Abstract

In this thesis, we present novel model predictive control (MPC) formulations
based on a convex open-loop optimal control problem to tackle the problem
setup of trajectory tracking and path following as well as the control of systems with
unknown system dynamic. In particular, we consider the framework of relaxed
barrier function based MPC (rbMPC). We extend the existing stability theory to
the trajectory tracking and the path following problem. We establish important
system theoretic properties like closed-loop stability and exact constraint satis-
faction under suitable assumptions. Moreover, we evaluate the developed MPC
algorithms by comparing it with a standard controller in the area of automated
driving in simulations as well as in real-world for an automated driving sce-
nario. Further, we consider the control of completely unknown systems based
on online optimization. We divide the overall problem into the design of an esti-
mation algorithm and a control algorithm. The proposed estimation algorithm
does not belong to the class of identification algorithms but can rather be seen
as an asymptotically accurate signal predictor algorithm of the closed-loop trajec-
tory. The control algorithm is a model-independent receding horizon control
algorithm in which important system theoretic properties like convergence to
the origin are guaranteed without the knowledge of the true system parameters.
The estimation and control algorithm are combined together and convergence
to the origin of the closed-loop system for fully unknown linear time-invariant
discrete-time systems is shown.



Deutsche Kurzfassung

In der vorliegenden Arbeit werden neue, auf konvexen Optimierungsproble-
men basierende modellpradiktive Regelungsverfahren (engl. model predictive
control, MPC) untersucht. Ziel ist die Entwicklung von Algorithmen fiir das Tra-
jektorienfolgeproblem und Pfadverfolgungsproblem sowie der Regelung von Syste-
men ohne Kenntnis eines Systemmodells. Dabei erweitern wir die existierende
MPC Theorie, basierend auf relaxierten Barrierefunktionen, auf die Problemstel-
lung des Trajektorien- und Pfadverfolgungsproblems. Hier weisen wir wichtige
systemtheoretische Eigenschaften wie die Stabilitdt des geschlossenen Kreises
und die exakte Einhaltung von Beschrankungen unter bestimmten Annahmen
nach. Zudem vergleichen wir die entwickelten MPC Algorithmen simulativ mit
einem Standardregler im Bereich des automatisierten Fahrens und werten Da-
ten einer experimentellen Erprobung aus. Aufierdem betrachten wir die opti-
mierungsbasierte Regelung von Systemen ohne Kenntnis eines Systemmodells.
Der Losungsansatz basiert auf dem Entwurf eines Schitzalgorithmus und ei-
nes Regelalgorithmus. Dabei gehort der Schitzalgorithmus nicht zur Klasse der
Systemidentifikationsalgorithmen, sondern kann als asymptotisch korrekter Si-
gnalpradiktor der Trajektorie des geschlossenen Kreises aufgefasst werden. Der
Regelalgorithmus gehort zur Klasse der MPC Algorithmen, welcher Konver-
genz des geschlossenen Kreis zum Ursprung ohne genaue Kenntnis der System-
parameter garantiert. Schliefslich kombinieren wir den Schéitz- und den Regel-
algorithmus und weisen Konvergenz des geschlossenen Kreis zum Ursprung
fiir linear zeitinvariante Systeme nach.



Introduction

1.1 Motivation

Autonomously driving vehicles are one of the main scientific and technological
challenges of our time. Basically, there exist different automation levels, starting
from no automation to full automation of the vehicle in which the surveillance
of the driver is not needed anymore, see E. Yurtserver et al. (2020). From a con-
ceptual point of view, the architecture of autonomous driving consists of three
steps: Sense, understand and plan, and act. Sensing refers to the first step and deals
with the transfer of environmental data into a digital map based on the available
vehicle sensors, e.g., cameras, radars or lidars. Understanding and planning de-
picts the second step and mainly takes care about the calculation of a safe trajec-
tory based on the digital map. Finally, the acting step considers the control of a
vehicle by steering, braking and accelerating commands such that the deviation
to the trajectory, calculated in the sensing step, is minimal. The topic addressed
in this thesis is motivated by automated driving on test tracks. In particular, we
like to focus on the development process of a vehicle. There, the vehicle has to
successfully pass several tests, e.g., endurance tests, high speed tests or braking
tests before it is delivered to the customer. These tests are carried out by trained
drivers on either public streets or non-public proofing grounds to ensure public
safety. In case of non-public proofing ground tests, the driver typically aims to
drive a given driving line as reproducible as possible in a repetetive manner.
However, given that the driver only remembers the most important points of
the test run, he or she will make non-reproducible errors. Hence, it is difficult to
locate the error source that originates from either the test driver or a defective
part of the vehicle. Thus, it is desirable to tackle this problem by replacing the
driver by an algorithm tailored for automated driving to ensure reproducability
between the different test runs.

11
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In this thesis, we apply MPC to certain tasks in an automated driving scenario.
We will use here the term automated driving and not autonomous driving,
given that we only deal with the acting step of the autonomous driving architec-
ture. MPC, also referred to as receding horizon control, is a model-based control
method in which a suitable control input is obtained by solving online an open-
loop optimal control problem. Herein, a user-defined cost criterion along a spe-
cific prediction horizon is minimized under the explicit consideration of certain
state and input constraints. Owing to the flexibility of the user-defined cost cri-
terion, many industrial control tasks have been so far addressed using an MPC
formulation such as the control of an industrial servo machine tool drive, see M.
Stephens and M. Good (2013), the control of a chemical reactor, see M. Bakosova
and J. Oravec (2014), or the control of an automated driving vehicle, see B. Gut-
jahr, L. Groll and M. Werling (2017). For a survey paper about the challenges
and opportunities of MPC in industrial applications, we refer to M. Forbes et
al. (2015). A driver acts in many ways similar to MPC. Not only does MPC nat-
urally provide a prediction horizon, it also enables us to include the vehicle
dynamics as well as physical constraints such as acceleration constraints. Thus,
it is a natural choice to use MPC in auomated driving scenarios. Nevertheless,
standard MPC formulations have two disadvantages. On the one hand, the on-
line solution of the open-loop optimal control problem requires high computa-
tional effort but at the same time has to satisfy hard real-time requirements. This
might be problematic implementing the algorithm on low-cost ECUs (electronic
control unit). On the other hand, consider a real system in which, in almost any
case, the prediction model of the MPC formulation is not exactly capturing the
real system behaviour. Operating at the limit of the imposed constraints, the
mismatch between the prediction model and the actual system behaviour may
lead to constraint violation and thus to an infeasible optimization problem and
instabilities. One promising approach to overcome these issues is relaxed bar-
rier function MPC (rbMPC), which enjoys desirable properties like convergence
guarantees under suboptimal inputs, robustness properties, exact constraint sat-
isfaction under certain initial conditions, and feasibility even if the constraints
are violated. For an overview of this topic, we refer the reader to C. Feller and
C. Ebenbauer (2016, 2017, 2020) and C. Feller (2017). However, so far, a proper
control and systems theoretic investigation of an rbMPC setup tailored for the
problem class of automated driving is not available in literature. Hence, we
will investigate tbMPC formulations which can be used for automated driving.
In particular, we focus on two main problem formulations to follow a desired
driving line at a specific velocity profile. One is the so-called trajectory tracking
problem, and the other one refers to the so-called path following problem. In a
trajectory tracking problem setup, one tries to track a time-varying trajectory
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1.2 Contribution and outline

in which the timing of the trajectory is implicitly predefined by the trajectory
itself. In the path following problem, one likes to track a geometric path where
the timing on this geometric path is left an additional degree of freedom to the
controller. Path following allows, e.g., to overcome certain performance limi-
tations, see A. Aguiar, J. Hespanha and P. Kokotovic (2005) for nonminimum
phase systems in case of unstable zero dynamics. Due to the fact that some of
the applied control energy must be used for its stabilization.

The control performance of an MPC algorithm is highly depending on the used
prediction model, or, in terms of the driver, directly corresponds to how well
he or she knows the vehicle dynamics. The better the prediction model fits the
actual system behavior, the better the transient behavior of the closed loop will
be. However, models are never exact and become often uncertain where model-
ing of the decisive effects is hard or expensive in time and cost. This is true for a
wide range of industrial applications. In the case of an automated driving vehi-
cle, this is important for the high dynamics area, where for example, the tire slip
curve is located in its nonlinear region, see for example H. Pacejka (2012) and
thus the tire model becomes inaccurate. Hence, this motivates us to investigate
an MPC formulation where the prediction model is learned online via input
and output data. Many different approaches exist in the adaptive control and
learning literature consisting of model-free approaches and model-based ones,
see G. Goodwin and K. Sin (2009); G. Tao (2014); M. Benosman (2016). A quite
common procedure in the control of unknown systems is to divide the overall
control task into a control scheme and an estimation scheme. This strategy is
also pursued in this thesis. However, in contrast to the existing literature, see P.
Tabuada and L. Fraile (2020); T. Nguyen et al. (2020); V. Adetola, D. DeHaan and
M. Guay (2009), we develop a fully online optimization-based solution for the
estimation and control scheme with provable convergence to the origin of the
closed-loop system for completely unknown linear time-invariant discrete-time
systems.

1.2 Contribution and outline

In this section, we will summarize the main contributions of the thesis and we
will give a brief outline of the thesis’s structure. The main contributions consist
of two parts. In the first part, in Chapter 2, we extend the theory of relaxed bar-
rier functions to the trajectory tracking and path following problem. We exploit the
properties of relaxed barrier functions to guarantee important system-theoretic
properties like closed-loop stability and exact constraint satisfaction for a certain
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Chapter 1 — Introduction

set of initial conditions under rather mild assumptions for linear time-invariant
discrete-time systems. Further, we apply both algorithms to numerical exam-
ples to illustrate the theoretical results. In the second part, in Chapter 3, we
consider the stabilization of the origin of fully unknown linear time-invariant
discrete-time systems. We divide the problem into an estimation problem and a
control problem. For the estimation algorithm, we design an optimization algo-
rithm based on a proximal minimization algorithm. The estimates do not nec-
essarily converge to the true system parameters and thus the estimator does
not belong to the class of model identification algorithms but can rather be seen
as an asymptotically accurate signal predictor algorithm of the closed-loop trajec-
tory. For the control algorithm, we design a new model-independent receding
horizon control scheme. We prove convergence to the origin for a certain class
of prediction models without the knowledge of a system model. Therefore, we
refer to the control algorithm as a modeling-free receding horizon control pol-
icy. Further, we combine both schemes into a full online optimization control
scheme and show convergence to the origin of the closed loop under certain as-
sumptions. We provide a strict convergence analysis to the origin for unknown
linear time-invariant discrete-time systems. Finally, we show the potential of
the proposed algorithm for nonlinear systems.
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