Non-resonant Solutions in Hyperbolic-Parabolic Systems with Periodic Forcing

Aday Celik

ISBN 978-3-8325-5172-8
203 pages, year of publication: 2020
price: 41.00 €
This thesis is a mathematical investigation of damping effects in hyperbolic systems. In the first part two models from nonlinear acoustics are studied. Existence of time-periodic solutions to the Blackstock-Crighton equation and the Kuznetsov equation are established for time-periodic data sufficiently restricted in size. This leads to the conclusion that the dissipative effects in these models are sufficient to avoid resonance. In the second part the interaction of a viscous fluid with an elastic structure is studied. A periodic cell structure filled with a viscous fluid interacting with a deformable boundary of the cell is considered under time-periodic forcing. The motion of the fluid is governed by the Navier-Stokes equations and the deformable boundary is governed by the plate equation. It is shown that the damping mechanism induced by the viscous fluid is sufficient to avoid resonance in the elastic structure.

cover cover cover cover cover cover cover cover cover
  • Fluid-structure interaction
  • Nonlinear acoustics
  • Existence of time-periodic solutions
  • Free boundary problems
  • Resonance

Buying Options

41.00 €

39.50 €
51.00 €
55.00 €

(D) = Within Germany
(W) = Abroad

*You can purchase the eBook (PDF) alone or combined with the printed book (eBundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.

For multi-user or campus licences (MyLibrary) please fill in the form or write an email to