observation residuals via the
RMS of the fit is only the first step: it is also important to combine this estimate with
the original covariance in the reference orbit. There are a few difficulties in doing this.
First of all, it is important to assess the correlation between the original covariance matrix
and the one obtained from the fit. By reducing the geopotential degree and order for a
subsequent fit, the uncertainties in the reference orbit are not taken into account. The
least-squares state updates require the state transition matrix, which, in principle, is the
same as in the propagation of the covariance of the reference orbit across the fit span.
It thus reflects the orbital mechanics only, being similar for both orbits. Correlation in
single components can occur: an example is the analysis by Matney et al. (2004) for the
along-track error in drag-affected orbits.

Analogously, one can imagine orbits, where errors from the truncation of the geopo-
tential series or even the residuals in the harmonic coefficients are pronounced in the
reference solution. When performing a fit, it can happen, that this effect is amplified by
cutting at even lower degree and order. However, as the covariance of the fit solution is
not propagated, this effect can be considered as small.

Assuming, that correlations between the elements of the covariance matrices can be
neglected, the combination of the two can occur according to the scheme shown in Fig-
ure 4.11. The covariance of the fit is constant throughout the fit span, as it reflects the
residuals of the fit with respect to the reference. The RMS is not affected by the selection
of the epoch within that span.
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Figure 4.11.: Scheme showing how the covariance matrix of the reference orbit and the one ob-
tained from the least squares solution can be combined.

One can thus add the constant covariance of the fit to the propagated reference covari-
ance, which degrades with time, if the fit is based on a propagated reference trajectory, to
obtain the combined covariance matrix Pcmb:

Pcmb ptiq “ Pr ptiq ` PDC pt0q . (4.6)

4.3.4. Applying the method to different orbit regions
So far, only orbits in the LEO region have been discussed. For a general applicability, it is
also important to study the implications for other important orbital regions.

GEO

The magnitude of the accelerations due to the dominant central body term of the geopo-
tential declines with 1{r2. Thus, the effectiveness of the GAMBIT method can be consid-
ered lower at geostationary altitude. In Figure 4.12 the along-track and cross-track RMS
for two different fits as a function of the geographic longitude are shown. For a 2 ˆ 2 fit,
the along-track error can reach up to several 100m, while already for a 3 ˆ 3 fit, the errors
with respect to a 36 ˆ 36 trajectory are reduced to the 10m level. The cross-track error in
Figure 4.12b is on the 1m level for a 2 ˆ 2 geopotential and also decreases by an order of
magnitude for a 3 ˆ 3 fit.

Considering, that 170m in GEO correspond to about 12 for ground-based optical ob-
servations, this is already in the order of the measurement noise for typical sensors (e.g.
Kelecy et al. (2008)).
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Figure 4.12.: Fitting a reference orbit in GEO (n “ 36) with a reduced geopotential for varying
geographical longitude. A fit span of four orbits and 83 samples were used.

MEO

The next analysis was performed for the MEO region. In Figure 4.13 a 2 ˆ 2 and a 3 ˆ 3 fit
are shown as a function of altitude, encompassing all current navigation constellations. It
is very interesting to note, that the radial and, even more pronounced, the along-track er-
ror both showmaxima at the operational altitudes of the different constellations. This can
be explained by the geosynchronous nature of those orbits, where higher-degree terms in
the geopotential are required to consider the resonance cases. For example, the GPS con-
stellation has a repeating groundtrack every two orbits, while satellites in the Globalnaya
navigatsionnaya sputnikovaya sistema (GLONASS) constellation fly over the same regions
every eight orbits. For Beidou, it is seven orbits, while satellites in theGalileo constellation
repeat their groundtrack every ten orbits.

Eccentric orbits

The properties of the method when applied to orbits with high eccentricity were also
studied. For varying the perigee altitude and the eccentricity, the required degree for
a symmetric geopotential, based on an RMS for the radial component between 50m to
200m, is shown in Figure 4.14a. The first remarkable result is that for a wide range, up to
eccentricities of e “ 0.6, the solution was always a 2 ˆ 2 geopotential fit on the reference.
However, when the eccentricity is further increased, up toGEO altitudes (e P p0.706, 0.730q
in the domain of the shown perigee altitudes) and even above, the required geopotential
degree steeply increases.
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Figure 4.13.: Fitting a reference orbit in MEO (n “ 36) with a reduced geopotential (3 ˆ 3) for
varying altitude, covering the operational orbits of navigation satellite constellations.
The fit span was eight orbits with 163 samples in total.
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Figure 4.14.: Required degree for a symmetric geopotential (left) in order to obtain a fit with an
RMS of the radial position component between 50m to 200m. A full force model
(n “ 36) was used as a reference. The fit span was about 5 orbits with about 24 samples
per orbit. Apogee passes are shown with blue dotted lines (right).
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One can also see in Figure 4.14a, that there were combinations for perigee altitude and
eccentricity, where the iteration did not converge to a solution. For the field with 0.45 ă
e ă 0.55 and 550 km ă hp ă 900 km, it failed because even for a geopotential of 2 ˆ 2, no
solution could be found - the RMS in the radial position component was less than 50m.
Further reducing would mean to use a two-body gravity field. This, however, results in
significantly higher deviations, even above the defined upper limit.

Finally, some simulations with e “ 0.75 also failed. The iteration went until similar
values for n were reached as for the adjacent altitude bins. With the solution still being
above the defined upper limit for the radial component, the next increment in n led to a
jump in the RMS below the defined lower limit. Thus, there is no symmetric geopotential,
which can provide a solution under the defined conditions.

The problem for high-eccentricity orbits with e ą 0.6 is the distribution of sample
points along the orbit. For the analyses shown here and in the previous examples, the
steps were equidistant in time. With increasing eccentricity, the orbit region around the
apogee gets a stronger weight with respect to the perigee region, simply because there are
more samples around the apogee. This is underlined by the RSS in the position vector,
which is shown exemplarily for one of the failed orbits in Figure 4.14b. The RSS is very
low near the apogee passes (indicated by a dotted line), while it reaches a maximum near
the perigee passes.

A possible solution for eccentric orbits would be to use regularization, an approach well
known for eccentric orbits, for example the generalized Sundman time transformation
(Sundman, 1913). A possible implementation would then take equidistant steps in the
mean anomaly.

4.3.5. Degradation by adding noise
An alternative and easyway of degrading orbit information is to introduce pseudo-random
noise. Known as Selective Availability, such a procedure was used for the Navigation Sys-
tem using Timing and Ranging (NAVSTAR) constellation of GPS until 2001, where dither-
ing applied to the GPS clocks resulted in position errors on the order of 100m (Kremer
et al., 1990).

Therefore, a method that adds pseudo-random noise to the individual components of
the state vector was studied. An exemplary result is shown in Figure 4.15 for a circular
400 km orbit at 54˝ inclination. Gaussian noise with zero mean and a standard deviation
of 100m was added to the position components. This resulted in the scattered values for
the osculating semi-major axis with respect to the true solution, as shown in Figure 4.15.

A third plot, however, shows that applying a smoothing allows for obtaining a signifi-
cantly improved estimate of the semi-major axis. In this case, a simple centered moving
average filter with 31 points was used. A similar procedure can be found in the literature
for improving GPS signals by averaging.

Finally, a procedure that adds noise, will also add higher frequencies to the signal, an
effect which is not desired in view of the subsequent interpolation envisaged for the so-
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Figure 4.15.: Evolution of the osculating semi-major axis, for a circular orbit at 400 km altitude
and 54˝ inclination. Gaussian noise with zeromean and a standard deviation of 100m
was added. Applying a moving average filter with 31 centered points allowed to obtain
estimates close to the original values.

lution (cf. Figure 1.1). In principle, it should be beneficial to remove higher frequencies
before going into the interpolation, in order to mitigate effects due to under-sampling.
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Ephemeris compression to provide
continuous data

The way orbit information is exchanged between different entities today can be princi-
pally attributed to one of the following two categories: Either information is provided
for one single epoch, for example by means of a state vector and covariance, or a table of
ephemerides is provided covering a certain time period. While the former method re-
quires the user to perform his own extrapolation to any other point in time, the latter
approach allows to interpolate between the given data points.

Both options have their advantages but also disadvantages: for example, TLE have to
be processed by SGP4/SDP4, even if the state is to be obtained at the epoch. The software
needs to be the same on both sides - for the generation of the TLE and their subsequent
processing in applications. If the employed force models do not match, additional errors
will be introduced.

Interpolation of tabulated data has the advantage that no orbit extrapolation (or prop-
agation) software is required. Standard interpolation techniques can be used. However,
the provided data comes with a certain time step and the user does not necessarily know,
which frequencies are present in the underlying data to properly sample it with his in-
terpolation. For data messages like the OEM (CCSDS 505.0-B-1, 2010), there are dedicated
keywords that the distributing entity can use to provide information on which interpola-
tion method and interpolation degree to use.

The method proposed here is to go one step further and let the interpolation already
occur before the information gets distributed. Thereby, full control to minimise the ad-
ditional error introduced by the interpolation is retained. With polynomial coefficients
being provided, users do not need to care about the proper handling of the information,
as the reconstruction of a polynomial series is a trivial task.

Several authors already studied applying polynomial interpolation to Earth orbits (e.g.
for the GPS constellation (Horemuž and Andersson, 2006; Schenewerk, 2003), as well as
more general analyses, e.g. (Deprit et al., 1979; Segerman and Coffey, 1998)) or even to
interplanetary orbits, like the orbit solutions provided as Chebyshev polynomials for the
bodies of the solar system by JPL (Seidelmann, 2006).
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The latter approach was identified to be very promising for the application to any Earth
orbit (Deprit et al., 1979). Therefore, the next section will give a brief overview on the
properties of Chebyshev polynomials. Then, several examples for the interpolation of
radius and velocity vectors for different orbits will be shown.

Providing orbit information as polynomial coefficients has the additional advantage,
that a considerable data compression can be achieved when compared with tabulated data.
Moreover, an approach to compute an envelope function for the variances of the state
vector components and interpolate it subsequently was studied and will be discussed.

Finally, polynomial interpolation is a well-suited post-processing step for orbits gen-
erated via the GAMBIT method, as those typically do not contain high frequency com-
ponents of the geopotential, which makes interpolation easier. Furthermore, as the force
model is adapted for each orbit, providing polynomials is less error-prone on the user’s
side. It shall be shown, that the polynomials can be used to approximate the input orbit
information without introducing significant errors.

5.1. Chebyshev polynomials
The polynomial interpolation can be based on Chebyshev polynomials of the first kind,
Tk ptq. The polynomial Pn interpolates the to be approximated function at n ` 1 nodes:

Pn ptq “
nÿ

k“0

ck ¨ Tk ptq , (5.1)

where ck are the polynomial coefficients that are specific for any given function P. The
Chebyshev polynomials of the first kind satisfy the following equation for degree n and
argument t P r´1, 1s:

Tn ptq “ cos pn ¨ arccos tq . (5.2)

In order to compute the polynomials of higher order, a recurrence relation can be used
(Abramowitz and Stegun, 1964):

Tn`1 ptq “ 2 ¨ t ¨ Tn ptq ´ Tn´1 ptq . (5.3)

5.1.1. Chebyshev nodes
In the application, the interpolation nodes are represented by the ephemerides, the latter
typically provided equidistantly with respect to time. However, these nodes do not coin-
cide with the Chebyshev nodes, which reduce Runge’s phenomenon1 through the denser
spacing of nodes near the interval borders. The Chebyshev nodes are the roots of the
Chebyshev polynomials, thus resulting in:

tk “ cos
ˆˆ

k ` 1
2

˙
¨ π

n ` 1

˙
, k “ 0, . . . , n. (5.4)

1Polynomials of high degree show oscillations and high interpolation errors at interval borders for equidis-
tant interpolation.(Runge, 1901)
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As the Chebyshev polynomials are defined for ´1 ď t ď 1 only, the independent
variable t˚ has to be converted first, using the following equation with the lower and upper
interval border of the ephemerides table given as a and b, respectively:

t “ 2 ¨ t˚ ´ pa ` bq
b ´ a

. (5.5)

5.1.2. Chebyshev polynomial coefficients
The orthogonality property can be used to compute the coefficients of the polynomial
given in Equation 5.1, given the fact that this polynomial is equal to the ephemeris (func-
tion) value at the Chebyshev nodes, Pn ptkq “ f ptkq. Therefore, f ptkq is multiplied with a
Chebyshev polynomial of the first kind and summed over the n ` 1 nodes (Gil et al., 2007):

nÿ
k“0

f ptkq ¨ Tl ptkq “
nÿ

i“0

ci

nÿ
k“0

Ti ptkq ¨ Tl ptkq

“ n ` 1
2

¨ cl , l ą 0 (5.6)

Thus, for l ą 0, the coefficients cl can be computed as

cl “ 2
n ` 1

¨
nÿ

k“0

f ptkq ¨ Tl ptkq , l ą 0, (5.7)

and for l “ 0:

c0 “ 1
n ` 1

¨
nÿ

k“0

f ptkq ¨ Tl ptkq . (5.8)

5.2. Ephemeris compression
5.2.1. Reference orbits
The performance of interpolation and compression methods has to be assessed with re-
spect to some reference. A convenient approach is to generate a highly accurate reference
trajectory through propagation: Neptune was used with initial conditions obtained from
several different TLE to obtain reference orbits for different orbital regions.

The data shown in Table 5.1, was used in the following for single satellite examples.
The propagator was configured to use a full forcemodel (in this case a 24 ˆ 24 geopoten-

tial, atmospheric drag (NRLMSISE-00), lunisolar perturbations, solar radiation pressure
in combination with a conical umbra / penumbra shadow model, solid Earth and ocean
tides), the propagation of the covariance matrix included J2 contributions to the varia-
tional equations. As TLE do not come with any uncertainty information, the exemplary
full covariancematrix (diagonal and off-diagonal elements) was taken from an operational
case used by ESA’s Space Debris Office collision avoidance service. Each orbit was propa-
gated for at least 14 revolutions.

Note that although the SGP4 force model does not match the one of the numerical
integration, using the osculating TLE states as initial state vectors for the propagation
was considered as viable for providing representative results.
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Table 5.1.: Satellites selected for the examples in this chapter, with doubly averaged perigee altitude
hp, eccentricity e and inclination i from TLE. Osculating states were derived from TLE
and directly used as initial states in the numerical propagation.

Name Short hp / km e i / deg

ATV-2 ATV 359.0 0.0019 51.6
Sentinel-1A S1A 695.0 0.000 14 98.2
Galileo-8 GL8 23 214.0 0.000 27 55.1
Ariane-5 R/B AR5 252.0 0.7282 5.9
Meteosat-10 M10 35 788.0 0.000 02 0.06

5.2.2. Results

It is essential to properly select the interpolation interval length and the polynomial de-
gree in order to approximate the reference trajectory with a given accuracy. The frequen-
cies present in the reference trajectory have to be known in order to select the proper
sampling. An additional source of error is referred to as the Gibbs phenomenon (Gibbs,
1898): signals containing discontinuities can only be approximated to a certain extent by
a series of continuous functions. However, if the polynomial interpolation is applied to
an already smoothed signal, which is the case here for the numerical reference orbit or
the orbit with predetermined accuracy, there will not be any discontinuities.

For the selection of interval length and polynomial degree, Seidelmann (2006) gives
an example: the JPL ephemerides of the Earth are segmented into 16 d intervals with a
polynomial degree of 12. Depending on which DE model is used, the interpolation error
for all coordinate values might be less than 0.5mm (Seidelmann, 2006). This accuracy
should not be confused with the orbit determination residuals - the interpolation error
is always relative to the reference trajectory.

In presenting the transition from a GP to an SP catalog, (Schumacher and Hoots, 2000)
states that an SST systemmay provide compressed ephemerides with accepted interpola-
tion errors for the position vector of up to 100m.

Some analysis results for three different Accepted Error Levels (AELs) are presented in
the following: 1m, 10m, and 100m. An AEL of 1m is the range RMS with respect to a
reference trajectory. From an SST perspective, such a product would be appropriate even
for the collision avoidance service. Providing interpolated SP vectors with residuals up to
100m, on the other hand, are sufficient for ground-based tracking purposes.

The residuals presented in the following were computed for the position (geometrical
range) at one minute steps in the GCRF. The first result is shown in Figure 5.1 for the
LEO region. The required polynomial degree is given as a function of granule length and
orbit altitude (near-circular orbits assumed) for an AEL of 1m. This result confirms the
applicability of Chebyshev interpolation to perturbed orbits - even for very low altitude
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Figure 5.1.: Polynomial degree as a function of orbit altitude and granule length in the LEO re-
gion. An inclination of 54˝ was used, which is close to two of the exemplary missions
shown, ISS and Globalstar. Two additional ESA missions (with higher inclinations!)
are provided for comparison. A full force model was used. The blue dots mark the
orbit altitude and period.

orbits with significant drag contributions. For a granule length close to the orbital period
(e.g. about 90 min for the ISS) the required polynomial degree is about 20.

In Figure 5.2 the relationship between polynomial degree and granule length is shown
for the different AEL and the reference objects defined in Table 5.1. It is quite interesting
to note that there is a linear relationship between both quantities. This allows for a simple
approximation of the number of required polynomial coefficients to cover a certain in-
terpolation interval, as shown in Table 5.2, irrespective of the segmentation applied to the
entire propagation span. Note that for a complete orbit, with the state vector containing
six elements, the figures given in Table 5.2 have to be multiplied by six. For example, the
orbit of Sentinel-1A (with an AEL of 100m) would require 34.9 coefficients per hour, or
5860 coefficients to cover a whole week.

While the results shown above were determined for a maximum accepted error in po-
sition, as specified by the AEL, the residuals in the single components, of course, may be
less than this threshold, even up to several orders of magnitude. A selected example for
Sentinel-1A with a granule length of 300min and an AEL of 10m is shown in Figure 5.3.
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Figure 5.2.: Polynomial degree as a function of the granule length. Results are shown for reference
orbits as given in Table 5.1, and three different accepted error levels for the position.
Note that the x-axis for the MEO/GEO plots are scaled by 104.

In this example, one segment contains three orbital revolutions of Sentinel-1A. It can be
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Table 5.2.: Number of required coefficients per hour of interpolation span, based on the results
shown in Figure 5.2.

Coefficients per hour

AEL = 1m 10m 100m

ATV-2 17.4 9.12 6.18
Sentinel-1A 15.1 7.08 5.82
Ariane-5 R/B 24.6 20.3 16.5
Galileo-8 0.713 0.674 0.653
Meteosat-10 0.503 0.402 0.380

seen that the interpolation errors are higher for mid-interval values and smaller at the
interval edges, as a result of a denser spacing of Chebyshev interpolation nodes.

Another interesting example is a high-eccentricity orbit as shown for the Ariane-5 upper
stage in Figure 5.4. Here, the errors near the perigee are clearly dominating. It can also be
seen that the residuals in single segments may be orders of magnitude below the accepted
error threshold for the entire interval, while one single perigee pass may be pivotal in the
determination of the required polynomial degree for the GTO.

So far, the interpolation was based on radius and velocity vectors in the GCRF. An-
other idea is to interpolate osculating classical orbit elements. Again, the same orbits
were analyzed with the error threshold being the position. The only difference was that
the Chebyshev polynomial coefficients were determined for the semi-major axis, eccen-
tricity, inclination, right ascension of the ascending node, argument of perigee, andmean
anomaly. However, it turned out that switching to Keplerian elements does not yield any
advantage. For example, the interpolation of the orbit of Sentinel-1A was performed with
polynomials of up to double the polynomial degree compared to the results in Figure 5.2
for the same granule length. A reason for this is that the interpolation has to be done for
functions with higher frequency components having significant amplitudes. An example
is shown in Figure 5.5 for the eccentricity interpolation of Sentinel-1A. Two examples for
polynomials with n “ 20 and n “ 40 are compared to the reference trajectory. In this
scenario, the required polynomial degree was n “ 78 for a granule length of 300min and
an AEL of 10m.

5.3. Covariance matrix compression
The covariance matrix provided by JSpOC in a CDM is valid only at the Time of Closest
Approach (TCA). Analyses involving, for example, an avoidance manoeuvre for one of the
two objects, would require a propagation of the uncertainties. One can use a similar ar-
gument as for the state vector information and ask for interpolated covariances. Alfano
et al. (2004) analysed a method based on interpolating data points with quintic splines.
While such an approach does not guarantee positive definiteness, Woodburn and Tany-
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Figure 5.3.: Example for residuals in the x-component of the radius vector (GCRF) of Sentinel-1A,
with a granule length of 300 minutes and an AEL of 10 m. Individual segments are
labeled in red.

gin (2002) described a method based on the eigen-decomposition of a 3 ˆ 3 matrix and
subsequent interpolation of the sigma values and the eigenvectormatrices. Tanygin (2014)
gives anothermethod, which can be directly used on the covariancematrix and guarantees
positive definiteness.

In the context of this thesis, an approach was studied, where the interpolation of the
variances (or diagonal elements of the covariance matrix) was performed on the envelope
(supremum function) computed for those elements. The motivation was to significantly
reduce the required amount of data to be transferred, while still preserving sufficient in-
formation for the intended purpose.

In Figure 5.6 an example is shown for the propagated variances of the position vector
components in the object-centered reference frame, as well as an envelope for the along-
track component. The main advantage of applying an interpolation algorithm on an en-
velope is that the latter does not contain oscillations and, by definition, is the supremum
of the uncertainties in the individual directions. This will always result in a conservative
estimate.

The definition of an envelope is only possible for the diagonal elements of the covari-
ancematrix, i.e. the position and velocity variances. While some correlation coefficients in
the off-diagonal elements have similar properties, others show oscillations, which means
that the correlation (positive or negative) between different components is a function of
the position along the orbit. An example is shown in Figure 5.7 for the correlations be-
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Figure 5.4.: Example for residuals in the x-component of the radius vector (GCRF) for the Ariane-5
upper stage in a GTO, with a granule length of 300 minutes and an AEL of 10 m.
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Figure 5.5.: Example for Sentinel-1A eccentricity interpolation. The reference trajectory is com-
pared to polynomials of degree n “ 20 and n “ 40. The granule length was 300min.
For an AEL of 10m, the required polynomial degree was n “ 78.
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Figure 5.6.: Example for the propagation of a full covariance matrix, showing how the position
variances in an object-centered frame evolve. A sun-synchronous LEO was used here,
with a typical initial covariance matrix.

tween radial and along-track position, along-track and cross-track position, as well as the
correlation of the cross-track position component with the radial and along-track velocity
components.

Following the example in Figure 5.6, it can be seen that the envelope for both, the ra-
dial (U) and the normal (W) component are trivial and result in a constant supremum.
Thus, the algorithm described hereafter will be shown for the transversal component but
is likewise valid for the other directions.

Three different filters will be applied to the propagated variance, which essentially is a
discrete time series to be analyzed for the determination of the envelope function Env ptq.
It is defined as the supremum of the variance in the along-track direction V ptq:

Env ptq “ sup rV ptiqs , ti P rt0, ts (5.9)

Determine extrema and keep maxima The first step is to determine the extrema of the
discrete time series, keeping in mind that the ultimate goal is to determine a set of points
that can, in the end, be used for the interpolation of the envelope. The extrema are deter-
mined by evaluating finite differences:

A local minimum is assumed at ti, if:

V pti`1q ´ V ptiq ą 0 ^ V ptiq ´ V pti´1q ă 0

A local maximum is assumed at ti, if:

V pti`1q ´ V ptiq ă 0 ^ V ptiq ´ V pti´1q ą 0
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Figure 5.7.: Evolution of several correlation coefficients, showing clearly, that an envelope compu-
tation is useless, as soon as the oscillations come with sign changes.

An inflection point is assumed at ti, if:

tV ptiq ´ 2V pti´1q ` V pti´2q ă 0 ^
V pti`2q ´ 2V pti`1q ` V ptiq ą 0u _

tV ptiq ´ 2V pti´1q ` V pti´2q ą 0 ^
V pti`2q ´ 2V pti`1q ` V ptiq ă 0u

The simple relations using finite differences are quickly identifying the extrema. The
above formulation for the inflection point is an approximation of the second derivative of
the function at ti using second order backward and forward differences, respectively. For
example, the backward differences ∇2V ptq are obtained via:

∇2V ptq “ rV ptiq ´ V pti´1qs ´ rV pti´1q ´ V pti´2qs
“ V ptiq ´ 2V pti´1q ` V pti´2q

with the result for the along-track component shown in Figure 5.8.
It is clear that not all extrema will be relevant for the interpolation of the envelope

function. Therefore, the next filter step removes all identified local minima from the set
of identified points. An additional step was to discard those inflection points which were
detected following a local maximum. Finally, the set of remaining points having passed
this filter step are shown in Figure 5.9.

Point shift filter With the extrema being identified and filtered for the relevant ones, the
next filter will perform slight adjustments by shifting the remaining points, if a point is
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Figure 5.8.: Along-track error with extrema being identified. Linear interpolation for adjacent ex-
trema, shown with orange line, will be used in subsequent filter steps.
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Figure 5.9.: Along-track error with filtered extrema being identified. Linear interpolation for ad-
jacent extrema, shown with orange line, will be used in subsequent filter steps.

expected to contribute to an improved interpolation result of the envelope in the end. In
order to evaluate which individual points need to be shifted, the following algorithm was
used:

1. Perform linear interpolation for adjacent points, providing a connecting line λ ptq.
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2. For each pair of adjacent points at ti and ti`1, find time tmax,i for maximum differ-
ence between V ptq and λ ptq:

tmax,i “ argmax
ti

pV ptq ´ λ ptqq , @ t P rti, ti`1s

3. If tmax,i ą 0, then shift either Vptiq or Vpti`1q, depending on which one is closer to
tmax,i.

By using the above formulation, there will be no shift, if V ptq is always smaller than λ ptq
between two points.

The results of this algorithm are shown in Figure 5.10. The advantage of having this
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Figure 5.10.: Along-track error after point shift filter has been applied. Shifted points shown with
red markers, including their initial values in gray.

filter in place is not really perceivable yet, but it becomes obvious after the next filter has
been applied to the set of the remaining points.

Resolve clustering filter The clustering of points, as can be seen in Figure 5.10, for example
at t “ 6 h, may put additional emphasis on the time interval comprising the cluster, to
the disadvantage of the other points in the interpolation span - especially if a low-degree
polynomial is used for the envelope.

The idea used to resolve the clusters is based on themedian time separation Mt between
two points each for the entire interpolation span. All points i ` 1 are removed, which
follow with:

Δt “ ti`1 ´ ti ă Mt{2. (5.10)

The result of this filter is shown in Figure 5.11. It can be seen that the remaining points
are now well distributed across the envisaged interpolation interval. Also, the advantage
of the point shift filter from the previous step becomes clear now: If there would not have
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Figure 5.11.: Along-track error after resolving clusters.

been any shifts, connecting lines between the remaining points would, in some cases, still
show intersections with V ptq, which is not desirable. In fact, the optimum solution, in
view of the envelope computation, is to have all connecting lines being tangent to V ptq.

Final optimization and interpolation In principle, the interpolation can already be done
on the resulting set of points shown in Figure 5.11. However, it turned out that a second
run of all three previously described filters looked promising and worked out well in this
example. After removing two additional points, the final result was obtained by using a
5th degree Chebyshev interpolation for the envelope. It is shown in Figure 5.12.
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Figure 5.12.: Final result for the interpolated envelope of the along-track error.
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The results were shown for one single example. An analysis for several hundred objects
was performed and showed that the method was very robust, after the fit period for the
envelope was set to at least five orbit revolutions. The obtained envelope interpolation
results were used for probability risk computations in Section 6.2.3.
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Applicability in the operational con-
text

6.1. Providing orbit information via standardised data
messages

The exchange of orbit information between different parties presupposes explicitly de-
fined interfaces or data message formats. Besides the TLE data, which is a format well
known and has been widely used by the community for decades now, more elaborate data
messages have been defined in the recent years.

In particular, the CCSDS has developed several tailored message formats serving dif-
ferent purposes. For the exchange of orbital information, the CCSDS Blue Book "Orbit
Data Messages" (CCSDS 502.0-B-2, 2009) defines the OEM, Orbit Mean-Element Message
(OMM) andOPM, respectively. In 2012, ISO adopted this standard as ISO 26900:2012 (ISO,
2012). The OEM provides the means to exchange state vector and covariance information
for different epochs as well as detailed additional information about the reference frame,
object properties, etc. Also, a set of keywords (or tags for the XML realization) related to
interpolation are defined. Users of this data message thus receive information on permis-
sible time intervals in the ephemeris file that can be used for interpolation as well as on
the recommended interpolation method and polynomial degree.

Being already a good option to provide Chebyshev polynomials for state and covariance
information, a direct provision of the polynomial coefficients is not possible. This may,
however, be overcome with the new Orbit Comprehensive Message (OCM), which is cur-
rently being prepared for implementation in a future revision of the Orbit Data Messages
Blue Book. The OCM aims at providing more flexibility through the combination and
extension of the OEM, OMM and OPM in a single message.

One solution could be to use the envisaged USER_DEFINED_x keyword, where x is to
be replaced by any user-specified string. A combination of these keywords could thus be
used to include polynomial coefficients into the OCM. Being still in a draft status, one
could continue to discuss whether it makes sense to actually have dedicated keywords to
directly provide polynomials for state and covariance information.
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<ocm>

<header>

...

</header>

<body>

<segment>

<metadata>

...

<useable_start_time>...</useable..>

<useable_stop_time>...</useable..>

...

</metadata>

<data>

<prx1>3.456e-2</prx1>

<pry1>7.890e-1</pry1>

...

<pvz1>1.234e-5</pvz1>

...

<pvzN>5.678e-6</pvzN>

</data>

</segment>

<segment>

...

</segment>

...

Figure 6.1.: Example of how an OCM (in XML format) might be used to provide polynomials of
degree N for the radius and velocity components of the state vector.

In Figure 6.1 an example is shown for how anOCMmight be used to provide polynomial
coefficients. The header provides some general information, including the originator and
the version of the data file. The message body contains several segments, which are de-
fined by the start and stop time of the individual interpolation intervals. Both, begin and
end epoch for each segment are identified by the useable_start_time and useable_stop_time,
respectively, which are part of themetadata section within the segment. On the user’s side,
nothing more needs to be done than reading this file, taking care of selecting the right
segment for the epoch under consideration and let the polynomials being reconstructed
using a standard Chebyshev polynomial processor. However, there is still a problem to be
adressed on the data center’s side regarding the segmentation, as the latter may result in
discontinuities, which shall be one of the identified performance issues discussed next.
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6.2. Performance issues
6.2.1. Segmentation
In Section 5.2 it was explained that in order to keep the residuals to the reference trajectory
within desired bounds, the polynomial degree and the granule or interval length cannot
be selected independently. Therefore, in order to provide data files covering several days
of an orbit, the means to perform a segmentation of the full time span into manageable
time intervals are required. The subdivision of the time span into several granules and
the interpolation of each of them independently can be easily accomplished and included
in a data message as shown in Figure 6.1. However, it is not guaranteed that the transition
of one segment to the subsequent one is continuous (and differentiable) in the different
components.

An example illustrates the problem for a typical sun-synchronous orbit, shown in Fig-
ure 6.2. For this example, the Sentinel-1A orbit was used, with the granule length set to
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Figure 6.2.: Example for the position or range error for two overlapping interpolation intervals
g1 and g2, showing the effect of a discontinuity of subsequent intervals. The orbit of
Sentinel-1A was used, with a granule length of 90min and a maximum accepted error
of 1m for each radius component wrt. the reference trajectory.

90min, and the maximum allowed position error for the individual components was set
to 1m. By letting the two adjacent intervals g1 and g2 overlap, it is possible to compute
the difference between the two polynomials for a given epoch. The overlap was selected
as 10min in this example.

As can be seen in Figure 6.2 the discontinuity caused by the segmentation process intro-
duces an additional error resulting in an RMS of 19 cm for the residuals. In this example,
this translates to 19 % of the maximum accepted error of 1m.

One idea to overcome this problem is to post-process the first interpolation result for
adjacent segments using a weight function for a pre-defined time span ts centered at the
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interval transition time tτ between g1 and g2. Such a weight function would give full
weight to g1 and g2 at t1 “ tτ ´ ts{2 and t2 “ tτ ` ts{2, respectively. Letting the weights
of the two segments decline according to a cosine law, the following formulation can be
used for the correction of the individual components xi of the state vector:

xi ptq “ 1
2

¨ pwi,1 ` wi,2q (6.1)

wi,1 “ xi,g1 ¨
„

1 ` cos
ˆ

t ´ t1

ts
¨ π

˙j
(6.2)

wi,2 “ xi,g2 ¨
„

1 ` cos
ˆ

t2 ´ t
ts

¨ π

˙j
(6.3)

Of course, adapting the state vector components at the begin and the end of an interval
of a segment will render the polynomial coefficients of the original interpolation invalid.
Therefore, a second interpolation can be performed for the same segments, in order to
update the polynomial coefficients, which will then correspond to the solution with a
smooth and continuous transition for adjacent segments. For the same example from
above, the second interpolation results are shown in Figure 6.3 for the residuals of the
interpolation results with respect to the reference trajectory. Although the second inter-
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Figure 6.3.: Difference in range error between uncorrected (first interpolation without weight func-
tion) and corrected (second interpolation after weight function was applied) interpola-
tion with the segment transition epoch being centered.

polation is computed on the set of data points from the first interpolation polynomial -
as opposed to the first interpolation, which is based on the reference trajectory - it can
be seen that notable differences between the two interpolations occur only in the region
where the weight function was applied. However, the range error is still bounded in this
example and significantly below the maximum accepted error of 1m.
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In addition, due to the denser sampling of data points at the interval edges, the Cheby-
shev interpolation already comes with a reduced error in this area when compared to
mid-interval values. This provides additional stability for the application of the weight
function.

It is also important to look at the velocity errors at the interval transition. In the con-
text of conjunction assessment, in particular, the estimation of a collision probability is
sensitive to the velocity vector, so that it has to be assured that the velocity errors in the
individual components are in an acceptable regime.

The velocity vector component errors (after the second, corrected interpolation) are
shown, for the same Sentinel-1A example, in Figure 6.4. For an AEL of 1m, the velocity
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Figure 6.4.: Errors in the individual velocity components (final result after second interpolation
with weight function) with the segment transition epoch being centered.

errors are on the order of a fewmms−1. More importantly, the transition from the first to
the second interval looks quite smooth, so that it can be concluded that also the velocity
results are credible at the interval transitions.

6.2.2. Data message size and update cycles
The data compression ratio rc shall be defined as follows:

rc “ Ephemerides-based message size
Polynomial-based message size (6.4)

Assuming that the number of digits for each number provided in both the ephemerides-
based (tabulated) as well as the polynomial-based message, is the same, one can simply
derive a formula for the compression ratio, which only depends on the time interval used
for the ephemerides and the coefficients-per-hour figures given in Table 5.2. Themessage
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size for the ephemerides-based message, sm,eph, considering a k-dimensional state vector
and a n ˆ n covariance matrix (with n˚ elements being stored), can be computed as:

sm,eph “ k ` n˚
Δτ

¨ Δt, (6.5)

where Δτ is the step size of the ephemerides in the file and Δt is the time interval covered
by the message. Note that only the data part of the message is considered, as header and
metadata sections are assumed to be of the same size for both messages. For the size of
the polynomial-based message, sm,pol one obtains:

sm,pol “ pk ¨ cS ` n˚ ¨ cCq ¨ Δt, (6.6)

where cS is the number of coefficients per hour for the state vector polynomials from
Table 5.2, while cC is the equivalent number of coefficients per hour for the covariance
matrix elements. The compression ratio can now be written as:

rc “ k ` n˚
Δτ ¨ pk ¨ cS ` n˚ ¨ cCq . (6.7)

For a message containing only state vector information (n˚ “ 0), Equation 6.7 can be
further simplified:

rc,S “ 1
cS ¨ Δτ

. (6.8)

With both the coefficients-per-hour ratio and the step size being in the denominator in
Equation 6.8, it is clear that the compression ratio will increase for decreasing step sizes
in the ephemerides-basedmessage as well as for decreasing coefficient-per-hour ratios cS,
the latter being a function of the AEL and the orbit. An example for an AEL of 1m is shown
in Figure 6.5, also depicting typical step sizes for POE which can be accessed online. The
compression ratio is well above one for LEOs and GTOs for ephemeris step sizes of a few
minutes. Setting the AEL to 10m is further improving this ratio, as shown in Figure 6.6.

Using the envelope interpolationmethod for the covariance matrix compression intro-
duced in Section 5.3 would improve the situation even more. Taking the example from
Section 5.3, the covariance matrix is provided with six polynomial coefficients per compo-
nent for a time span of about 8 h. This corresponds to 0.075 coefficients per minute and
thus in the comparison with tabulated data to a compression ratio above one for step sizes
less than about 13min. This can be easily verified by setting k “ 0 in Equation 6.7.

It is thus likely to achieve a compression ratio above one with polynomial-based data
messages. More important, however, are at least two other properties of the presented
methods: firstly, polynomials provide an easy way of obtaining state vectors and uncer-
tainties for any epoch, while messages based on tabulated ephemerides have to be prop-
agated or interpolated to obtain intermediate values. Secondly, the proposed method of
having the envelope function provided as a polynomial comes with the advantage of easily
forecasting the uncertainties.

The envelope function is also useful in estimating when the next update will be re-
quired. In (Krag et al., 2010), a detailed analysis of design drivers for a space surveillance
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Figure 6.5.: Compression rates for messages containing only state vector data as a function of the
step size between subsequent ephemerides. An AEL of 1m was used for the polynomi-
als. Also shown are step sizes exemplarily for POEs available online.

and tracking system was performed. The authors also provided a justified method to
specify update cycles for state vectors and covariances. A so-called covariance envelope was
introduced (not to be mixed up with the envelope function introduced here). The updates
are supposed to occur as soon as the uncertainties are above a given threshold. Using the
envelope function, one can easily determine the validity time span of a data set.

6.2.3. Covariance envelope interpolation in the operational collision
avoidance context

The envelope interpolation outlined in Section 5.3 is applied to the diagonal elements
only, or the state vector variances. Being the supremum function, the interpolated enve-
lope does not affect the positive definiteness of the matrix. However, the variances will
generally be greater than the propagated reference. Also, it is not possible to apply the
same envelope approach to the off-diagonal matrix elements, or covariances, as the cor-
relation coefficients show oscillations and might be positive or negative for a given point
in time.

In order to find out how far one can go with reducing the required information to be
stored for the covariance matrix, a study was performed on a set of CDMs. The idea was
that if there is only an envelope interpolation for the diagonal elements, one could try to
omit the off-diagonal elements and see, whether essential services can still be operated
with variances-only information.
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Figure 6.6.: Compression rates for messages containing only state vector data as a function of the
step size between subsequent ephemerides. An AEL of 10m was used for the polyno-
mials. Also shown are step sizes exemplarily for POEs available online.

The information on the uncertainty in the state vector is used to compute the collision
probability at the TCA. The latter is an essential input for manoeuvre decisions in the
operational collision avoidance.

A common method to compute the collision probability for a close encounter is based
on the following equation (e.g. Alfriend et al. (1999); Klinkrad et al. (2005):

pcol “ 1
2π

a|Pcmb|
ż

A
exp

ˆ
´1

2
ΔrTP´1

cmbΔr
˙

dA, (6.9)

where Δr is the miss distance vector at TCA, Pcmb “ Ptgt ` Pchs is the projection of the
combined covariance matrix of the target and chaser satellites on the so-called B-plane

(Foster and Estes, 1992), which is a plane perpendicular to the relative velocity difference
of both objects at TCA. The integration area is a circle, which encompasses the projected
cross-sections of both objects and is centered at Δr.

For the CDM analysis, it was especially convenient that JSpOC started sharing full 6 ˆ 6
covariance matrices from January 19, 2016 with satellite owners and operators. A set of
783 CDMs received for ESA satellites in LEO was selected. All contained a full covariance
matrix for both target and chaser objects, which is a prerequisite for a covariance ma-
trix propagation and subsequent computation of an envelope and its interpolation coef-
ficients. All selected CDMs had a miss distance less than 1000m, in order to focus mainly
on messages where non-negligible collision probability was expected.
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The first analysis consisted of computing the collision probability according to Equa-
tion 6.9 at TCA for the full covariance matrix versus a covariance matrix which contained
only the (original) variances on the diagonal, with all off-diagonal elements set to zero.

The second step was then to use the covariance matrix from the CDMs, propagate it for
at least five orbits and then to compute the envelope function. The result of the envelope
was used to obtain the value it provides at TCA and assess the collision probability.

The results are shown in Figure 6.7. It can be seen that for the first step, omitting
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Figure 6.7.: Collision probability differences with respect to results obtained from original infor-
mation in the CDM. First analysis was for using variances only (no correlation) from
the CDM. The second analysis results were obtained for the envelope interpolation
method. A cut-off was introduced for computed probabilities pcol ă 10´30. Typical
operational decision thresholds at pcol “ 10´5 and pcol “ 10´4 are shown with dotted
lines.

the off-diagonal terms and using only the variances from the CDMs, the differences are
large for low probability values. In fact, the collision probabilities in most cases seem
to be larger than for the probabilities computed from the full covariance matrix. It is
interesting to note that for increasing collision probability, especially close to the range
with operational relevance (e.g. pcol “ 10´5 or pcol “ 10´4 as usual decision thresholds),
the results obtained by the variances-only method come close to the reference values.
In fact, there was only one additional event identified with pcol ą 10´5, which can be
regarded as one additional false alarm.

Applying the envelope interpolation method, a notable result is that events with sig-
nificant collision probability often resulted in a too low estimate. One can also see that
there are events which result in higher collision probability values, compared with the
reference, especially for low collision probabilities.

Both effects can be explained by examining the example shown in Figure 6.8. If the
variance increases, which is in general the case for the envelope method, both possibili-
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x

ppxq

Figure 6.8.: Example showing two Gaussian Probability Density Functions (PDFs) with the same
mean but different standard deviation. In a 1D-scenario, the collision probability
would correspond to the integration of the PDF along the x-axis for the shown range.

ties exist: If the miss distance is large, which would correspond to a larger offset of the
integration area to the mean of the PDF, the probability would increase. However, if the
integration occurs close to the mean (small miss distance), one would obtain a decreased
collision probability.

From an operational point of view, this means that events which would have been as-
sessed as critical could be significantly below the decision threshold and thus might not
even be considered for a more detailed screening.

The method of covariance matrix compression via its envelope function can therefore
be considered as useful in applications or services where the requirements concerning
the trueness of the provided covariance matrix are less strict. For example, the method
solution may be beneficial in acquiring objects by deriving an associated duration for the
sensor pointing from the uncertainties in the state estimate.
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Conclusion

The aim of this thesis was to investigate specific questions related to the data exchange
between a Space Surveillance and Tracking (SST) system and its external users. The dif-
ferent data needs and varying levels of privileges associated with the individual users, who
connect to the services an SST system provides, presuppose a clearly defined data policy.

The way JSpOCused to distribute data in the frame of its collision avoidance service, is a
remarkable example of how such a data policy evolves over time: while in the past satellite
owners and operators had to rely on TLE orbit information to run their own conjunction
predictions, JSpOC started distributing CSMs in the aftermath of the Iridium-Cosmos
collision. The state vector information contained in those conjunction messages was by
far more accurate than the information contained in TLE. Moreover, covariance matrix
information was also provided, which allowed to assess the probabilities for each event.

The conjunction prediction service provided by JSpOC saw further improvements with
the introduction of the CDM and the latest upgrade resulting in the distribution of full
covariance information. Noting that CDMs have been accepted by operators as the state-
of-the-art source of information for collision avoidance, clearly identifies this service as
the one driving the accuracy-related requirements of an SST system. On the other hand,
there are services that continue to work with less accurate TLE. For example, using TLE
state vectors as apriori information for the acquisition of an object above the horizon is
an adequate approach for passive optical observations.

Besides the fact that TLE come without any information on the associated uncertain-
ties, another disadvantage is that they are based on the analytical orbit theory SGP4/SDP4:
computing orbit states requires to use the same theory. The need to keep the orbit theory
consistent between the data originator and the user is a source of errors often encountered
in practice.

The motivation for this study was thus to investigate the possibility of deriving orbit
information of predetermined accuracy from highly accurate information available in an
object catalogue. This has the advantage of having only tomaintain one satellite catalogue
from which different data products can be derived.

Moreover, a distribution method ought to be identified which avoids having the need
to keep orbit extrapolation software consistent between all parties involved in the distri-
bution.

The following problems were addressed sequently in this thesis:
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(1) Design an orbit propagation tool, based on numerical integration, for state and co-
variance as well as the means to assess process noise - for the purpose of being used
in an SST system.

(2) Deriving from available high-accuracy data a solution with a predetermined accu-
racy tailored to the needs of users and services.

(3) Provide the means to establish a data message containing continuous information
making use of current data message standards.

(4) Investigate a method to also provide interpolated covariance matrix information
associated with the obtained state vectors of predetermined accuracy.

The numerical orbit propagation software NEPTUNE has been developed as a prereq-
uisite for the subsequent analyses in this thesis. The software design was driven by in-
ternational standards and guidelines, such as ECSS, 2008, ANSI/AIAA, 2010 or ISO, 2014.
A numerical integration based on a variable-step multi-step Cowell method was selected
and successfully combined with a Runge-Kutta (RK) propagation of the state transition
matrix, allowing to extrapolate also the uncertainties in the state vector given by the co-
variance matrix.

Beyond the modelled perturbations, an approach to also account for unmodelled ef-
fects was studied. The errors introduced by the truncation of the geopotential are time-
correlated and referred to as coloured noise. A method proposed by Nazarenko (2010) was
implemented to compute those noise contributions. Together with the state vector and
covariance matrix propagation, NEPTUNE offers the capability to perform the essential
time update steps in the orbit determination process of an SST system.

The next step was to find a method that allows to derive an orbit with reduced accu-
racy from a given reference with assessable method error. Using a set of sample points as
pseudo-observations of the reference trajectory, a batch least-squares approachwas imple-
mented to find a solution based on a Gauss-Newton (or Differential Correction) iteration.
The required method error with respect to the reference was introduced by reducing the
degree and order of the geopotential. This proved to be a promising method for orbits
in the LEO region, especially after augmenting the iteration by the Levenberg-Marquardt
method, which solved convergence issues for low-inclination orbits. It was shown that
algorithm parameters like the fit span and number of samples can be selected in a wide
range without significantly affecting the results.

As the geopotential degree can only be reduced in discrete steps, it is not possible to
reach any arbitrary level of accuracy using such a method. This, however, is fully accept-
able, as it can be assumed that the use-case for such a method would be to define only a
couple of different solutions - for example, the current approach by JSpOC provides only
one further source of information in addition to the highly-accurate SP states, namely
TLE.

Different metrics can be applied to assess the deviation between the reference and the
fit solution. While working with the component-wise RMS is a very intuitive and conve-
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nient way, an alternative using a more statistical description of the deviation via the Ma-
halanobis distance was also discussed. Obtaining a fit based on a predefinedMahalanobis
distance threshold allows to take the uncertainties of the reference orbit into account: If
the reference already contains large inherent errors, using a fixed threshold would lead to
less degradation in the accuracy compared to an orbit with lower uncertainties.

The presented method was shown to be also applicable to orbit regions above LEO
as well as to orbits with high eccentricity. With increasing altitude, the influence of the
non-spherical geopotential decreases so that it could be observed for GEO altitudes, that
already a 3 ˆ 3 geopotential fit of the reference provides a very close fit. On the other hand,
for objects with repeating ground tracks, cutting off at low degrees for the potential means
missing important resonance terms. For the constellations in MEO this was shown to be
advantageous in order to obtain a reduction in accuracy.

The analysis performed for high-eccentricity orbits showed that theGeopotential Adap-
tationMethod to Bias Trajectories (GAMBIT) algorithm can be applied without any prob-
lems up to e « 0.6. For higher eccentricity, the applied approach starts showing some
problems, mainly related to the sampling of pseudo-observations in equidistant time
steps, which led to an under-sampling of the perigee passes with respect to the apogee re-
gion. The algorithm itself did not fail, but the required geopotential degree to stay within
the specified bounds increased significantly. In addition, it was shown that in some cases
the predefined accuracy bounds should not be selected in a too restrictive way.

The least-squares fit also provides a covariance matrix, which reflects the residuals with
respect to the reference orbit. It was discussed how this covariance can be combined with
the uncertainties inherent in the reference trajectory itself. In essence, the fit solution
would be a constant offset to the propagated uncertainties of the reference solution. This
renders the usual approach useless of having a covariance matrix at t0 and propagating
it to any t ‰ t0, but is still a valid approach, if one provides the covariance as tabulated
data to cover the entire fit span. Alternatively, one can also use an interpolation of the
uncertainties across the fit span and provide polynomial coefficients.

The interpolation of state vectors and their associated uncertainties as well as provid-
ing them in standardised data messages was studied as the final important aspect of this
thesis. It was shown that Chebyshev polynomials are one set of polynomials where due to
their orthogonality property, the orbit approximation improves by just increasing the in-
terpolation degree. As the GAMBIT method can be compared with a low-pass filter by re-
moving higher-degree geopotential terms, one alsominimizes the risk of under-sampling
the trajectory for a given number of Chebyshev nodes. Besides the demonstrated advan-
tage of providing data messages of reduced size for a given time interval, it has to be
emphasized that an interpolation solution does not require a propagation on the user’s
side any longer. The user can reconstruct the orbit out of the data messages in exactly the
same way the data distributor would do - no need to distribute an orbit extrapolation soft-
ware alongside with the data, as is the case for TLE. Chebyshev polynomials are already
successfully distributed for planetary orbits by JPL, while in this thesis it was shown that
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they can even be applied down to orbits significantly affected by drag without introducing
additional errors greater than 1m.

The covariance matrix can also be provided via polynomial coefficients. While one can
find methods in literature to interpolate the eigenvectors and their rotation, an alterna-
tive approach was studied in this thesis: For the variances in the object-centered reference
frame (UVW), an envelope function was computed first. It was then interpolated with a
low-degree polynomial, which results in high compression ratios compared to tabulated
data. However, this is not possible for the correlation coefficients, as some of them are os-
cillating andmay be either positive or negative depending on the position along the orbit.
This means that only the variances would be provided in a data message and information
on correlation between the components would be lost.

It was shown, that this negatively affects the collision avoidance service, while one can
still imagine services, where such an envelope-based approach could be beneficial. For
example, to obtain an initial guess for the search region to acquire an object, where con-
servative estimates on the variances might be advantageous.

In conclusion, the methods investigated in this thesis allow for providing orbit infor-
mation continuous in time with different levels of accuracy derived from a reference orbit
in an object catalogue. The modification of the orbit by a least-squares fit with an adapted
geopotential ensures that also the reference state vector is adapted. Performing this mod-
ification step followed by a Chebyshev interpolation with sufficiently high degree, thus
retaining the accuracy through the interpolation step, is essential: the alternative would
be to have a predetermined accuracy directly via reducing the degree of the polynomial
fit - but this has a significant drawback, as polynomials will always match the original
trajectory at several points across the fit span. Moreover, one would have to deal with un-
dersampling issues, as the high frequencies due to the geopotential are still present and
likely to be interpolated with a polynomial of too low degree.

If the recovery of the original information, or the high-accuracy orbit from the cata-
logue, is not possible from the provided solution, this gives rise to the possibility of giving
groups of users different privileges in terms of how accurate the information is they can
obtain from the catalogue. Moreover, this would also be a way of commercialising the data
distribution by offering different categories of orbit information with varying accuracy.

It would be an interesting aspect for future study to investigate whether or not it is
possible to restore the original information from a least-squares fit. In principle, this
could work, if the forcemodel, that was used to generate the reference trajectory, is known
to some extent. Then, one could solve for the remaining parameters by the following
iteration:

1. Fit a trajectory with full force model on the input orbit

2. Do another fit on the obtained solution, now with the adapted geopotential

3. Compare with the input orbit
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4. Take the deviation as an input to update the trajectory in the first step and repeat
the process until both the input orbit and the solution from step 2 match

Whether or not such an approach works in the end, is difficult to answer, as the parameter
space can be very large. Also, the author is not aware of any publication featuring such a
method, for example to obtain the original SP states from available TLE.

An important aspect for future studies is to investigate how alternative techniques for
uncertainty propagation affect the methods presented in this thesis. Especially for the co-
variance envelope interpolation, the results could be completely different, if a non-linear
propagation is introduced.

The Neptune software developed in the frame of the Networking/Partnering Initiative
(ESA research programme with industry and academia) (NPI) can be further developed
to be used in the orbit determination context. In that respect, the next step would be
to expand it to process observations and the associated partial derivatives. In fact, the
evolution of the software in that direction would be in line with the goals of the NPI to
prepare academia for ESA programmes - in this case the SSA programme.

Finally, with standardised data messages evolving, especially those recommended by
CCSDS, it is worth contributing to those efforts and promote the option of having poly-
nomials in those messages, like the example outlined in this thesis for a possible imple-
mentation in the OCM.
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A

State-of-the-art propagationwith the
Neptune software

This annex describes the models and methods that were implemented in the numerical
integration tool Neptune based on current standards and best practices for orbit propa-
gation, which were:

ISO 8601:2004, Data elements and interchange formats – Information interchange
– Representation of dates and times (ISO, 2004),

AIAA G-003C-2010, Guide to Reference and Standard Atmosphere Models (AIAA,
2010),

Astrodynamics - Propagation Specifications, TechnicalDefinitions, andRecommended
Practices (ANSI/AIAA, 2010) and

the European standard on the space environment, ECSS-ST-10-04C (ECSS, 2008),
has been developed by the European Space Agency, national space agencies and Eu-
ropean industry associations.

A.1. Units, precision, time, constants and coordinates
A.1.1. Units
SI units are used throughout the software, as well as units that are approved for use with
SI, like angular degrees (AIAA, 2010).

A.1.2. Precision
Constants, such as π, are derived with machine precision and used to compute other
constants, like the conversion ratio from angles in degrees to radian (AIAA, 2010).

Computationswith floating point numbers are performedwith double precision, where
possible, to preserve numerical precision (AIAA, 2010).

A.1.3. Time
For each output, Universal Time Coordinated (UTC) time tags according to ISO 8601:2004
(ISO, 2004) are provided, including leap seconds.
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The difference between UT1 and UTC (ΔUT1), as well as the excess length of day (LOD)
are obtained via the EOP obtained from IERS (ANSI/AIAA, 2010).

A.1.4. Constants
Constants, like μ are applied consistent with the models they have been derived from.
For example, the Earth’s equatorial radius and the specific gravitational constant, μ, are
adopted from the geopotential model (ANSI/AIAA, 2010).

Astronomical constants are taken from the Astronomical Almanac.

A.1.5. Coordinates
The GCRF is used for the satellite orbit integration, while accelerations in an Earth-fixed
frame are computed with respect to the ITRF. The conversion between these two frames
is based on the CIO-approach, using the complete reduction in every time step (ANSI/
AIAA, 2010). For increased performance, the precession-nutation parameters X, Y and s
are interpolated with a polynomial interpolation of 5th degree (ANSI/AIAA, 2010).

A.2. Integration
The Störmer predictor and Cowell corrector method (PEC) is used, with variable step nu-
merical integration, which is beneficial for high-eccentricity orbits. The integration is
also a self-starting multi-step and double-integration, which means to compute position
directly from the acceleration.

A.3. Force model
A.3.1. Geopotential
The European model EIGEN-GL04C (ECSS, 2008), as well as the models EGM96 and
EGM2008 are implemented in Neptune , with the latter two being recommended by
(ANSI/AIAA, 2010).

A.3.2. Atmospheric drag
The last 81-day average of the solar activity index F10.7 is used with the NRLMSISE-00
model, which is recommended by ECSS, 2008. However, it is used for all altitudes, while
ECSS, 2008 recommends to use JB-2006 for altitudes above 120 km. The HWM07 wind
model is used, where (ECSS, 2008) recommends the -93 version. The input for geomag-
netic activity are the Ap indices, which provide additional sensitivity not available in the
Kp indices (ANSI/AIAA, 2010). The three-hourly Ap’s are interpolated using cubic splines,
a method discussed by Vallado and Kelso (2005) (ANSI/AIAA, 2010).

Using the daily F10.7 indices is with respect to the time the measurement was actually
taken. The offset (17:00 UTC until 1991-05-31, 20:00 UTC afterwards) is considered (ANSI/
AIAA, 2010).
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A.3.3. Third-body gravitation
The DE405 (ECSS, 2008) and DE421 series are used to obtain the ephemerides for the solar
system bodies, which are consistent with the IAU 2000 theory (ANSI/AIAA, 2010).

A.3.4. Solar radiation pressure
A conical shadow model including Umbra and Penumbra (dual-cone) (ISO, 2014) for a
spherical Earth is used. It is possible to define a macro model and simple attitude motion
laws in Neptune . The solar luminosity is computed as a function of the distance between
Sun and Earth, which is a seasonal variation. The numerical integrations accounts for a
correction of shadow boundary crossings, by determining the exact times of Penumbra
and Umbra exit and entry, respectively.

A.3.5. Earth radiation pressure
In Neptune , also the Earth albedo, the reflected sunlight in the optical wavelengths, and
the Earth emissivity in the infrared are considered. The model by Knocke (1989) is used
(as recommended by (ECSS, 2008)), with modeling the Earth as seen from the satellite by
a set of plates with individual viewing angles and latitude- and time-dependent albedo.

A.3.6. Tides
Themodels for Solid Earth and pole tides have been implemented in Neptune according
to the IERS conventions (Luzum and Petit, 2010) (ECSS, 2008). Solid Earth tidal contribu-
tions are modelled as time-varying spherical harmonic coefficients. Care has been taken
to include only tide-free geopotential models. For future updates, this has to be kept in
mind, as sometimes, the J2 term already contains the permanent tide part (ANSI/AIAA,
2010).

A very simple ocean tide model has been used in Neptune so far according to Vallado
and McClain (2013). However, it would be worth considering adding more recent and
modern models, examples being the CSR4 (Eanes and Bettadpur, 1995) or the FES2004
(Letellier et al., 2004) models.

A.3.7. Other
The propagator Neptune has been developed with its application in the SST segment in
mind. Therefore, very accurate orbit determination, which would involve active means
like GPS, SLR or DORIS, are for most objects not available. Also, object properties like
size, mass, shape and aerodynamic coefficients are, in general, unknown. Hence, pertur-
bations which contribute in the sub-metre regime have been disregarded for the time
being. However, if Neptune would be considered also for high-precision orbit determi-
nation, one can always think of adding additional modules to account for perturbations
like the General Relativity, thermal forces (Yarkovsky effects) or even antenna thrust.

In its current implementation, Neptune allows to include manoeuvres into the com-
putation. They are modelled as additional accelerations, which are added to an input file
and incorporated into the integration during runtime.





B

Numerical integration

This chapter covers inmore detail the theoretical background and especially the equations
behind the numerical integration in Neptune to support and complement the algorithm
description in the main part of the document.

B.1. State vector integration using Berry’s
Störmer-Cowell method

The full derivation of the variable-step double-integration multi-step Störmer-Cowell in-
tegration is given by Berry (2004). Only parts thereof are provided here for convenience.
The interested reader is highly recommended to study Berry (2004) for a full theoretical
treatise of this subject.

The differential equation to be solved (Equation 2.1) is:

:r “ ´ μ

r2
r
r

` ap “ f pt, r, 9rq . (B.1)

For amulti-step integration, the k function values fn´k`1 . . . fn are interpolated by a pk ´ 1qth

degree polynomial:
Pk,n ptn`1´iq “ fn`1´i, i “ 1 . . . k. (B.2)

B.1.1. Divided differences
In numerical integration, finite differences are typically used to solve differential equa-
tions when the function derivatives are not available. There are three different forms for
finite differences with an integration stepsize h:

1. Forward difference:
Δ f pxq “ f px ` hq ´ f pxq (B.3)

2. Central difference:
δ f pxq “ f

ˆ
x ` 1

2
h

˙
´ f

ˆ
x ´ 1

2
h

˙
(B.4)

3. Backward difference:
∇ f pxq “ f pxq ´ f px ´ hq (B.5)
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As an example, consider the Störmer predictor expressed in terms of backward differ-
ences:

rn`1 “ 2rn ` rn´1 ` h2
ˆ

1 ` 1
12

∇2 ` 1
12

∇3 ` 19
240

∇4 ` 3
40

∇5 ` ¨ ¨ ¨
˙

:rn (B.6)

The above predictor is double-integration, as the position vector rn`1 is obtained directly
from the acceleration :r of the previous step. However, it is for a constant stepsize h. For
a multistep integrator therefore a restart is required each time the stepsize changes. This
is unfavourable, especially if the evaluation of the force function is costly. A solution was
proposed by Krogh (1974) using divided differences. The advantage is that with divided dif-
ferences, the coefficients used in the integration need to be re-computed each time the
stepsize changes, which is by far more efficient than re-computing finite differences, if
the function evaluations are costly.

The divided differences are calculated through a recursive relation (Berry, 2004):

f rtns “ f n, (B.7)

f rtn, tn´1s “ f n ´ f n´1

tn ´ tn´1
, (B.8)

f rtn, . . . , tn´is “ f rtn, . . . , tn´i`1s ´ f rtn´1, . . . , tn´is
tn ´ tn´i

. (B.9)

The interpolating polynomial in Equation B.2 can be written in divided difference form:

Pk,n ptq “ f rts ` pt ´ tnq f rt, tn´1s ` . . . `
` pt ´ tnq pt ´ tn´1q . . . pt ´ tn´k`2q f rt, tn´1, . . . , tn´k`1s . (B.10)

The modified divided differences are introduced as:

φ1pnq “ f rtns “ :rn (B.11)
φipnq “ ψ1pnqψ2pnq . . . ψi´1pnqf rtn, tn´1, . . . , tn´i`1s i ą 1, (B.12)

where
ψipnq “ hn ` hn´1 ` hn´2 ` ¨ ¨ ¨ ` hn`1´i. (B.13)

Berry (2004) further introduces:

φi̊ pnq “ βipn ` 1qφipnq, (B.14)

where

β1 pn ` 1q “ 1, (B.15)

βi pn ` 1q “ ψ1 pn ` 1q ψ2 pn ` 1q ¨ ¨ ¨ ψi´1 pn ` 1q
ψ1 pnq ψ2 pnq . . . ψi´1 pnq i ą 1. (B.16)
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B.1.2. Predictor
For a single-integration the velocity is obtained from the integration of the interpolating
polynomial, which is the predictor of the Shampine-Gordon integrator (Shampine and
Gordon, 1975):

9rp
n`1 “ 9rn `

ż tn`1

tn

Pk,n ptq dt (B.17)

The double-integrationmethod used for the Störmer predictor is used to obtain the ra-
dius vector directly from the accelerations (while the velocity is obtained via the Shampine-
Gordon predictor):

rp
n`1 “ rn ` hn`1 9rn `

ż tn`1

tn

ż t̄

tn

P ptq dt̄dt. (B.18)

Now the interpolating polynomial can be replaced by a series representation using Equa-
tion B.14:

Pk,n ptq “
kÿ

i“1

ci,n pτq φi̊ pnq , (B.19)

where τ is the fraction of the current interval:

τ “ t ´ tn

hn`1
. (B.20)

After performing the integration of Equation B.18 using Equation B.19 one obtains:

rp
n`1 “

ˆ
1 ` hn`1

hn

˙
rn ´ hn`1

hn
rn´1 ` h2

n`1

kÿ
i“1

ˆ
gi,2 ` hn`1

hn
g1

i,2

˙
φi̊ pnq, (B.21)

with the coefficients g1
i,2, which are dependent on the stepsizes for the backpoints, com-

puted via:

g1
i,q “

$’’’’&
’’’’%

1
q

ˆ ´hn

hn`1

˙q

i “ 1,

1
qpq`1q

´
´hn
hn`1

¯q`1
i “ 2,

ψi´3pn´1q
ψi´1pn`1q g1

i´1,q ´ αi´1 pn ` 1q g1
i´1,q`1 i ą 2,

(B.22)

and the coefficients gi,q (which are constant, also for variable-step integration) via:

gi,q “

$’’’&
’’’%

1
q

i “ 1,

1
qpq`1q i “ 2,

g1
i´1,q ´ αi´1 pn ` 1q g1

i´1,q`1 i ą 2.

(B.23)

The auxiliary variable α is a fraction of the stepsizes:

αi pn ` 1q “ h ` 1
ψi pn ` 1q . (B.24)
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A second integration is required to obtain the velocity vector. The Shampine-Gordon
predictor formulation is obtained using the Equation B.17:

9rp
n`1 “ 9rn ` hn`1

kÿ
i“1

gi,1φi̊ pnq. (B.25)

B.1.3. Corrector
After a predicted value rp

n`1 is found, a new function evaluation at that point provides a
predicted acceleration. The interpolation polynomial can then be one degree higher than
Pk,n ptq and the new formulation using the series representation from Equation B.19 is:

Pk̊`1,n ptq “ Pk,n ptq ` ck`1,n pτq φ
p
k`1 pn ` 1q . (B.26)

Using the same approach as for the predictor, the integration results in the variable-step
Cowell predictor:

rn`1 “ rp
n`1 ` h2

n`1

ˆ
gk`1,2 ` hn`1

hn
g1

k`1,2

˙
φ

p
k`1pn ` 1q. (B.27)

Similarly, the velocity vector is obtained from the Shampine-Gordon corrector by re-
placing the polynomial in Equation B.17 with Equation B.26, which ultimately results in:

9rn`1 “ 9rp
n`1 ` hn`1gk`1,1φ

p
k`1pn ` 1q. (B.28)

B.1.4. Stepsize control
For the variable-step integration, the stepsize is controlled at each step keeping the local
error below a user-defined tolerance, which is defined as a combination of an absolute
tolerance, εabs, and a relative tolerance, εrel , for the individual position and velocity com-
ponents:

εs
l,i ď εrel 9ri ` εabs, (B.29)

εd
l,i ď εrelri ` εabs, (B.30)

where the index s is for single integration (velocity from acceleration) and d is for double
integration (position from acceleration), respectively. Note that this formulation guaran-
tees that there is a lower boundary on the user-defined error provided by εabs.

In order to compute the local error at each step, the corrector result from Equation B.27
(kth degree polynomial) is compared with a corrector using the set of n ` 1 points inter-
polated by a polynomial of degree k:

εs
l “ 9rn`1 ´ 9rn`1 pkq , (B.31)

εd
l “ rn`1 ´ rn`1 pkq . (B.32)



B. Numerical integration 155

Using the pk ´ 1qth degree polynomial from Equation B.19, that now passes through the
additional point resulting from the corrector, performing the same integration and com-
puting the difference for the local error in Equation B.31, one obtains (for the single inte-
gration):

εs
l pkq « hn`1 pgk`1,1 ´ gk,1q φ

p
k`1 pn ` 1q . (B.33)

The components of the local error are combined in a weighted sum of squares at each
step and compared with the tolerance εmax:gffe 3ÿ

i“1

ˆ
εs

l,i

ws
i

˙2

ď εmax, (B.34)

with
εmax “ max pεrel , εabsq , (B.35)

and the weight functions
ws

i “ | 9ri| εrel

εmax
` εabs

εmax
. (B.36)

The step is successful if EquationB.34 is fulfilled, otherwise the step is repeatedwith half
the stepsize. If this happens three times consecutively, the integration is reset and starts
as a first-order method again. In general, such a restart will be required at discontinuities
like shadow boundary crossings, manoeuvres, etc.

After a step was successful, the stepsize for the next step is computed to keep the local
error as close as possible to the tolerance. Using hn`2 “ ρhn`1, assuming that the divided
differences are slowly varying and that all preceding steps were taken with hn`2, Berry
(2004) gives the local error for the following step as:

εs
l,n`2 pkq “ ρk`1hn`1γk̊ σk`1 pn ` 1q φ

p
k`1 pn ` 1q , (B.37)

with γ˚ being the difference between the constant step size coefficients

γ˚ “ γk ´ γk´1, (B.38)

and the auxiliary functions σk`1 pn ` 1q being found via a recursion:

σ1 pn ` 1q “ 1, (B.39)
σi pn ` 1q “ pi ´ 1q αi´1 pn ` 1q σi´1 pn ` 1q , i ą 1, (B.40)

where αi is the fraction of the current step size to the sum of the current step and the
previous ones:

αi pn ` 1q “ hn`1

hn`1 ` hn ` . . . ` hn`2´i
. (B.41)

The approximated local error ζs
l that would be made if the previous steps had been

taken with hn`1 results as:

ζs
l “ |hn`1γk̊ σk`1 pn ` 1q|

gffe 3ÿ
i“1

˜
φ

p
i,k`1 pn ` 1q

ws
l,i

¸2

. (B.42)
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The stepsize factor ρ can then be computed from

ρs “
ˆ

εmax

ζs
l

˙ 1
k`1

(B.43)

In order to compensate for the assumptions in the derivation of the stepsize factor,
Shampine and Gordon (1975) introduced a so-called chicken factor, resulting in a more con-
servative estimate:

ρs “
ˆ

0.5εmax

ζs
l

˙ 1
k`1

(B.44)

The calculated value of ρ is bounded between 0.5 and 2.0, so that the stepsize is doubled
for all values ρ ě 2.0 and halved for ρ ď 0.5.

While the above derivation is for single integration, Berry (2004) provides the formulae
for the double integration analogously. The local error vector for double integration can
be computed from:

εd
l pkq « h2

n`1

ˆ
gk`1,2 ´ gk,2 ` hn`1

hn

`pg1
k`1,2 ´ g1

k,2
˘˙

φ
p
k`1 pn ` 1q . (B.45)

The local error components are weighted and combined for the comparison against the
tolerance: gffe 3ÿ

i“1

˜
εd

l,i

wd
i

¸2

ď εmax, (B.46)

with the weights for double integration obtained from

wd
i “ |ri| εrel

εmax
` εabs

εmax
. (B.47)

Using both, single integration to obtain the velocity vector and double integration for the
position vector, a step fails if either the combined weighted local error components from
Equation B.34 or Equation B.46 are below the tolerance (Equation B.35).

Similarly, Berry (2004) gives the estimated local error for the next step in order to derive
the stepsize factor ρ:

ζd
l “ ˇ̌

h2
n`1λk̊ σk`1 pn ` 1qˇ̌ gffe 3ÿ

i“1

˜
φ

p
i,k`1 pn ` 1q

wd
l,i

¸2

, (B.48)

where λk̊ are the coefficients of the Störmer-Cowell predictor coefficients. With the same
chicken factor of 0.5, the stepsize factor for double integration can be computed as:

ρd “
˜

0.5εmax

ζd
l

¸ 1
k`1

(B.49)

The stepsize factor actually used in the integration is theminimum of the values obtained
for single and double integration:

ρ “ min
´

ρs, ρd
¯

. (B.50)
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While Shampine and Gordon (1975) designed their method in a way preferring constant
stepsizes, thereby reducing the overhead for the re-computation of the integrator coeffi-
cients, Berry (2004) correctly points out that due to the very expensive force model, the
additional integrator overhead can be neglected in favour of having fast increase towards
larger stepsizes. Therefore, Berry (2004) recommended to have the same boundaries at
ρ “ 0.5 and ρ “ 2.0, while not having any other restrictions for values in between.

B.1.5. Interpolation
In principle, the integrator can be configured to have a stepsize corresponding to the
requested output time. Meaning that the stepsize would then be smaller than possible for
a given error tolerance, this would introduce unnecessary computation cost. Therefore,
Shampine and Gordon (1975) give an interpolation formula to find the output value at the
requested time tI , which is between the points n and n ` 1. Using the pk ` 1qth degree
polynomial for the set of backpoints, the interpolated value is found via (Shampine and
Gordon, 1975):

9rI “ 9rn`1 `
ż tI

tn`1

Pk`1,n`1 ptq dt. (B.51)

Performing a similar derivation as for the predictor (Section B.1.2), one obtains for the
single integration:

9rI “ 9rn`1 ` hI

k`1ÿ
i“1

gI
i,1φi pn ` 1q , (B.52)

with the interpolation stepsize hI “ tI ´ tn`1 and the coefficients gI
i,1 which can be com-

puted via a recursion:

gI
i,q “

$’&
’%

1
q

i “ 1,

Γi´1 p1q gI
i´1,q ´ hI

ψi´1pn`1q gI
i´1,q`1 i ě 2.

(B.53)

The auxiliary stepsize functions Γi´1 are computed with the stepsize fraction τ as the
independent variable:

Γi pτq “
$’&
’%

τhI

ψ1 pn1q i “ 1,

τhI`ψi´1pn`1q
ψipn`1q i ě 2,

(B.54)

where
τ “ t ´ tn`1

hI
. (B.55)

Analogously, Berry (2004) derives the interpolation formulae for the double integration:

rI “
ˆ

1 ` hI

hn`1

˙
rn`1 ´ hI

hn`1
rn ` h2

I

k`1ÿ
i“1

ˆ
gI

i,2 ` hI

hn`1
gI1

i,2

˙
φipn ` 1q, (B.56)

where

gI1
i,q “

$’&
’%

1
q

ˆ´hn`1

hI

˙
i “ 1,

Γi´1

´ ´hn`1
hI

¯
gI1

i´1,q ´ hI
ψi´1pn`1q gI1

i´1,q`1 i ě 2.
(B.57)
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Conversion betweenGCRF and ITRF

C.1. Precession and nutation (IAU 2006/2000)
The matrix Q ptq converts a state from the ICRF to the GCRF:

rGCRF “ Q ptq rICRF. (C.1)

It accounts for the motion of the CIP in the GCRF due to precession and nutation, which
can be expressed as (Luzum and Petit, 2010):

Q ptq “
¨
˚̋ 1 ´ aX2 ´aXY X

´aXY 1 ´ aY2 Y
´X ´Y 1 ´ apX2 ` Y2q

˛
‹‚T3 psq , (C.2)

with T3 psq being a rotation providing the position of the CIO on the equator of the CIP
and the angle s is therefore called the “CIO locator” (Luzum and Petit, 2010). The quantity
a is computed as (Luzum and Petit, 2010):

a “ 1
1 ` ?

1 ´ X2 ´ Y2
– 1

2
` 1

8
`
X2 ` Y2˘

. (C.3)

The series for X, Y and s are given in the following, each containing a polynomial and
a trigonometric part. Note also, that the CIO locator is a function of X and Y. The coef-
ficients of the individual series terms are subject to future revisions and can be accessed
via the website of the US Naval Observatory1.

X “´0.016 6172 ` 2004.191 8982t ´ 0.429 782 92t2 ´ 0.198 618 342t3`
` 0.000 007 5782t4 ` 0.000 005 928 52t5`

`
1306ÿ
i“1

“
Axs0,i sin

`
ap,i

˘ ` Axc0,i cos
`
ap,i

˘‰ `
253ÿ
i“1

“
Axs1,i sin

`
ap,i

˘ ` Axc1,i cos
`
ap,i

˘‰
t`

(C.4)

`
36ÿ

i“1

“
Axs2,i sin

`
ap,i

˘ ` Axc2,i cos
`
ap,i

˘‰
t2 `

4ÿ
i“1

“
Axs3,i sin

`
ap,i

˘ ` Axc3,i cos
`
ap,i

˘‰
t3`

1U.S. Naval Observatory (Table 5.2a, 5.2b and 5.2d) http://maia.usno.navy.mil/conv2010/conv2010_c5.
html, last access on January 29, 2015.
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`
1ÿ

i“1

“
Axs4,i sin

`
ap,i

˘ ` Axc4,i cos
`
ap,i

˘‰
t4

Y “´0.006 9512 ´ 0.025 8962t ´ 22.407 274 72t2 ` 0.001 900 592t3`
` 0.001 112 5262t4 ` 0.000 000 135 82t5`

`
962ÿ
i“1

“
Ays0,i sin

`
ap,i

˘ ` Ayc0,i cos
`
ap,i

˘‰ `
277ÿ
i“1

“
Ays1,i sin

`
ap,i

˘ ` Ayc1,i cos
`
ap,i

˘‰
t`

(C.5)

`
30ÿ

i“1

“
Ays2,i sin

`
ap,i

˘ ` Ayc2,i cos
`
ap,i

˘‰
t2 `

5ÿ
i“1

“
Ays3,i sin

`
ap,i

˘ ` Ayc3,i cos
`
ap,i

˘‰
t3`

`
1ÿ

i“1

“
Ays4,i sin

`
ap,i

˘ ` Ayc4,i cos
`
ap,i

˘‰
t4

s “ ´ XY
2

` 0.000 0942 ` 0.003 808 652t ´ 0.000 122 682t2 ´ 0.072 574 112t3`
` 0.000 027 982t4 ` 0.000 015 622t5`

`
33ÿ

i“1

“
Ass0,i sin

`
ap,i

˘ ` Asc0,i cos
`
ap,i

˘‰ `
3ÿ

i“1

“
Ass1,i sin

`
ap,i

˘ ` Asc1,i cos
`
ap,i

˘‰
t`

(C.6)

`
25ÿ

i“1

“
Ass2,i sin

`
ap,i

˘ ` Asc2,i cos
`
ap,i

˘‰
t2 `

4ÿ
i“1

“
Ass3,i sin

`
ap,i

˘ ` Asc3,i cos
`
ap,i

˘‰
t3`

`
1ÿ

i“1

“
Ass4,i sin

`
ap,i

˘ ` Asc4,i cos
`
ap,i

˘‰
t4

The arguments ap,i in the trigonometric series are a linear combination of 14 different
terms to account for luni-solar and planetary nutation. The time variable in the following
is also TT, while the original equations are based on Barycentric Dynamical Time (Temps
Dynamique Barycentric) (TDB), the latter being defined as “the independent argument of
ephemerides and equations and motion that are referred to the barycenter of the solar
system” (Seidelmann, 2006). Using TT instead of TDB, however, results in CIP location
errors less than 0.01 μas (Luzum and Petit, 2010), which are negligible. The full equation,
as provided by Vallado and McClain (2013), using the Delaunay variables for the Sun and
the Moon:

ap,i “ a0x1,i l ` a0x2,i l1 ` a0x3,iF ` a0x4,iD ` a0x5,iΩ`
` a0x6,iλMA ` a0x7,iλMB ` a0x8,iλMC ` a0x9,iλMD ` a0x10,iλME ` a0x11,iλMF` (C.7)
` a0x12,iλMG ` a0x13,iλMH ` a0x14,i pa
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One has to be careful with the subscripts. The first subscript. here “0” (in general 0 to
4), corresponds to the summation terms in Equations C.4 and C.6 matching those with
the same index (0 to 4). The “x” is for the coordinate X, while different coefficients are
to be used for Y and s. The third subscript denotes the fundamental argument under
consideration (all 14 are listed above), while the last subscript “i” is for the summation,
which is different, depending on which sum the argument belongs to in Equations C.4
and C.6.

The fundamental arguments in EquationC.7 are subdivided into the luni-solar nutation
terms, given with the Delaunay variables, and the planetary precession terms, with the
following equations (Luzum and Petit, 2010):

l “ Mean anomaly of the Moon (C.8)
“ 485 868.249 0362 ` 1 717 915 923.21782t ` 31.87922t2 ` 0.051 6352t3

´ 0.000 244 702t4

l1 “ Mean anomaly of the Sun (C.9)
“ 1 287 104.793 0482 ` 129 596 581.04812t ´ 0.55322t2 ` 0.000 1362t3

´ 0.000 011 492t4

F “ Mean longitude minus mean longitude of the ascending node of the Moon
(C.10)

“ 335 779.526 2322 ` 1 739 527 262.84782t ´ 12.75122t2 ´ 0.001 0372t3

` 0.000 004 172t4

D “ Mean elongation of the Moon from the Sun (C.11)
“ 1 072 260.703 6922 ` 1 602 961 601.20902t ´ 6.37062t2 ` 0.006 5932t3

´ 0.000 031 692t4

Ω “ Mean longitude of the ascending node of the Moon (C.12)
“ 450 160.398 0362 ´ 6 962 890.54312t ` 7.47222t2 ` 0.007 7022t3 ´ 0.000 059 392t4

λMA “ Mean longitude of Mercury / rad “ 4.402 608 842 ` 2608.790 314 157 4t (C.13)

λMB “ Mean longitude of Venus / rad “ 3.176 146 697 ` 1021.328 554 621 1t (C.14)

λMC “ Mean longitude of Earth / rad “ 1.753 470 314 ` 628.307 584 999 1t (C.15)
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λMD “ Mean longitude of Mars / rad “ 6.203 480 913 ` 334.061 242 670 0t (C.16)

λME “ Mean longitude of Jupiter / rad “ 0.599 546 497 ` 52.969 096 264 1t (C.17)

λMF “ Mean longitude of Saturn / rad “ 0.874 016 757 ` 21.329 910 496 0t (C.18)

λMG “ Mean longitude of Uranus / rad “ 5.481 293 872 ` 7.478 159 856 7t (C.19)

λMH “ Mean longitude of Neptune / rad “ 5.311 886 287 ` 3.813 303 563 8t (C.20)

pa “ General accumulated precession in longitude / rad
“ 0.024 381 750t ` 0.000 005 386 91t2 (C.21)

C.2. Earth rotation angle
The Earth rotation angle matrix consists of a single rotation around the CIP:

R ptq “ T3p´θERAq (C.22)

The Earth Rotation Angle (ERA) accounts for the sidereal rotation of the Earth, being the
angle between CIO and TIO and defining UT1 by convention (Luzum and Petit, 2010).
Thus, the time variable used to compute the ERA is the Julian day in UT1 with an offset
to the epoch 2000 January 1.5:

t “ Julian Day UT1 ´ 2 451 545.0, (C.23)

so that ERA can be computed as:

θERA ptq “ 2π p0.779 057 273 264 0 ` 1.002 737 811 911 354 48tq . (C.24)

From the EOP the term ΔUT1 is used to obtain UT1 from UTC, which is generally the
input time system used.

C.3. Polar motion
The rotational matrix describing the polar motion, which is the difference between the
CIP and the IRP is computed via three consecutive rotations:

W ptq “ T3
`´s1˘ T2

`
xp

˘
T1

`
yp

˘
, (C.25)

here, xp and yp are the polar coordinates of the CIP in the ITRF and s1 is the so-called TIO
locator, that “provides the position of the TIO on the equator of the CIP corresponding to
the kinematical definition of the ’non-rotating’ origin (NRO) in the ITRS when the CIP is
moving with respect to the ITRS due to polar motion.” (Luzum and Petit, 2010). While xp
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and yp are quantities subject to measurements and provide alongside with the other EOP,
the quantity s1 results from a numerical integration of those values. However, it can be
approximated using the average values for the Chandler wobble, ac, and the annual wobble,
aa, of the pole (Vallado and McClain, 2013), evaluated with respect to TT:

s1 “ 0.00152
ˆ

ac
2

1.2
` aa

2
˙

tTT – ´0.000 0472tTT (C.26)
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The exchange of orbit information is becoming more important

in view of the increasing population of objects in space as

well as the increase in parties involved in space operations.

The aim of this thesis was to investigate how orbit information

maintained by a space surveillance system can be provided

to its users. Services like collision avoidance require very

accurate information, while other services might be less

stringent. An approach was studied, which allows to derive

orbit and covariance information of predetermined accuracy

from a reference orbit. Using Chebyshev polynomials, conti-

nuous state vector and covariance matrix information can be

provided. The major advantage is that no inter- or extrapolation

on the user’s side is required. A method to reduce the data

amount by interpolating the variance envelope functions was

also studied. The proposed method in this thesis gives access

to highly accurate information from the catalogue, where

this information is required. On the other hand it can also

provide less accurate information, where requirements are

less restrictive, thereby allowing for a significantly reduced

amount of data to be transferred and stored.
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