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Abstract

With the steadily increasing need and wish to travel, people often have to reach locations they
have never been to before. Modern means of transportation, like cars, ships and planes, thus
come equipped with onboard navigation systems, assisting with this task, based on the global
positioning system (GPS), or a derivative. However, the navigation task is not solely limited
to outdoor environments. Reaching the correct gate within an airport, finding a ward in an un-
known hospital, or the auditorium within a new university, represent navigation problems as
well. With the GPS requiring a direct line of sight towards the sky, it is unavailable for absolute
location estimation indoors. Therefore, the question for suitable indoor navigation techniques
arises. Besides localization accuracy, additional factors should be met for such a new system
to become a success. It should be easy to set up and maintain, limiting required working hours
and costs. Likewise, hardware for the users themselves should be cheap, and readily available.
Due to the ubiquity of smartphones, these devices represent a desirable platform for pedestrians,
backed by the variety of sensors installed in these devices. Within this work, smartphone-based
pedestrian indoor localization and navigation is discussed in detail. This covers examining the
suitability of several available sensors: step-detection using readings from the accelerometer,
relative turn-detection utilizing the turn rates of the gyroscope, absolute heading estimations
based on the magnetometer’s indications, and altitude evaluation from the barometer. While all
aforementioned sensors do not require any additional infrastructure, thus suitable for all sorts
of buildings, they only allow for relative location estimations. Absolute localization can utilize
Wi-Fi, as it is supported by all smartphones, and most public buildings already contain the re-
quired infrastructure. Due to the behavior of radio signals, the smartphone’s current location
can be approximated by examining signal strengths of nearby transmitters. This aspect is of-
ten utilized by Wi-Fi fingerprinting, which, however, requires a time consuming setup process.
Therefore, an alternative is developed that allows for significantly faster setup times. Addition-
ally, the building’s 3D floorplan is included, modeling potential pedestrian movements, limit-
ing impossible walks to improve estimation results, and to provide routing towards a desired
destination. For this, two spatial floorplan representations are derived and examined. All afore-
mentioned aspects are hereafter combined probabilistically, using recursive density estimation
based on the particle filter. This allows for fusioning all sensor observations while respecting
their individual uncertainties, and the building’s floorplan as additional constraints.

To summarize, the system described within this work covers probabilistic 3D pedestrian
indoor localization, using commodity smartphones, contained sensors, a building’s existing in-
frastructure and floorplan, all combined by the particle filter to derive an indoor localization and

navigation system that is easy to set up and maintain.



Zusammenfassung

Mit dem stetig zunehmenden Reisewunsch finden sich Menschen immer héaufiger vor der Auf-
gabe, bislang unbekannte Orte zu erreichen. Moderne Transportmittel, wie Autos, Schiffe und
Flugzeuge sind deshalb mit GPS-basierten Navigationssystemen ausgestattet, die hierbei un-
terstiitzen. Allerdings ist der Navigationsaspekt selten nur auf den AuBlenbereich beschrinkt.
Das richtige Gate im Flughafen zu finden, eine Station im Krankenhaus, oder den Horsaal in der
neuen Universitit, ist oft dhnlich anspruchsvoll. Da das GPS jedoch eine direkte Sichtverbin-
dung benotigt, steht dieses innerhalb von Gebduden nicht zur Verfiigung. Hier stellt sich deshalb
die Frage nach geeigneten Alternativen. Fiir Neuentwicklungen miissen neben der Positionsge-
nauigkeit auch andere Aspekte beriicksichtigt werden. Das System sollte nicht nur wartbar, son-
dern auch kostengiinstig ausrollbar sein. Auch fiir die Nutzer sollten die Anschaffungskosten
so gering wie moglich ausfallen. Smartphones stellen aufgrund ihrer Allgegenwirtigkeit und
Vielzahl von Sensoren deshalb eine ideale Zielplattform dar. In dieser Arbeit werden verfiigbare
Sensoren auf ihre Tauglichkeit untersucht: Schritterkennung mittels Beschleunigungssensor,
Laufrichtungsschitzung via Magnetometer, Laufrichtungsédnderungen gemessen durch das Gy-
roskop, und Hohenbestimmung per Barometer. Diese Sensoren stellen zwar keinerlei An-
forderungen an das Zielgebiude, liefern jedoch lediglich relative Informationen bzgl. moglicher
Aufenthaltsorte. Eine absolute Positionsbestimmung wird iiber Wi-Fi ermoglicht, welches von
allen Smartphones unterstiitzt wird und in den meisten 6ffentlichen Gebduden verfiigbar ist.
Basierend auf dem Verhalten von Funksignalen lisst sich der aktuelle Standort des Smartphones
aus den Signalstdrken der nahegelegenen Access Points ableiten. In der Literatur wird hierfiir
hiufig auf Fingerprinting zuriickgegriffen, welches zwar genau, aber aufwending in der Ein-
richtung ist. Deshalb wird eine Alternative erarbeitet, die die Einrichtungszeit und Kosten stark
reduziert. Zusitzlich wird ein 3D Gebidudeplan verwendet, der mogliche und unmogliche Be-
wegungen von FuBgingern bestimmen, und die kiirzeste Route zu einem gewiinschten Ziel
berechnen kann. Beides dient der Verbesserung der Vorhersagen des Gesamtsystems. Hierfiir
werden zwei verschiedene Reprisentationen des Gebdudeplans erzeugt und untersucht. Alle
vorherigen Komponenten werden schlieBlich iiber rekursive Dichte-Schitzung mittels Partikel-
Filter zusammengefiihrt. Mit dieser lassen sich alle Sensor Messungen inklusive ihrer Un-
sicherheiten kombinieren, und auch der Gebédudeplan kann als zusitzliche Rahmenbedingung
integriert werden, um unmogliche Bewegungen auszufiltern.

Zusammenfassend beschreibt diese Arbeit ein auf Wahrscheinlichkeitsrechnung basierendes
3D Lokalisations- und Navigations-System fiir Fugénger in Gebduden, das alle Informationen
mittels Partikel Filter kombiniert, einfach einzurichten und zu warten ist. Vorausgesetzt werden

lediglich ein Smartphone, eine vorhandene WLAN-Infrastruktur und ein Gebdudeplan.
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Chapter 1
Introduction

Finding a specific place or location one has never been to, or hasn’t been to for a long time,
is a common task that everybody encounters from time to time. Back in the days, almost
everyone had a road map stowed away within the car’s glovebox, ready to use, whenever needed.
However, without a co-driver, reading the map and providing instructions, this was a quite
cumbersome solution for getting from A to B. This situation changed in the year 2000, when
the former military-only global positioning system (GPS) became freely available for civilian
use. Now it was possible to locate objects anywhere on the earth, with an accuracy down to a
few meters, using just a single receiver. Combined with digitized maps, this allowed for both,

self-localization and navigation [DH10].

Starting from there, it only took several months for receivers to become both, significantly
cheaper and smaller, and companies like TomTom or Garmin started developing products for
motor vehicles, using digital maps from vendors such as Tele Atlas or Navtech. At first, naviga-
tion systems were either installed directly within a vehicle, or required fully featured hardware,
like portable computers equipped with an external receiver. Yet, with the advent of Personal
Digital Assistants (PDAs), containing even smaller GPS receivers and mass storage devices
based on flash memory, navigation systems became portable. Today, almost every new smart-
phone is suitable for GPS-based navigation, using its built-in sensors, as well as a piece of

software that includes the necessary maps and navigation algorithms.

Inexpensive receivers for GPS, new similar systems, like GLONASS, and (freely) available
maps for almost every place on earth, lead to the ubiquity of navigation systems. Thus, their
success was not only based on demand, but also on the availability of relatively affordable
components for hardware, software, and low running costs. At least for the customer: Consumer
hardware can be used for several years, and, depending on the vendor, map updates are either

free of charge, part of an annual subscription, or charged per update.
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For providers, however, the situation is different. Additionally to several billion dollars for
the initial development and setup, the infrastructure behind GPS has to be kept up and running,
costing additional millions — per day. While licensing fees, e.g. for access to increased accuracy,
compensate for some of these costs, the remaining part is paid by the US government. Running
costs for the vendors of navigation appliances can be expected to be much cheaper. However,
due to rapid changes in infrastructure, they have to provide up-to-date mapping data, resulting
in many companies charging for updates [Pac+95; DH10]

Due to ever-increasing globalization and transnational business connections, the need and
wish to move or travel is constantly increasing. Besides getting to airports, train stations or
company compounds, the buildings themselves often represent a navigation problem as well:
Finding the correct terminal within an airport, the conference room in a large company, a room
within a townhall, or the correct ward within hospitals, isn’t always straightforward. With this
in mind, localization and navigation indoors becomes of increasing importance as well.

However, while working perfectly for most navigation purposes, e.g. for cars, pedestrians
and cyclists, currently available systems are unsuited, as both, the sensors and the typical map
formats, are intended for outdoor use. For good location estimations, GPS relies on a direct
line-of-sight between satellites and receiver, and older devices thus had to be installed on top of
the car, in order to function properly. Similarly, the format of most digitized maps is focused on
outdoor purposes, as the underlying data structures mainly use a two-dimensional representation
of roads, lanes, and intersections, unsuited for modeling a building’s interior.

Furthermore, when considering indoor environments, completely different use cases, be-
sides typical navigation from A to B, arise as well. Starting from finding a specific product
within a large supermarket, to the economy’s interest in location-based services, e.g. placing
ads for nearby products as well. Also covering cultural aspects, like guided tours through a
museum, presenting useful information on exhibits, based on the visitor’s current location and
viewing direction. Depending on the building and intended use case, requirements can be com-
pletely different. This especially concerns the aspect of localization accuracy. While a coarse
GPS location estimation is sufficient for a car driving along the motorway, it can be too er-
roneous for a slowly paced pedestrian, walking through an area with many small alleyways.
The same holds true for localization indoors, where estimating the current whereabouts on a
room-level scale might be sufficient for some intentions, like presenting information on nearby
exhibits. For others scenarios, such as navigation, however, estimations should be as accurate
as possible, for audible commands and visualizations given to the user, to be helpful instead of
misleading.

Therefore, the question arises, how such a multi-purpose indoor localization and navigation

system can be developed, and what criteria should be met for it to be valuable.
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1.1 Navigation within Buildings

Based on the previous aspects, it becomes clear that the topic of localization indoors is not solely
related to sensors and achievable accuracy, but also to costs, for initial setup, maintenance over
time, software and hardware required by the consumer, and by the system’s operator. In case of
localization indoors, the latter is unlikely to be a government, like it is for the GPS, GLONASS
or Galileo, but more likely the owner of the building to deploy the system to, like an airport,
hospital, supermarket or museum. This gives even more importance to the aspect of costs,
as many public buildings that benefit from indoor localization, like townhalls or museums,
typically are on a tight budget. Closely coupled with costs is the time required for setup and
servicing, as they also arise per building, additionally dependent on its size. As known from
other projects, the solution is a tradeoff between quality (accuracy), time and costs.

Similar aspects apply to the required building maps. As it is unlikely for a global company
to create maps for every single building, where indoor localization could possibly be used, this
data has to be supplied by the operator or a public community, dedicated to this task [Ope].
Furthermore, in contrast to maps for navigation outdoors, indoor maps can be rather eclectic,
as they have to support buildings with multiple floors, elevators, escalators, and different types
of stairs [EBS16; Elh+14]. Depending on the intended use case, they should also support
adding semantic information, like room numbers, points of interest, and access restrictions or
limitations. The latter is especially relevant to the disabled, who are unable to take stairs, or
require additional audible information when visually impaired. These aspects can also affect
the topic of navigation, as the shortest path towards the destination might not be the best solution
for all pedestrians, especially not for those being handicapped or injured.

Based on the previously mentioned thoughts, a non-exhaustive list of requirements for in-

door localization and navigation thus contains the following aspects:

* Software and Hardware required by the consumer should be as cheap as possible, with

required components being small and always at hand, if possible.

* The system’s accuracy must be sufficient for a pedestrian to be localized within the build-
ing, and to provide navigation guidance. Hereby, sufficient is not quantifiable, strongly
depends on the intended use case, and the building’s architecture, as narrow corridors

with many adjacent rooms require a higher accuracy than e.g. large, open shopping malls.

* Time and costs for the initial system setup should be as low as possible. This includes
costs for all necessary hardware components, time for their setup, and effort needed to

provide a digital map of the building’s floorplan.
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* Time and costs for maintenance after the initial setup should be as low as possible. Ideally,

the system is easily adaptable to architectural changes, like new/removed drywalls.

e Fartial failures of the infrastructure should not completely disable the whole system, only
may affect the provided accuracy.

Besides use case-dependent details, the question of suitable hardware components is the
most critical. As existing positioning methods like GPS and GLONASS do rarely work indoors,
other sensors are required to infer an absolute location. As of today, there is no established
solution, and this matter is still open for new suggestions. However, to conform with previous
discussions, it should not only be accurate, but also cheap, and easily available. Therefore, most
ongoing research is targeted at smartphones, as they are ubiquitous, almost always at hand, and
contain an increasing number of sensors [Tia+15; Gui+16; Ndz+17; Ye+14; Mou+15; Kir+18].

That is in contrast to outdoor navigation, where new platforms started to develop around the
existence of a single sensor. For indoor localization and navigation, a desirable target platform is
already available, and the question arises, whether it is suitable for the intended task. This lead
to numerous new research topics, analyzing the suitability of certain sensors, that are installed
within commodity smartphones. Most of them are adapted from previous research in different
fields, where some sensor or component has already been proven helpful.

This e.g. covers velocity and heading, estimated from an accelerometer and a gyroscope,
together providing the base for dead reckoning [ND97], which allows relative (incremental)
location estimations, if initial whereabouts are known. This technique already underwent ex-
tensive research to adapt it from vehicles to pedestrians. Yet, the focus was mainly on multiple
sensors, attached to different parts of the body, picking up leg movement and turning behavior
of a pedestrian, well-suited for motion estimations [SD16; TS12; Goy+11]. With the rising
interest in indoor localization, it began to be adapted to smartphone-only setups, where the
orientation of the device has to be considered, when the pedestrian e.g. holds the smartphone
upfront, looking at its screen while navigating through a building [PHP17; Yu+19; Kus+15].

Yet, with dead reckoning providing information on relative movements, it is only suitable
when initial whereabouts are known, and it is likely to fail over time, due to increasing errors.
For actual indoor localization, hints on absolute whereabouts are mandatory. For this, former
research on Wi-Fi-based location estimation [BP0OO] became of interest again. By using signal
strength observations from nearby access points, it is possible to roughly estimate the distance
towards them, and thus a coarse, absolute location information. This strategy also conforms
with most aforementioned requirements: As of today, most public buildings are equipped with
Wi-Fi, already containing the required infrastructure, and Wi-Fi is supported by all modern

smartphones. However, besides these positive aspects, achievable accuracy is either too coarse,
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50 m

Figure 1.1: Example of a complex single-floor, with large open spaces and small adjacent rooms. First
floor of the UAH building of the University of Alcald de Henares, Spain.

or a manual and time-consuming setup is required beforehand. During the latter, accuracy
is increased by actually measuring the behavior of the installed infrastructure’s radio signals,
throughout the whole architecture. Thus, this area is still undergoing extensive research.

In contrast to navigation outdoors, there is not yet a single sensor that solves the problem
formulation with sufficient accuracy. Instead, research tends towards employing combination
of multiple components, each of which providing a contribution to the overall result. Besides
the two mentioned examples for relative and absolute estimations, various other sensors, such
as the camera, magnetometer or barometer, which are also found within smartphones, can thus
be of interest as well [HBOS; Shu+15; Mur+14].

Alongside sensors, where some components already seem established, mapping still re-
quires extensive research. In outdoor navigation, a graph data structure is ideal to model rivers,
roads and interconnections, for both, displaying and routing. Considering indoor use cases,
however, there is not yet a clear best-candidate among potential data structures [ARC12]. In-
door environments are less restrictive and often inhomogeneous, ranging from narrow hallways
with multiple adjacent rooms, to large open spaces, as can be seen in figure 1.1 and 1.2. This
scalability must be supported by the chosen model, including minor details where needed, yet
without requiring too much memory. Furthermore, the map has to provide all the semantic infor-
mation that might be required for some sort of sensor component. Additionally, multiple floors
and their interconnections, like stairs, escalators or elevators, are also a strong requirement. Not
to mention editability, as the map has to be generated for each and every building, with support
for including future architectural changes. The problem of creating a 3D representation of such
a multistory building has already been solved by computer graphics [KSS17]. Yet, determin-
ing whether a particular movement is possible, calculating the shortest path towards a room
or point of interest, correctly including stairs and elevators, all while being computationally

efficient, still is a topic of active research.
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Deutsches Hutmuseum Lindenberg, Germany RothenburgMuseum, Germany

Figure 1.2: Two complex multi-floor buildings. While the left one is stacked almost evenly, the right one
is irregular in size, shape, and floor-level. The distance between floors was increased for visualization.

Mentioned earlier, the floorplan not only serves as a visualization to the user, it contributes
valuable information as well. The map within car navigation systems is also used to compensate
uncertainties of the GPS, e.g. by placing the virtual car onto the nearest road. Additionally, when
the car drives through a tunnel, and the GPS signal is lost, the last known velocity and heading
can be used to continue predicting the car’s whereabouts, based on the underlying mapping
information. Similar aspects apply to localization and navigation indoors, where the map is
used to denote possible movements, limit impossible movements, and to prevent the impact
of sensor uncertainties and errors. For example, assuming two subsequent absolute location
observations to be ten meter apart from each other. Such a change in location is likely, when
both locations refer to the same floor, and several seconds have passed between the two sensor
observations. Similarly, such a change is unlikely, when e.g. only one second has passed, or
both locations belong to two different floors, and neither stairs nor elevators nor escalators are
nearby. By combining assumptions on pedestrian walking behavior and information provided
by the floorplan, probabilities for potential location changes can be inferred.

Aforementioned aspects lead to the requirement for a technique, which fuses all available
information, to derive the overall result. As every sensor provides its own point of view, there
is no straight-forward solution of combining all observations. Especially in case of sensors
indicating relative location changes, restrictions of the floorplan should be included to rule out
physically impossible movements. Furthermore, every single component is subject to different
types of errors that must be considered as well. The overall task thus is to determine the most
likely whereabouts, based on all sensor observations, assumptions, and the building’s floorplan.
Depending on the complexity of the latter, and the number of sensors, this task can exceed the
capabilities of embedded devices, and represents an extensive research topic on its own [Gus10].

Based on all presented thoughts and requirements, the research objective of this work is

formulated within the following.
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1.2 Research Objective

In contrast to outdoor navigation, where most devices were developed around a single sensor,
with its accuracy sufficient for most use cases, as of today, pedestrian indoor localization relies
on multiple sensors, with the smartphone representing a desirable target platform. The goal
of this work is to derive a scalable system for pedestrian indoor localization and navigation,
targeting this platform. Thus, the focus is solely on smartphones, the sensors available within,
and to build a system that is suitable for most use cases, easy to set up and maintain. Neither
requiring large amounts of time, nor cost for setup and infrastructure. While considering solely
sensors and infrastructure available as of today, the discussed system is intended to be scalable,
allowing for easily including new sensors in the future. For the use case of localization and
navigation, the smartphone is expected to be held upfront by the pedestrian, e.g. looking at
navigational advice, presented on the device’s screen. This aspect is relevant to certain sensors
and corresponding coordinate systems, discussed throughout the course of this work.

With GPS being unavailable indoors, Wi-Fi is considered the main component for absolute
location information, as required infrastructure is available within most buildings where local-
ization or navigation are a benefit, and it is supported by most of today’s smartphones [BPOO;
YAOS; Roo+02; Liu+12]. Yet, with the expected accuracy being insufficient for navigation, ad-
ditional sensors are required. Here, the focus is on well-known dead reckoning techniques that
are adapted for use on smartphones. This e.g. covers the smartphone being held upfront by the
pedestrian, therefore applying required compensation techniques. Besides, additional sensors,
such as the barometer and magnetometer, will also be considered, providing further information
to increase the overall accuracy, without affecting setup, costs or maintenance. As discussed,
every sensor component is subject to different types of errors that have to be handled accord-
ingly. Therefore, the focus is on probabilistic approaches, including all sensor observations
based on their likelihood. That is, for every individual component, a probabilistic model will
be derived, describing the likelihood of some whereabouts or movements, from every sensor’s
point of view.

Not only relevant for visualization purposes, but also for limiting impossible movements or
for providing routing information to derive the best path towards some destination, the build-
ing’s floorplan represents the second major research objective. Conforming with sensors and
aforementioned aspects, probabilistic movement models will be derived, where the floorplan is
used to describe potential and unlikely pedestrian movements.

The information from individual smartphone sensors is combined by sensor fusion, based
on recursive density estimation [MU49; Mar51; Sdr13]. This is used to determine the globally

most likely whereabouts, based on all sensors observations since starting the estimation process.
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Figure 1.3: Brief overview of the overall system. Floorplan and Sensors represent the main source of
information, combined via recursive density estimation, determining the most likely whereabouts.

By considering the history of all sensor observations, relative location information, like afore-
mentioned dead reckoning, are supported as well, and results are refined over time. Throughout
this process, the floorplan will be included, used to e.g. filter impossible movements that would
cross a wall or other obstacles. To include individual errors, chances and similar, all required

calculations are given on a probabilistic basis.

Figure 1.3 provides an overview of the overall system, its individual components, and the
way they interact with each other. This figure is intended to provide a brief impression on the
global research objective, without going into details of each and every component. As can be
seen, the sensors and the building’s floorplan represent the two main sources of information,
combined via recursive density estimation. Both, sensors and floorplan, are intended to be
interchangeable, with the ability to include new sensors and spatial models, scaling with new
future components. To get an impression on the impact of choosing some specific data structure,
two different spatial floorplan models, as well as their advantages and disadvantages, will be
discussed. This also addresses the topic of how to include semantic information, e.g. to label a

room, or to include additional information, useful for routing or people with special needs.

To summarize, the focus of this research is on deriving a smartphone-based pedestrian in-
door localization and navigation system, enabling to localize oneself within a building, e.g. for
navigating to a desired destination. This is achieved by adapting existing techniques to this use
case, combining the information form several smartphone sensors with movement prediction
based on the building’s floorplan, by using probabilistic sensor fusion. Other use cases, such as
localizing all pedestrians currently residing within a building [Xu+13], are not covered by this
work. Also excluded are topics that are related to indoor localization, but not to pedestrians,
like determining the current location of some equipment within a large industrial compound
[Nuc+04; Kar+17]. Furthermore, the focus is solely on ubiquitous components. Special hard-

ware for accurate localization indoors, such as ultra-wideband [FGO02], is thus not considered.
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1.3 State of the Art

This section provides a brief overview on the current state of the art, concerning the main
topics identified during previous remarks and the research objective. More detailed overviews,
and related work from other researchers, are given within each of the chapters, and individually
for every topic.

While indoor localization and navigation became of increasing interest to researchers during
the last decade, there is no standardized solution yet. Even when referring solely to smartphone-
based systems, the sensors used, the way they are integrated and combined, the required infras-
tructure, and the underlying spatial models for the floorplan, if used, are completely varying.
Most systems refer to some sort of probabilistic setup, combining individual components, based
on likelihoods. However, the scale of integration, that is, the number of sensors that are com-
bined, and the degree of additional information added, like the floorplan, is significantly vary-
ing. Often, limited fusion techniques are applied, being computationally efficient, but unable to
fully include all available information, such as obstacles, or the pedestrian’s desired destination
[Tia+15; Hel+13; Ndz+17; NRP16; EBS16; Zha+18b].

Probabilistic Sensor Models As mentioned, core components of the system are sensors, pro-
viding information on whereabouts or movements. While the latter can be performed using
solely dead reckoning, that is, starting from a known location with incremental updates based
on detected movements, this also leads to incremental errors [Ser28]. These errors eventually
were considered, estimating the likelihood for certain whereabouts, and their changes over time
[Goy+11; Li+12]. Yet, the degree of considered information varies significantly. While some
works consider only two sensors and their respective uncertainties, others include additional
observations from other components, and further assumptions, affecting the way the proba-
bilistic models are defined and handled [Hel+13; KGD14; Tia+15]. As shown by others, and
discussed in a later chapter, probabilistic sensor models that consider prior information, such as

the floorplan, can mitigate growing uncertainties, and increase the quality [NRP16; Knal7].

Probabilistic Wi-Fi Localization With Wi-Fi representing an infrastructure already available
within most public buildings, it is also part of many indoor localization and navigation systems.
Yet, implementations often rely on a complex and time-consuming setup procedure, conduct-
ing fine-grained measurements throughout the whole building, to estimate the behavior of radio
signal propagation, required for inferring potential whereabouts [Men+11; YWL12; Zha+18b].
These initial measurements can later be compared against readings from the pedestrian’s smart-
phones, to determine the best matching one, representing the current whereabouts. This variant

of localization is rather discrete, and based on the density of these initial measurements. While
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interpolation techniques exist, they suffer from various drawbacks, and come with a computa-
tional overhead, often exceeding the capabilities of embedded devices [Par62]. Furthermore,
resulting accuracy comes at the cost of setup and maintenance times, whenever the architecture

or Wi-Fi infrastructure is modified. When on a tight budget, different approaches are required.

These are e.g. given by describing radio signal behavior, using some sort of model [SR92;
PCO94; JLHI11]. Similarly to the initial measurements approach described above, the model’s
predictions can then be compared against current readings from the smartphone. However, as
the model is typically able to perform this prediction for any location within the building, it is
continuous, and does not require for additional interpolation. Yet, for every prediction model
several parameters are required to describe the behavior of radio signals. The prediction quality
thus not only depends on the accuracy of the model itself, but also on the chosen parameters
[Sey05; Hee+11]. For use cases where a reduced accuracy is sufficient, empiric values can be

chosen, allowing for a fast deployment and adaption to infrastructural changes.

However, for most setups, a compromise between both techniques represents a viable trade-

off, with sufficient accuracy and fast setup times, thus being the focus within this work.

Building Floorplans and Probabilistic Movement Prediction With the floorplan represent-
ing an important component of every localization and navigation system, not only for visualiza-
tion but also for limiting impossible movements and routing, it is part of many state of the art
systems. Yet, as there is no standardized format for indoor floorplans, and many spatial repre-
sentations are suitable [Led06; Yan06; Wul0; ARC12], different approaches have established

over time, most of which limited to a specific use case.

Simple 2D setups e.g. describe each floor with lines that can be used for intersection tests, to
determine impossible walks [EBS16]. This, however, is not suitable for most buildings, as they
consist of multiple stories. Therefore, 2.5D setups were derived, created by stacking multiple
2D floors, with a discrete connection in between [GF06]. Yet, these setups suffer from various
drawbacks. On the one hand, intersection tests are costly, thus requiring some sort of pre-
calculated approximation for use on embedded devices [Kop+12; NRP16]. On the other hand,
due to the discrete interconnection, changing floors requires some sort of heuristic or additional

sensor information. Besides, this also yields a reduced user experience in visualization.

For both, visualization and prediction, actual 3D representations thus are preferred. To be
suited for use on smartphones, the spatial model should be conservative in use of memory.
Viable is e.g. a polygonal representation of the walkable surface [WHO8], or some other type of
primitive [BJKO5]. Referring to the aforementioned problem of costly intersection tests, the 3D
spatial model should also be able to quickly determine whether two whereabouts are connected

or separated by an obstacle, and, if navigation is desired, the shortest path in between.
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Independent of the chosen inclusion and spatial representation, the floorplan must be defined
in some way or another. Besides manual creation, crowd-based approaches can be suitable, e.g.
determining the walkable area by recordings from hundreds of pedestrians, refined over time

[AY12]. Yet, this only allows for a coarse representation, not ideal for visualization purposes.

Alternatives are e.g. given by robots equipped with a laser-scanner, recording the building’s
interior to derive a 3D representation [SCI13; Hes+16], using several panoramic images to
estimate depth [CF14], or scanning the blueprint and using algorithms to derive walls, doors,
stairs and similar [Liu+17]. However, dependent on the chosen strategy, expensive hardware
might be required, stairs are not supported, or semantic information, like room numbers, still

has to be added manually.

The quality of the resulting floorplan strongly depends on the chosen technique and the
building’s architecture. The same holds true for the time needed to acquire all required infor-

mation. A manual setup, using some sort of editor, thus also is a viable choice.

Sensor and Information Fusion As identified earlier, individual sensors and information
should be fused together, including the history of all observations, to derive the globally best
solution, based on all previous inputs. Ideally, individual uncertainties are included as well,
to decide how trustworthy each information is. The domain of sensor/information fusion, also
referred to as recursive density estimation, is well-researched, both, analytically and experimen-
tally. Initial analytical approaches were limited to linear and Gaussian problems only [Kal60].
While this is sufficient for some setups, such as basic inertial predictions [Meh70], or general
tracking approaches [CHP79], for more complex problems, such as indoor localization and

navigation, including the building’s floorplan, it is not.

When relaxing some requirements, and slightly modifying the analytical process, nonlin-
ear problems are supported as well [SSM62]. Concerning indoor localization, these changes
add support for basic parts of the overall system, like step-detection and tracking [Goy+11;
Jim+12; Gar+16]. Yet, more complex information, such as a building’s floorplan, can still not
be included, as it is impossible to describe the impact of walls, stairs, and similar, on a purely

analytical basis.

For this, non-analytical variants were developed, approximating the recursive density esti-
mation problem via simulations [Del96; LC98; Del98; IB98]. In doing so, they also support
discrete and discontinuous problems, like a wall abruptly blocking all movements. However,
they either come at the cost of reduced accuracy, or require significantly more computations,
as the approximation’s quality depends on the number of simulations [CGMO7]. Nevertheless,
with the steady increase in computational power, they became viable even for use on embedded

devices, such as smartphones.
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1.4 Scientific Contribution

Throughout the course of this work, a smartphone-based indoor localization and navigation
system is derived. While many of the required topics, like pedestrian dead reckoning and prob-
abilistic sensor fusion, are already well researched, some transfer is required to make them
suitable for smartphone use, not requiring any additional sensors attached to the pedestrian’s
body. Similarly, the building’s floorplan is to be considered as well, not only for visual rep-
resentations, but also for determining valid movements, and for navigation indoors. Besides
discussing all required theoretical mathematical backgrounds to determine implications and po-
tential limitations of each individual component, the following scientific contributions will be

provided throughout the course of this work:

Probabilistic Sensor Models While dead reckoning [Ser28; ND97], pedestrian dead reck-
oning [Li+12; Cas+14], step-detection [Goy+11; TS12; SD16; PHP17; Kir+18], and activity-
detection [Elh+14; Zho+15; Zha+18a] all are well-established fields of research, only few works
focus on predictions that rely solely on a smartphone. Holding the device upfront, e.g. required
for navigating while looking at the device’s screen, represents a special case, as information on
leg movement or similar is unavailable, and the pedestrian’s step size can hardly be determined.
Furthermore, when using probabilistic relative movements, the building’s floorplan imposes
constraints that are to be considered.

Therefore, besides discussing required theory, all sensors installed within commodity smart-
phones are examined concerning their contribution towards smartphone-based indoor local-
ization and navigation, with holding the device upfront in mind. For each of the sensors, a
probabilistic model is derived, denoting the likelihood of potential pedestrian movements, with

respect to recently received sensor readings, and the building’s floorplan.

Probabilistic Wi-Fi Localization While some works focused on a probabilistic point of view,
they often imply either a tremendous setup time for conducting measurements throughout the
building, and/or are based on very simple signal strength prediction models, coarsely approxi-
mating real-world behavior. For most setups, a tradeoff between both is required, delivering an
accuracy sufficient for the intended use case, while minimizing setup and maintenance times.
Therefore, a fast setup strategy is presented, using a few reference measurements and nu-
merical optimization to train advanced signal strength prediction models. Each of which is
examined, regarding quality and suitability for probabilistic evaluations. Additionally, strate-
gies for enhancing the quality of predictions, suitable for most public buildings, are introduced.
Finally, probabilistic evaluations are presented, denoting the likelihood of certain whereabouts,

based on some arbitrary signal strength prediction model.
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Building Floorplans and Probabilistic Movement Prediction For every localization and
navigation system, a corresponding map is required to perform calculations and for a visual rep-
resentation to the user. Recently, other systems started to integrate the building’s floorplan, not
only for visualization, but also for limiting impossible walks, similar to car navigation [WHOS;
AY12; ARCI12; Hil+14; NRP16]. However, this is often limited to 2D or 2.5D representations,
using discretely connected floors and relying on intersection tests to determine the validity of
some potential movement.

Therefore, two novel strategies are introduced, using a spatial representation of the building,
to predict potential pedestrian movements. The introduced approaches are computationally
efficient, well suited for smartphone use, and allow for true 3D estimations. In contrast to other
research, these models are combined with sensor observations and additional knowledge, to
estimate pedestrian movement predictions indoors. This also covers the use case of navigation,

deriving realistic routes for the pedestrian to reach a desired destination.

Sensor and Information Fusion All aforementioned aspects are combined using established
sensor fusion algorithms [GSS93; IB98]. After discussing the required theoretical background
to determine potential limitations, suitable approaches for fusing all components are presented.
These will be mainly based on aforementioned simulations, which can be briefly thought of:
Instead of describing the result analytically, try several potential movements, that conform with
recent sensor observations and uncertainties, removing physically impossible ones by consider-
ing the floorplan, with the remaining denoting potential new whereabouts.

As computational power on smartphones is limited, and calculations affect battery life,
strategies for an efficient fusion of sensor observations, floorplan-based movement prediction,
and additional knowledge are introduced. This also covers the topic of simulations, and how to

reduce their number required for a stable and computationally efficient approximation.

1.5 Structure

The structure of this work is divided into four main categories: First, the three initial chapters
provide a theoretical overview on smartphone sensors suitable for indoor localization, pedes-
trian movement prediction and the fusion of both. Second, the overall system is derived, and
several real-world aspects are discussed, concerning required indoor floorplans and considera-
tions for being used on smartphones. Third, all aforementioned aspects are examined experi-
mentally, followed by a summary and outlook.

Chapter 2 provides an overview on sensors installed within commodity smartphones, and

their contribution towards indoor localization and navigation. They can be divided into two
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major groups: sensors providing absolute information, that is, hints on potential whereabouts,
and sensors providing relative information, or hints on potential movements. To also consider
sensor noise and errors, the focus is on a probabilistic analysis, determining the likelihood of
current sensor observations matching with certain pedestrian movements or whereabouts.

Chapter 3 introduces the topic of pedestrian movement prediction, and resulting differences
when additionally including the building’s floorplan. Again, the focus is on a probabilistic inter-
pretation, determining the likelihood for certain movements, restricted by the floorplan, and, if
available, additional knowledge. This e.g. includes the aspect of navigation, how to determine
realistic walking paths within buildings, and how to include them when predicting potential
pedestrian movements. Intentions are comparable to a navigation system for cars, where poten-
tial movements are limited by the car’s velocity, roads, and the requested destination.

Having introduced two viewpoints of indoor localization and navigation, the perspective of
sensors observations, and restrictions imposed by pedestrian walking behavior and a floorplan,
chapter 4 discusses the theoretical background required for fusing all available information
probabilistically. This topic is examined from both, an analytical viewpoint, limited to certain
types of problems, and a simulation-based implementation, required for the overall system.

Hereafter, several peculiarities are discussed briefly in chapter 5. This covers implications
for the intended use on smartphones with limited memory and computational power, optimiza-
tions for real-world scenarios, as well as generating required building floorplans.

All aforementioned aspects are examined experimentally in chapter 6. To ensure the gen-
eral suitability of each sensor and component, several synthetic tests are performed beforehand.
Hereafter, actual pedestrian walks, conducted within several buildings, are used to examine the
contribution of the individual components, presented in chapter 2 and chapter 3. The experi-
ments conclude with localization results, determined from the combined, final system.

Finally, all discussed aspects are summarized in chapter 7, accompanied by an outlook on

topics to address and improve in the future, given in chapter 8.



Chapter 2

Probabilistic Sensor Models

As shown in figure 1.3, core component of localization and navigation systems are sensors, re-
turning a plethora of data, used to infer the current location and guide the navigation process.
Depending on the sensor’s type, the source for its data, the way provided readings are handled,
and the contribution to the overall system, can be completely different. Concerning the local-
ization problem, two major groups can be identified. Sensors providing absolute information
on the location or orientation of the pedestrian, and relative ones, describing location or orienta-
tion changes. Within car navigation systems, the GPS returns approximate whereabouts of the
car, and thus an absolute information. The speedometer allows for inferring the distance taken
within some time period, that is, details on relative changes. At a first glance, relative sensors
might appear unnecessary, and absolute sensor components seem able to solve the problem of
localization on their own. However, they are similarly valuable to the overall system. On the
one hand, to compensate for sensor faults, e.g. when a car drives through a tunnel and the GPS
is lost, on the other hand, to stabilize the overall system performance. While the speedometer
does not provide any absolute location, the returned data is more stable, compared to the GPS.
Yet, neither of both sensors return exact readings, and every indication contains some degree
of uncertainty. That must be known and addressed, when working with the provided data. The
same facts hold true for smartphone-based indoor localization and navigation, relying on a vari-
ety of different sensors, installed in today’s smartphones. Within this section, available sensors,
their potential contribution towards indoor localization and navigation, as well as how to han-
dle their readings on a probabilistic basis, including expected errors, will be examined. While
most sensor outputs belong to exactly one of the two groups, absolute or relative, some can be
applied to both, resulting in different advantages and disadvantages. The following discussions

will later be revisited and combined with other prior information to derive the overall system.

15
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Figure 2.1: Several synthetic readings from a velocity sensor, observing a constant velocity of 14 m/s.
The histogram of all observed samples indicates that the sensor’s accuracy is off by 0.5 m/s. The width
of the histogram, that is, the amount of deviation around the mean value, denotes the sensor’s precision,
where smaller is better. Adapted from [Smi99, p. 33].

2.1 Sensor Errors

If every sensor always provided exact readings, one absolute sensor on its own would suffice
to solve the problem of (indoor) localization, and many other problem formulations as well.
For real-world conditions, every sensor faces some sort of error present within its readings.
Depending on the requirements, this error is either acceptable or needs to be addressed in some
way. Early car navigation systems used the GPS as single data source, and even though provided
readings were off by several meters, this was sufficient for large scale outdoor navigation. Major
drawbacks only occurred when the car slowed down and had to take an intersection in locations
with several possible options. For addressing such situations, the error of the sensor must be
known. Yet, the term error is ambiguous, as there are two main types, each sensor is influenced
by, and thus must be distinguished. Both are shown in figure 2.1.

On the one hand, the sensor might not provide the true value. In such cases, there is an offset
between every indicated value and the corresponding truth. This is referred to as the accuracy
of the sensor’s measurements. The second type of error addresses the sensor’s noise. When
measuring the same constant measurand several times, provided readings will not be constant
but varying. The amount of variation denotes the sensor’s precision.

From a statistic point of view, the difference between a constant measurand and the mean
of several measurements, represents the accuracy, and the variance among all measurements
equals the sensor’s precision. Ideally, the sensor provides both, a high accuracy and a high
precision. Either, or both, requirements will often not hold true for real-world scenarios. While
accuracy issues can be addressed via calibration, precision is a given factor that can not be
altered directly. At least, it can not when referring to only a single measurement [Smi99].

To improve a sensor’s accuracy by calibration, its offset from the true value must be deter-
mined. Depicted in figure 2.2, several offset types must be distinguished. Additive offsets can

be addressed by subtracting a calibrated constant. The same holds true for multiplicative offsets,
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Figure 2.2: Types of errors observable between a target value (x) and its measurement (y). The most
desirable is just noise around the target value (a), and should be provided by calibrated sensors. Without
calibration, the sensor might provide readings that are: shifted by a constant offset (b), scaled by a
constant offset (c), a combination of both, or, at worst, a non-linear modification of the target value (d).

using a division by a calibrated factor. Non-linear modifications of the underlying target-value,
however, require a linearization of the actual readings. When used within digital components,
this can e.g. be achieved by using a calibrated lookup table (LUT), containing several pairs of
actual sensor readings and corresponding true values, provided by a calibrator. Entries must be
provided for the whole measuring range, and spaced as closely as possible. To reduce the num-
ber of samples needed, readings are often assumed to behave linearly between adjacent entries,
which allows for linear interpolation [LC13]. The three error types, additive, multiplicative and

non-linear are also referred to as offset, gain and linearization errors [PPGO5].

What kind of calibration procedure is the best, depends not only on the use-case and the
type of error, but also on the kind of data provided by the sensor. For single valued sensors, like
speed or temperature, a simple n-point calibration is often sufficient. Here, n pairs of sensor
reading and corresponding true value are used to estimate the sensor’s behavior between two
adjacent pairs, similar to the aforementioned LUT approach. While a one-point calibration
can only mitigate offset errors, a two-point calibration is able to address both, offset and gain.
For non-linear sensors, like many temperature sensors that are based on electric resistance (NTC
thermistor), more than two reference measurements are required [JPO4; SB13; LC13]. In case of
multi-valued sensors, the correct calibration strategy depends on whether the individual values
are independent or connected in some way. For a 3-axis accelerometer, it is apparent, that
all three axes are dependent on each other, and should be calibrated together, e.g. by rotating
it around all three axes, hereafter ensuring that the observed measurements denote a sphere
[Ols+16]. However, if the three axes are misaligned, no sphere can be constructed and additional

compensations are required. That is, several levels of calibration complexity can be identified.

Besides this obvious case of dependency, others are less apparent, and dependencies can
also exist between physically unconnected sensors. Temperature and Hall effect sensors (mag-
netometer) seem independent at a first glance, but the latter is dependent on the ambient tem-

perature, and its readings will vary with changing ambient conditions [Cho+12]. To receive
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correct readings for various working conditions, independent of the current temperature, the
magnetometer must be calibrated for several temperature ranges beforehand.

Due to the behavior of many electronic components, most sensors can only be calibrated
for specific environmental conditions, and calibration procedures are required to follow strict
ambient conditions. The German Accreditation Office (DAKkS), for example, requires official
calibration documents to contain the values of all influencing ambient conditions, prevailing
during the calibration [Deul0]. For electronic devices, the ambient temperature is the most crit-
ical value. In rare cases, relative humidity and atmospheric pressure are also required [VDIb].
Detailed calibration requirements are mentioned within the series [VDIa], and depend on the
type of the unit under test. Many vendors thus explicitly specify allowed conditions for using
their equipment. A temperature around (23 + 5) °C and relative humidity < 90 % are common
requirements for using calibrated electronic devices [Flu99].

Besides aforementioned simple n-point calibrations there are many other variants, differing
in required calibration time, computational complexity, necessary amounts of memory during
runtime, resulting accuracy, and whether they need to be supervised. Bouhedda [Boul3] sug-
gests using neural networks for calibrating non-linear sensors, and compares a network-based
calibration of a temperature sensor against using a LUT and a known polynomial describing the
sensor’s nonlinearity. He concludes that this approach is very accurate and requires only a few
basic mathematical operations, making it suitable for implementation within FPGAs.

If a sensor is used outside of its calibrated range for temperature and humidity, the indicated
values might not match the calibrated ones, due to new errors in both accuracy and precision.
Even if a sensor is calibrated, changing ambient conditions can affect provided readings. This
has to be kept in mind, to avoid unexpected drifting and other issues, e.g. by adjusting the
expected precision accordingly. Depending on sensor and measurand, self-calibration might
be supported and automatically triggered, whenever the values returned by the sensor seem
questionable. Such recalibrations and other strategies are presented and compared in [PPGO5].

Besides ambient conditions, the sensor’s error can be affected by multiple other factors.
Clausen et al. [Cla+17] describe various sources, influencing accuracy and precision of a gy-
roscope and how to address them via calibration in a stochastic manner. Furthermore, they
envision to apply their approach over time, to compensate for changes of stochastic environ-
mental influences on the sensor. Additional calibration schemes, as well as their advantages
and disadvantages can be found in [LC13; JPO4; Ols+16; SB13].

The sensor’s expected precision, or uncertainty, within each measurement is usually deter-
mined during calibration, but may also be estimated on its own, when the calibration results
are unknown or undisclosed. Latter is important, as many (smartphone) sensors are factory

calibrated, but their precision is unknown to the user. It can e.g. be estimated by taking several
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samples of a constant measurand and creating a histogram, as depicted in figure 2.1. Accord-
ing to the central limit theorem, the histogram usually follows a normal distribution, with o
denoting the precision, and, for calibrated sensors, its mean equal to the measurand’s true value
[Smi99]. While o often is a constant value throughout the whole range of the sensor — same un-
certainty when measuring e.g. 0 °C or 100 °C — the applied calibration can modify the constant
throughout the measuring range. Quantization noise, for example, induced by the analog-to-
digital converter (ADC) present within most sensors, is an additive zero mean uniform noise,

independent of the magnitude of the to-be-digitized value x, with the simplified representation

uniform distribution

——t—
Jquant () = [ +0.5] ,  equant = (T — fauane (z)) ~ U (—0.5,40.5) . (2.1)

When a calibration function feuip (fquane (#)) performs (non-linear) scaling on the quantized

result, €quanc 18 also scaled, yielding a change in precision throughout the measuring range.

Often, the precision can be increased, e.g. by averaging several measurements. Success,
however, is strongly related to the initial cause of the precision error. Depending on the used
measurement hardware and the measurand, various sources for stochastic and non-stochastic
errors exist. While typical sampling errors, like quantization noise, can be reduced by averaging,
(temporal) environmental influences like temperature, humidity or ambient surroundings, can
not [Cla+17]. Furthermore, as a moving average filter is the same as a convolution with several
constants, that is, a rectangle, it introduces a delay to the filtered output [Smi99]. Especially for
sensors with low sample rates, this might introduce new use case dependent issues. Success of
averaging, and other filtering approaches thus strongly depends on the sample rate of the sensor,

the amount of noise present, and the delay introduced by the filter.

2.2 Probabilistic Problem Formulation

Instead of reducing the error via filtering, potentially introducing new issues, inaccuracies can
be included within calculations, using probabilities for all indicated values, based on the sen-
sor’s known precision. Assuming the GPS to indicate a current location g using Cartesian co-
ordinates (z,y, 2)” with an estimated error of 3m. When observations are provided only once
per second [TY09], averaging increases delays beyond limits acceptable for car navigation. In-
stead, the 3 m uncertainty can be addressed probabilistically, assigning a certain likelihood to
the indicated location and its vicinity. While the observation from the GPS might describe the

most likely whereabouts of the receiver, depending on the error, surroundings are likely as well.
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From the user’s point of view, this might read as: “assuming I am currently here, how likely

is it to receive the values that are currently indicated by the GPS?”, that is

plelp), gp=(x,y,2)", (2.2)

the probability of the GPS indicating p as current location while actually residing at p. Yet,
this formulation is not limited to 3D positions and GPS sensors. In general, an observation o
provided by a sensor, yields a hint on some current state q, which e.g. refers to a 3D location, a
current speed, heading, or other metric relevant to a given problem. Matching with the recursive
nature briefly mentioned in the introduction (cf. figure 1.3), both, observation and state, are
time-dependent, and there is not a single instance, but many, belonging to different points in

time. They are therefore referred to as o, and q,, and are part of a time series

(o)t =014 =01,...,0,1,0; With <0>t = <( . )>t

' (2.3)
<q>t =40+ =4dp;---,41_ 1,4 with <q>t = <()>t7

where 07 is the first observation at time ¢ = 1, o; the current observation at time ¢, and o;_; the
previous one. The general version of (2.2) is thus given by the probability (2.4), of receiving

sensor observations o, at a point ¢ in time, given some state g,

ploi ] q,). (2.4)

As (2.4) uses a direct comparison between a state and various sensor observations, it is limited
to sensors providing absolute values concerning the problem, like the GPS when questioning
the current location. Referring to the introduction, velocity readings, from e.g. a speedometer,
denote a relative indication. The currently indicated speed can not be directly compared against
a potential location, but only against a change in location. Relative sensor observations can be

included by considering both, the current state g, and the previous one q,_,, yielding

plo: | qs,q; ). (2.5)

(2.5) allows for both, absolute and relative comparisons, hereafter referred to as evaluation, as

it evaluates the probability for observations o,, given a state g,, or change in state g¢,_; — q,.

The point of view can be inverted to “assuming the previous state was q,_,, and the previous

sensor observations were o,_1, what could the next state q, look like?”, written as

(g | g,_1,0i-1), (2.6)

and hereafter referred to as transition, as it describes potential transitions from a previous state

g,_, into a new state g,, given some sensor observations o;_;. The minor difference of (2.5)
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using o; and (2.6) using o;_; as observation, is due to mathematical definition, and can be
considered to be identical [TBF05]. While both viewpoints hereafter appear to be the same,
there is an important difference between both, that will become relevant within chapter 4.

Due to essential differences in requirements for absolute and relative sensors, the contents of
o; and q, are dependent on available sensors, and the actual problem formulation. Throughout
this work, o, contains values provided by various sensors installed within commodity smart-
phones, discussed within this chapter. The state g, contains attributes needed to locate, track
or navigate a pedestrian within a building. For single floors, this covers at least the current 2D
location (z,y)?. For multistory buildings, (x,v, )T is required, to include the current floor.
Depending on the sensors available within a phone, additional attributes, such as the current
walking direction O, can also be part of the state. When individual values from the state or
observation are used within equations, this is indicated by e.g. qt(x) from q,, or ofi from o, ;.

The following sections focus on several sensors available within modern smartphones, pro-
viding valuable information towards localization and navigation within a building. For every
sensor, its group (absolute/relative), potential calibration approaches, to be expected errors, and
contributions towards the overall system are examined. Depending on the sensor’s group and

use case, probabilistic models for (2.4), (2.5) and (2.6) are derived and discussed in detail.

2.3 Global Positioning System

As of today, the global positioning system (GPS) is a well-known method for outdoor localiza-
tion almost anywhere on earth. Being expensive at first, receivers are now available as cheap
modules, installed within tracking devices, smartphones, and portable navigation systems, offer-
ing outdoor localization on land, sea and in the air. While GPS does not work indoors [Och+14;
GGB12], the sensor is still valuable for indoor localization and navigation, e.g. directly before
entering, or when walking between adjacent buildings [Hut+16; CPP10; Tor+17]. Furthermore,
many aspects discussed for the GPS apply to other localization components as well.

To provide location information, a receiver listens for data frames from moving satellites,
equipped with high-precision atomic clocks. Each frame contains the satellite’s current position
and the timestamp it was sent at. Combining the frames from several satellites allows the
receiver to use the time difference of arrival (TDOA) method, to infer the time needed for the
signals to travel from each satellite, hereafter converted into a distance, based on the speed of
light. Each estimated distance denotes the radius of a sphere around the known position of its
corresponding satellite. The receiver’s location can be inferred using multiple measurements,
and resides where all their spheres intersect. For a 3D estimation (including altitude) at least

four measurements are required. This process is known as lateration or multilateration [DH10].
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Multilateration Due to measurement noise, however, the distance information is inaccurate,
and there is no exact point of intersection between all surfaces. The receiver’s whereabouts are
thus approximated by determining the location that fits all measurements best. Without loss of
generality, using Cartesian 3D coordinates (z,y, z)” instead of latitude, longitude and altitude:
The relationship between the receiver’s real location p, its estimated position p, the position
2, of some satellite and the measured distance ds, towards the satellite is constrained by

known unknown measured calculated

A~ A~ A~ ——
I — 2 1= da =l — 2l HpH:\/(p(”““’)2+(ﬂ(y))2+(f)(z))2- 2.7

The location g, of every satellite is known from transmitted data, and dg, represents the mea-
sured distance towards it, given by the TDOA. Using several of above constraints, the receiver’s
estimated location p* is assumed to be the location that minimizes the (quadratic) error between

the measured and the calculated distance when assuming the receiver to reside at p

p = arg;ninZ (lew — 2l — dsm)2 . (2.8)

R sat
Assuming (2.8) to be a continuous and convex function, p* can be determined using numerical
optimization strategies such as gradient descent [HS06; RHG13] or the Nelder-Mead method,
also called downhill simplex method [NM65; Pow62]. These try to estimate a function’s global
minimum (or maximum) using multiple iterations, like known from Newton’s method [New67].
If the given function is not convex or non-monotonic, they face the risk of getting stuck within

a local minimum instead, thus being only suited for certain types of functions.

Alternatively, (2.8) can be solved using an analytical approximation. Applying a lineariza-
tion to the quadratic equation (2.7), allows for rewriting the problem as a linear system Ax = b
[GV13]. For better readability, the linearization is presented in general, relating distances d;

measured towards known locations (z;, ¥;, 2;)” to the unknown location (Z, 7, 2)”

di 2 \f(wi— 2) + (i — 9P+ (2= 2%, i€ {l,..., N}, 2.9)
Squaring (2.9) to remove the root, and expanding the parentheses yields
d? = (27 — 238 + 2%) + (y7 — 200 + 9°) + (27 — 222 + 7). (2.10)

For a system of linear equations, the three unknowns with exponent, £2, 4> and 22, must be

removed from (2.10). One common solution is to subtract the first equation, the one that belongs
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to dy, from all others {ds, . .., dy}, resulting in a system of N — 1 equations [Li+05]:

x] = 2m@ + ) 4 (v — 250 + 9°) + (27 — 222 + 27)) —

x7 — 2% + 8%) + (Y — 2010 + 9°) + (27 — 2212 + 27)) (2.11)
= — 2t +2&(w —xi) + 47— yi + 2000 — y) + 27 — 2 +28(a - 2),

d; —di = ((
(

which can hereafter be rewritten as a system of linear equations, Ax = b

T1—T2 Y1—Y2 21722 . (d3 — d}) + (2] — 23) + (4 — 43) + (of — 23)
x
T1—T3 Y1—Y3 2123 X 1| (d3 —df) + (2] — 23) + (y§ — v3) + (2f — 23)
. gl=5 _ L (2.12)
~ 2 .
z
TI=Ti Y1—Yi 1% (df —df) + (27 — 2f) + (yf — y7) + (2 — 27)

When more than four equations are given, the system is overdetermined and (2.12) can be solved
using x = A"b, where A" is the Moore-Penrose inverse A" = (A7 A)~' AT [Pen55]. This
yields an approximate solution p* = (&, g, 2) that, similar to (2.8), minimizes the quadratic error
between measured and calculated distances. However, due to the linearization via subtraction,

the result represents an approximation, slightly differing from the one provided by (2.8) [Li+05].

For simplicity, above calculations were based on 3D Cartesian coordinates. The values g

(lat

provided from actual GPS sensors, however, are polar coordinates with latitude g ) longi-

(lon) (@) and an error estimation g™, e.g. returned by the NMEA protocol

tude g""°", an altitude g
[AAOI11] of portable receivers, or smartphone operating system APIs. The longitude is given
between —180° and 180° or from west to east. When walking along the equator, only the lon-
gitude is changed. It will hereafter be referred to as the z-axis within the building’s coordinate

system. The latitude runs from —90° to 90° or from south to north, and is referred to as y-axis.

Floorplan Mapping For being used by indoor localization, coordinates supplied by the GPS
must be converted to the coordinate system of the floorplan. This requires a calibrated reference
(refion, refiy, refy) — (refy, refy, ref,), e.g. for the building’s center, and a rotation angle ref,,
aligning the = and y axes with longitude and latitude, depending on the building’s orientation.
As the GPS is only intended for outdoor use, altitude information can usually be omitted. Here-
after, changes in longitude and latitude around their reference correspond with changes in x and
y around the building’s center. While the transformation between both is nonlinear due to the
earth’s curvature, it can be assumed as linear throughout the relatively small size of the building.

Using the earth’s perimeter around the equator and converting this value to m/°

2 Tean 400007 862 m
360° 360°

=111132.95m/°, (2.13)
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yields a constant, relating changes of ° in latitude to m, valid at alt = Om. As the earth’s
latitudinal-perimeter decreases when moving towards the poles, the reference for changes in

longitude along this perimeter is varying, dependent on the current latitude:

frae (Alat) = Alat111132.95,  fion (Alon) = Alon( cos(refiy ) 111 132.95) ) (2.14)

As the earth is not perfectly round, but an ellipsoid, (2.14) represents a simplification. Usually
several compensation terms are added to the equation to improve correctness [MS10]. Alterna-
tively, other approaches, such as the one presented by Vincenty [Vin75], can be used. However,
using this linear approach with a constant value, yields a computationally efficient, yet suffi-
ciently accurate solution for the intended use case. The final conversion from polar coordinates

within g to Cartesian coordinates, including the calibrated reference, is hereafter given by

refy cos (ref,) —sin(ref,) 0 fion (g1 — refion)
POSy, (g) = | refy | + | sin (ref,) cos(ref,) 0 fat (g(lat) — reflm) . (215
ref, 0 0 1 (g — refy,)

Independent of the strategy used to estimate the location g of the GPS receiver, it will deviate
from the device’s actual position. Depending on satellite visibility, quality of the time measure-
ments and used hardware components, the sensor’s precision and accuracy will vary. Most GPS
receivers provide an error estimation ¢® (in m), that yields an indication on the quality of the
current location estimation. This value is determined by the sensor itself, in a similar way to
examining the variance among all individual distance errors from (2.8):

o = E(X?) = (E(X))*, X = {|llgg — 2l — dw] | Vsat}. (2.16)

O gps

The resulting error indication can be used to describe the likelihood of the receiver residing di-
rectly at, or near the estimated position, also addressing bad reception conditions when buildings

or trees occlude the satellite signals [AAO11]. Based on the notation introduced in section 2.2

GPS evaluation normal distribution difference between GPS indication and unknown state
7\ 7\ 7\

~ Y 7~

ngS (Ot | qt) = N (d ‘ Oa O-gps) ) d= ||posgps <0§9)> - posxyz (qt) ||

So)t ={(g,.-.)),;, Sq}t = ((z,y,2,...)),, g = (lon,lat,alt, err), Teps = g

t t
/ / \ /

(2.17)

(err)

Vv Vv .‘r . VvV
observations (2.3) unknown state (2.3) GPS receiver provides uncertainty

(2.17) denotes the corresponding evaluation (2.4). It describes a probabilistic relation between
potential pedestrian whereabouts (, y, z)T, part of the unknown state g,, and current GPS read-

ings g, part of the observation o;. This probability depends on the distance between both, es-
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Figure 2.3: GPS localization deviation (in m) for a static receiver under good reception conditions.
Assuming normally distributed measurements, the two ellipses depict the corresponding confidence in-
tervals for o (=~ 68 %) and 20 (~ 95 %). Shape and rotation depend on the actual location on earth. Axis
labels are therefore omitted. The median (left dot) does not resemble the average (centered dot).

timated after converting the GPS readings to the building’s Cartesian coordinate system using

(2.15), and extracting (x, vy, 2)T from the unknown state

T
pos,,, (a) = (¢”.a" ") . 2.18)

That is, (2.17) relates unknown states and the observation from the GPS by using a normal

distribution based on their distance, and the uncertainty indication ¢, given by the receiver.

Sensor Uncertainty For many sensors and use-cases, their error/noise is assumed to follow a
zero mean Gaussian distribution, like in (2.17) [Smi99]. This implies, that the values returned
by some sensor are symmetrically distributed around the real value, and the average of an in-
finite number of measurements, produces the real value. While being a correct assumption for
most calibrated sensors, aforementioned environmental conditions can affect the measurement
noise. Especially a bad line of sight towards the sky can greatly affect the accuracy of the lo-
cation estimations returned by a GPS receiver [Och+14; DH10]. Such conditions can yield a
non zero mean measurement noise, where all estimations drift from the actual location. Figure
2.3 depicts several measurements from a static receiver with a clear line of sight towards the
sky. Even under ideal conditions, they can be influenced and might be shifted from the actual
location. Comparing their median (left dot) and average (centered dot) indicates that this is the
case for the depicted observations. Still assuming a zero mean Gaussian noise in such cases,

yields an error, as the density is shifted from the real value.

With the direction of the shift unknown, and the sensor only providing a hint on its amount,
a uniform distribution comes to mind as potential alternative. However, while this ensures that
every location within the confidence-radius around the sensor’s estimation has the same prob-
ability, all values outside of this region receive a likelihood of zero, which is usually incorrect.
This can be addressed by combining both aforementioned distributions: A uniform distribution
for all values within the range of the indicated error ¢ and a normal distribution for all values

outside of this region. The transition between both distributions should be continuous and the
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Figure 2.4: Modification of the normal distribution, created by inserting a uniform distribution in the
center. The filled and crossed parts denote the redistribution, ensuring the result sums to 1.0.

area of the resulting probability density function (PDF) must satisfy

/OO p(x) do =1.0. (2.19)

o0

To meet those requirements, the overall density can e.g. be conceived as an equal split between
the uniform and the normal distribution, shown in figure 2.4. The true location often resides
somewhere within the region of £¢*™ around the indicated value, or ; = r, in general. This is
covered by a uniform distribution U/ (p — r,, i + r,) around the center p. The width 2r, of the
distribution is variable and depends on the error currently indicated by the receiver. Considering
just the uniform distribution, the height r, must be chosen to ensure the area satisfies (2.19),
that is: 27, 7, = 1.0. To seamlessly connect both distributions, the normal distribution’s highest

point has to be on par with the height of the uniform distribution. Its ¢ is thus constrained by

rhémax(/\/‘(...,az)): ! = o !

V2mo? - V2,

The combined distribution is calculated by making each input variable o zero mean, condition-

(2.20)

ing the next step on whether this intermediate value resides within the uniform or within the

normal distribution, and normalizing the result by 0.5, to satisfy (2.19), summing up to 1.0

1 U | —ry,+1)) fora’ <,
Ria|pr)=54" " 2
N (x/ —r,]0,0%) else 2.21)
, Ta 1
' =l —pl, m=—=, o

2 V2

When using (2.21), the evaluation (2.17) of the pedestrian’s whereabouts is rewritten as

Peps (01| @) =R (d } O,Q(err)) . (2.22)

One major issue presented by the GPS is the time needed until the first fix, or location informa-

tion, is provided. Especially when leaving a building to move between adjacent complexes, the
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amount of time can be too short for a fix to become available. Furthermore, in case of adjacent
buildings, the signal might be shadowed, increasing the time even further, hereafter providing
only coarse location estimations due to bad satellite visibility [DH10; Ebn+17]. Another draw-
back is presented by increased energy consumption when a smartphone’s GPS is active. Thus,
it should only be enabled when it is expected to provide viable results, that is, outside of a build-
ing [Cap+17]. Therefore, Zhou et al. [Zho+12] proposed a system that uses other smartphone
components, such as the light sensor, or the celltower signal strength, to distinguish between
indoors and outdoors. However, they also denote that the accuracy outdoors will greatly vary
depending on surroundings and weather conditions. For large error indications it thus makes

sense to ignore readings provided by the GPS, and rely on other sensors instead.

2.4 Inertial Measurement Unit

As mentioned initially, a navigation system for cars benefits from additional information besides
the GPS, such as the current driving speed or direction. Both values can be used to stabilize
the localization when the GPS is unreliable, or to provide location updates whenever it is un-
available, e.g. when driving through a tunnel. A similar procedure has been used by seafarers
for decades, estimating the ship’s current location based on its revolution counter and a com-
pass, when astronomical fixes, such as stars, were invisible or ambiguous [Ser28]. Approaches
based on those two parameters, speed and heading, are known as inertial navigation systems
INS, or dead reckoning. They predict the current position based on the previously known posi-
tion and heading, using recent information for movement/speed and heading/direction-changes,
thus representing a relative location estimation. It also applies to aviation, where the current air-
speed, measured by Pitot tubes, is combined with the heading provided by a magnetic compass
and gyroscope, to navigate relatively between landmarks with known absolute locations [Pit32].
When the initial location and heading are known, dead reckoning can be applied for pedestrian
indoor navigation and localization as well. In many scenarios a pedestrian enters a building at a
known location, or this location can be provided by the last GPS readings, just before entering
the building [Hut+16; Och+14]. Starting from this known state, dead reckoning can be used to
update the pedestrian’s location based on relative movements. This itself is a well established
field of research, known as pedestrian dead reckoning (PDR).

Almost all modern smartphones contain a so-called inertial measurement unit (IMU), which
is a group of several individual sensors, related to inertial measurements. As of today, the IMU
within most devices provides an accelerometer for absolute gravity/pose measurements, a gyro-
scope for relative pose changes, and a magnetometer for absolute magnetic field measurements.

Based on those three sensors, it can be inferred whether the pedestrian is currently walking,
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taking stairs, or changing the heading. While walking speeds can roughly be approximated
[Yu+19], the quality strongly depends on how the pedestrian holds the smartphone while walk-
ing. Dedicated foot-mounted accelerometers are more suited for this estimation, as the impact
of acceleration is very pronounced, and can be used to estimate the distance taken with every
single step [NPM13]. This, however, is impracticable when dealing with smartphone-based
indoor localization and navigation, where the pedestrian often holds the phone in front of the
body. Here, the required forward acceleration is mainly measurable when starting or stopping

to walk, and can easily be confused with shaking the phone during the walk [KWS12].

While aforementioned velocity estimation is rather unstable, single steps made by the pedes-
trian create a measurable change in acceleration, representing the base for step-detection. Com-
bined with average human step lengths, the walking speed is approximated [TS12; Kop+14;
SD16]. Likewise, the gyroscope measures relative changes in pitch, roll and yaw, and thus
provides a corresponding turn-detection for the pedestrian [Ebn+15; Jan+15; Li+12]. Due to
only capturing relative changes, the current absolute heading depends on the availability of the
initial heading, which is hereafter adjusted by all measured changes. This drawback can be
mitigated by readings from a magnetometer, which serves as an eCompass, providing a coarse
information on the current absolute heading, yet, prone to errors e.g. induced by nearby metal
objects [Goy+11; ND97; She+09; Goz+11].

Despite apparent simplicity, this topic is still under extensive research. Even though sensor
accuracies are steadily increasing, filtering is still required. Not only to distinguish between
actual data and sensor noise, but also to prevent temporal errors, like metallic objects influencing
the compass, and to stabilize the resulting estimations over time [Tia+15; ND97]. While most
of today’s sensors provide very accurate readings, with small amounts of noise [Mou+15], their
values do not allow for absolute location estimations, but only for relative changes, representing
one of the major issues of dead reckoning. Even if individual readings only face a small error

g, they contribute to every relative adjustment and thus accumulate over time
dipr =di+ (V+e)At, dyyo=dpyr + (V+e)At = diyy = di +n(v+e)At. (2.23)

Within (2.23), the distance d; from an initially known position is adjusted at fixed time intervals
At by using the current velocity-indication v, which faces an error €. As mentioned earlier, this
error is often assumed to be normally distributed. The resulting cumulative error E is thus given

by a normal distribution, with mean and uncertainty dependent on the number of cumulations

N
e~ N(w,o®), E=Y g = E~N(NpNo?). (2.24)

=1
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Figure 2.5: Coordinate system of most smartphone’s IMU-sensors [Goob; App] (left). When the pedes-
trian holds the device in front, slightly tilting it for a good view angle, this coordinate system is rotated
with respected to the world’s coordinate system (right), affecting the readings from contained sensors.

For calibrated sensors, the error should be zero mean, and thus Ny = 0. Cumulation still

yields an average of zero and only the variance o

increases linearly with N. That is, the result
after cumulation is close to the true value, but its uncertainty has increased, yielding a lower
precision. For most real-world scenarios, however, accuracy is not ideal and a constant offset x

cumulates over time, yielding results which are neither accurate, nor precise [Smi99].

Assuming an object to travel with 14 m/s, and the error of its velocity sensor to be zero
mean Gaussian with 0 = 0.5m/s. According to (2.24), after 120 s it traveled 1680 m, with an
uncertainty ¢ = 5.5m. Based on the integral f_+22; N (1680, 5.5?), the real distance is within
(1680 £ 11) m, with a confidence of ~ 95 %. Even though the uncertainty of 0.5 m/s and the
timeframe of 120 s are rather large, £11 m is small compared to 1680 m. However, if the sen-
sor is slightly off, indicating 14.1 m/s instead, the object is expected to have moved 1692 m
after 120 s. The small offset of 0.1 m/s yields an average result, outside of the previous confi-
dence interval of (1680 = 11) m. Especially for problems with cumulative errors, such as dead
reckoning, offsets in accuracy must be prevented. To address those offsets, the sensor requires

calibration to determine both, the type (cf. figure 2.2) and amount of the induced error [Tia+15].

For constrained use-cases, where a cumulative error is tolerable, and both, starting position
and heading, are well known, just using PDR without additional sensors might already be suf-
ficient. State of the art PDR solutions provide viable results with minimal sensor requirements
and little or no prior knowledge about the walkable area. For longer walks within complex
architecture, however, PDR will suffer from increasing errors and requires stabilization using
absolute location information [CHP16; JPP18; Knal7].

To use a smartphone’s IMU for PDR, the observations from its sensors must be interpreted
correctly. As of today, the contained accelerometers, gyroscopes, and magnetometers all pro-

vide readings for three orthogonal axes. Typically, all three sensors are placed in the same way,
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sharing the same alignment of these axes. Figure 2.5 depicts the coordinate system used within
most smartphones [Goob; App]. When the device is placed display-up on a table, the sensors are
aligned parallel to the earth’s surface, with the z-axis pointing upwards, and measurements from
the accelerometer are approximately ~ (0, 0,9.81) m/s*. Within the following discussions, the
pedestrian is expected to hold the smartphone in one hand in front of the body, slightly tilting
it for a good display viewing angle (cf. figure 2.5). This pose is expected to be typical for most
pedestrians using indoor navigation, watching routing advice on the device’s screen. Due to the
tilt, the smartphone’s coordinate system is rotated, affecting the readings provided by all IMU
sensors. This rotation must be considered to correctly interpret sensor readings, aligning them
with the coordinate system assumed for the world, that is, the building’s floorplan.

The following sections discuss IMU-based approaches that are viable for a smartphone-
based indoor localization and navigation system. This covers the three main topics of step-
detection, turn-detection and eCompass. Handling the rotation induced by the pedestrian tilting
the smartphone will be covered in detail. Discussions also include expected errors, to derive
probabilistic models including each sensor’s uncertainty. Where applicable, potential calibra-

tions, to increase accuracy, are examined as well.

2.4.1 Step-Detection

As previously mentioned, determining the pedestrian’s current walking speed based on available
smartphone sensors is inaccurate, at least when the device is held upfront. This drawback is
mitigated by step-detection, serving as an approximate velocity indicator for the dead reckoning
process. When a pedestrian walks along a corridor, each step creates a measurable change in
acceleration, once when a foot is lifted, and once when touching the ground [TS12]. Those
changes yield a unique pattern, detectable for all smartphone poses, within the data provided by
the accelerometer, measuring the current gravity.

Due to the IMU coordinate system (cf. figure 2.5), measurements a = (x, y, z) provided by
the accelerometer are approximately a =~ (0,0, 9.81)m/s? when the phone is placed display-up
on the ground. When holding the device in the same way while walking, that is, parallel to the
earth’s surface, only the z-axis experiences aforementioned acceleration changes, and fluctuates
around 9.81 m/s?, denoting individual steps. When navigating, the pedestrian usually looks at
the smartphone’s display by slightly tilting the upper screen edge towards the head, resulting in
a rotation around the z-axis (see figure 2.5). After applying this rotation to the readings from
the sensor, the x-value still stays near zero and only contains the natural left-right-fluctuation of
humans moving their hands while walking. The earth’s gravity, however, is redistributed among

the y and z-axis, depending on the tilting angle, and the step-pattern can also be observed when
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Figure 2.6: Readings from a smartphone’s 3-axis accelerometer sensor over time, sampled at 20 Hz for a
better visibility. The pedestrian walked along a hallway, holding the smartphone slightly tilted in front of
the body (cf. figure 2.5), ~1.3 m above ground. Each major spike on the z or y-axis denotes one single
step. The x-axis is based on left-right-movements of the pedestrian’s right arm during the walk.

examining the data of the y-axis. A matching example is shown within figure 2.6. While the
used smartphone holding pattern is typical for indoor navigation, it can not be assumed to be
a given, and the pedestrian might refer to other poses, such as landscape-mode, or carrying the
phone within trouser pockets, listening to navigation advice via earphones [Kus+135].

As the direction of change in acceleration is not required for detecting steps, rotation invari-
ancy is achieved by using the magnitude of the sensor readings [SD16]. That is, the Euclidean
norm ||(a™®, a¥), a®®))"|| of the measurement. This value still yields an average of ~ 9.81 m /s?,
and preserves the deviations imposed by each step. However, this will usually introduce some
side-effects and generate spikes that are not related to actual steps, e.g. when the pedestrian
shakes the device, or changes the orientation from landscape to portrait or vice versa [Ebn+15].

Alternatively to using the magnitude, the accelerometer readings can be transformed. This
is achieved by undoing the rotation introduced by the pedestrian tilting the device. Hereafter,
the adjusted sensor readings are similar to the ones from the phone placed parallel to the ground,
where a(®) and a¥) are almost 0 and a*) fluctuates around 9.81 m/s?, containing the typical step
pattern [Tia+15]. Mathematical details on how to undo the rotation induced by the pedestrian
holding the smartphone will be discussed in section 2.4.2. When e.g. carrying the phone within
trouser pockets, this rotation is not constant, but changes throughout every step. Furthermore,
vibrations and the effect of acceleration changes are different when the device is carried in this
way. Park et al. [PHP17] suggest additional machine learning via SVM classification to detect
potential smartphone poses, improving rotation invariance and the overall detection of steps.

Independent of the approach chosen for rotation invariance, the resulting data features a
step-specific pattern, consisting of a steep increase, followed by a steep decrease [TS12; Li+12].
Basic strategies thus e.g. determine peaks that are above an empiric threshold. If a peak is de-
tected, the process is stopped for some time, to prevent multiple small peaks in sequence, usu-
ally vibration or noise, from also triggering detected steps. This blocking-period is a heuristic,

dependent on the expected step frequency [PHP17]. The requirement for this delay can clearly
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be identified when looking at the z-axis signal course in figure 2.6. While the steps between
7s and 14 s are relatively clear, many occurrences of minor local peaks can be observed as well

(around 6 s or 19 s), yielding too many step-detections when not being suppressed.

More robust approaches focus on finding local maxima within a certain timeframe. Using a
window of several samples provides the same effect as aforementioned delay times, preventing
several nearby peaks from triggering too many detected steps [TS12]. Besides local maxima,
zero crossings can also be used to realize step detection, where two zero crossings denote one
step. For this to work, readings from the accelerometer must be approximately zero mean. In
case of the magnitude-based approach this is e.g. achieved by subtracting the constant gravity of
9.81m/ s2, or, in general, by subtracting a long-term average of the signal from itself [Kir+18].
Both techniques, detecting zero crossings and making a signal zero mean, are computationally

inexpensive, thus ideal for use on embedded devices, such as smartphones [Goy+11].

Efficient Noise Reduction As indicated in figure 2.6 and figure 2.7, there is a significant
amount of noise within the measurements, affecting the step-detection process. Using zero
crossings and local maxima detection mitigates the problem only to some degree. For a more
robust stabilization, independent of the used detection method, the input signal should be filtered
beforehand. With noise typically being a fast-changing component, a low-pass filter can be used
to remove high frequencies from the signal [Kir+18]. The most simple low-pass is the moving
average filter, using the average of several consecutive samples to suppress fast changes. While

being computationally efficient, its configurability is rather limited.

For frequency-based filters to be used on a discretely sampled signal, it must be provided at a
constant sample-rate [Smi99]. However, as neither sensor nor API of common smartphones are
required to provide samples at equidistant intervals, a constant sample rate can not be assumed
in general. This also imposes potential issues when searching for a specifically-shaped pattern
within the provided sensor data. To construct a fixed sample rate, a combination of interpolation
and resampling can be applied to the incoming measurements. Update rates provided by an
accelerometer usually are high, 200 Hz and above, thus requiring for downsampling to lower
rates, sufficient for the step-detection process. This is e.g. achieved by selecting the nearest
neighbor, the reading that is temporally next to the required output, or by interpolating between
the two nearest ones. If the sample rate of the sensor is much higher than the required output,
using the nearest neighbor is sufficient in terms of precision [Smi99]. For all following steps,
measurements are assumed to occur at a fixed rate of 100 Hz, which is an empiric choice that is

sufficiently fast to detect individual steps, yet conserving computational power [SD16; PHP17].

With the signal now available at a fixed sample rate, a configurable low-pass can be applied,

by using either a finite impulse response (FIR) or an infinite impulse response (IIR) filter. Gen-
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Figure 2.7: Magnitude of accelerometer readings, fluctuating around 9.81 m/s2, for a pedestrian walking
along a hallway while holding the smartphone in front of the body (left). The corresponding frequency
spectrum (right) denotes the signal’s composition, and indicates the pedestrian’s step-rate of ~ 1.8 Hz.

erally, the latter is computationally less complex, but the former provides better results. In this
context, better refers to undesired frequencies being removed more effectively, without affect-
ing the desired ones. That is, the cut-off between required and unwanted parts of the signal is
more rapid, and the attenuation of the unwanted stopband is higher. However, while the IIR
involves just a few multiplications and additions with small delays, the improved attenuation of

FIR filters comes at the cost of required computational power, and larger delays [Smi99].

To be consistent with the notation typically used in digital signal processing, the following

filter equations will re-purpose previously introduced variables.

A well known variant of IIR is the second-order or biquad filter, using three coefficients
bo, b1, by on the discrete input signal z[j, and three ao, a;, a; on previous discrete outputs Y

thus creating an infinite recursion. An implementation in so-called direct form 1 is given by

1
Yl = (b + O1&n-1) + baZn-z) — A1Ypp 1) — A2Ypy2y) - (2.25)

It only requires a few multiplications, additions and a history of two previous inputs and outputs,
well suited for realtime use. The coefficients ag, aq, as and by, b1, by are determined based on
the desired effect. Noise can e.g. be removed from the input signal by configuring a low-pass
filter, removing all frequencies above a certain cut-off frequency. The required values for the
six components can directly be calculated based on the desired cut-off frequency, and sensor

sample rate. Equations and further details are found in [Ror93; WT06; Smi99].

The low-pass’ cut-off frequency depends on the pedestrian’s walking speed, shown on the
right side of figure 2.7. Its result is sufficient for most step-detection strategies, such as afore-
mentioned peak detection. Others, like searching for zero-crossings, require the signal to be zero
mean, with the constant gravity offset removed. To include this additional requirement, a band-
pass filter can be used, keeping only the desired frequencies around ~ 1.8 Hz (cf. figure 2.7).
While all six coefficients are again directly calculable, there is less control on the actual size

of the passband, which, however, is an important requirement to correctly adapt to significantly
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Figure 2.8: Band-pass filtered zero mean accelerometer magnitude, using the input from figure 2.7. The
applied step-detection searches for local maxima that are above a certain threshold (grey line).

varying individual step frequencies [Sau+11]. More control is given by cascading multiple IIR
filters. For example, one high-pass to remove the constant gravity and low frequency noise, like

the pedestrian shaking the phone while walking, and one low-pass to suppress noise.

More versatile, in terms of configurability, are FIR filters, based on a discrete convolution of
the input signal with some kernel. As a convolution in the time domain equals a multiplication
in the frequency domain, the kernel can easily be created by choosing the frequencies to keep,
and applying an inverse Fourier transform [Smi99]. The drawback of this approach is increased
computational overhead. The filter’s quality directly depends on the size kernel, which is thus
required to have a decent size. Furthermore, the convolution introduces delays based on this
size, delaying the output of the accelerometer, and thus the step-detection process. For example,
a sample rate of 100 Hz required N > 101 coefficients for the band-pass’ kernel, yielding a

% > 500 ms delay. Further details and considerations can be found in [Ror93; Smi99].

Besides using an IIR or FIR band-pass, low frequency noise and the constant gravity offset

can also be removed by subtracting the input’s moving average of size N/ from it

N/
1
Y = Tlal = 357 D Tlnn] (2.26)
n’=0

hereafter sending the result through a low-pass filter to remove high frequency noise. While the
moving average also introduces a delay based on V', it can be neglected, as the to-be-removed
components (e.g. gravity) are approximately constant, not causing any delays for the actual
step-pattern. Which of the discussed filtering variants serves best for an actual system, strongly

depends on required quality, acceptable delays, and available computational performance.

Probabilistic Assembly After filtering, one of the described strategies can be used to detect if

the n-th sample denotes a step. A local maximum detection on the discrete, filtered magnitude

Ay = filter ([lag)|]) (2.27)
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requires values before and after the maximum for a correct identification, that is, future values,

thus introducing slight delays to drop this requirement when evaluating live readings
fsep (Asn) = (Ap—2a) < Ap—a)) A (Ap—a) > Apy), A €Ny (2.28)

Whether a detected maximum denotes a step also depends on its magnitude [K6p+14; PHP17].
This is depicted in figure 2.8, where only peaks above a certain threshold heuristic are classified
as steps. Instead of a constant, heuristic threshold, the signal’s moving variance could be used,
detecting all peaks that are beyond the signal’s average fluctuation. Yet, this imposes issues for
situations where the pedestrian isn’t walking. Standing still yields a low overall variance, and

peaks induced by noise can cause false-positives, thus requiring additional handling [TS12].

As mentioned earlier, when computational power is limited, step-detection can be performed
without prior filtering, at the expense of accuracy. The maximum detection (2.28) is still viable,
but requires a dead-time after each detected step to prevent noisy spikes within the magni-
tude from causing false positives. While more sophisticated algorithms can cope with multiple
smaller peaks and are also able to search for periodic occurrences within the signal, well-suited

for step-detection [SBW12], they come at the expense of required computational power.

All of the mentioned detection approaches performed a binary yes/no classification for steps,
based on some metric or heuristic. For values that are far beyond the chosen threshold, the
classification is clear. If the value is only slightly above or below the threshold, the correctness
of the algorithms classification is uncertain. This can be addressed by using a probabilistic
classification instead, where each potentially detected step is assigned a probability for it to
represent a real step. The probability e.g. depends on how pronounced the step appears within
the accelerometer readings, where the magnitude can be used to infer a probability pgep (A[n])
for Ay, to denote a step, by applying a probability distribution. As more pronounced peaks
usually are more likely to represent a step, the corresponding probability can e.g. be inferred by

sending the reciprocal of Ay, into an exponential distribution with some value for
Daep (Ap) = Aexp <—>\ (A[n])_1> L A>0, Ay >0. (2.29)
When results are preferred within the range of [0, 1], (2.29) can be unnormalized
Paey (Ap) = exp <—)\ (A[n])_1> . (2.30)

The result of applying this unnormalized version to the data from figure 2.8, is shown in fig-
ure 2.9. The probability of all obvious steps is approximately the same. Peaks that were below

the threshold within figure 2.8 are now also detected, but rated with a much lower probability.
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Figure 2.9: Result after applying (2.30) with A = 0.15 to the data from figure 2.8, omitting all values
< 0. While all obvious steps share approximately the same probability, uncertain steps are still detected,
but rated with a much lower probability.

Koping et al. mention that, while more pronounced peaks usually denote an increased proba-
bility, peaks above a certain threshold might not be related to steps, but to other events, like the
smartphone being shaken by the pedestrian. Therefore they propose using a Gamma distribution

instead, to model an area of interest up to a certain threshold [KGD14].

Independent of whether a binary or probabilistic classification is used, step-detection only
estimates the number of steps taken. Unlike a car’s speedometer, there is no hint on the current
walking speed, which also depends on the pedestrian’s step size. This size not only varies from
person to person, but also over time, and is dependent on current ambient conditions. While
climbing stairs, the pedestrian usually takes one tread at a time, and the step size matches the
width of each tread. For stairs to be comfortable, the tread size should follow some rules, based
on average step sizes along ground and the stair’s inclination, first mentioned by Blondel in
the 17th century [Blo83, pp. 672]. As of today, most stairs use a tread size somewhere around
29 cm [RRFO02; SJP13]. The step size on ground, however, is more variable, and depends on
age and sex of the pedestrian. Saunier et al. mention that reliable sources for pedestrian step
sizes are hard to find, and thus conducted own experiments with subjects from several countries.
Depending on the dataset, they conclude that the average step size is around 0.68 m with a high
deviation of £0.22 [Sau+11]. Other approaches therefore try to dynamically estimate the step
length, which is only practical when the smartphone is held in a specific pose [Yu+19].

Combining the mentioned aspects, an evaluation (2.5) working for both, discrete yes/no

step (step

o) ¢ {0, 1}, and continuous probabilistic o, ) e [0, 1] step observations, is given by

step made no step made
Prep (00| @1 @i1) = "N (d | s, Thp) + (1= 0" )N (@] 0,0%00)  231)
d= diSth (qt—h qt) ) <q>t = <($, Y25 )>t ) <O>t = <(Step7 e )>t )

using the two dimensional Euclidean distance

distyy (@1-1. ;) = [pos,, (q-1) — Pos,, (q,) || (2.32)
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between two states, based on the two dimensional location contained within each one

— () (v) r 2.33
POS,y (@) =% a . (2.33)

(2.31) converts every potential state change from g,_; to g, into a distance, which is compared

using two normal distributions, depending on whether a step has been detected, 0§5tep ) = 1, or

not oEStep) = 0. When detected, this distance should be near the pedestrian’s step size fisep, With

some uncertainty og.,. Otherwise, there should be no movement, thus comparing against a zero

mean normal distribution. The same holds true if 0! is not a discrete yes/no decision, but a

continuous probability for the current detection to denote a step. Here, the two distributions are

combined based on the value of 0" € [0, 1], resulting in a mixture distribution.

Depending on the pedestrian’s step frequency [Sau+11] and the timeframe between g, and
g,_,, more than a single step might have occurred. For handling such cases, the discrete ol(ftep)

could e.g. be replaced by a number of detected steps, resulting in

N (d ‘ nustep,napr) n >0
N(d]0,02,.4) n=>0 (2.34)

stand

n=0o"" o™ eNy, (q),={(zy,2..)),, (0),=/(steps,...),.

DPsteps (Ot | qt7qt—1) =

All presented evaluations used the readings from a phone’s accelerometer, to infer the likelihood
of potential movements based on detected steps. Combined with either an estimated or empiric

choice for the step size, it constrains the distance, walkable within a certain timeframe.

2.4.2 Turn-Detection

Besides the distance moved within a certain timeframe, inferred by e.g. a car’s speedometer,
or step detection for pedestrians, this movement’s direction is also required, to perform relative
location updates. In case of outdoor navigation within cars, this heading is only of minor impor-
tance, as potential movements are spatially limited by the road network. Assuming the driver to
stay on the last known road, the direction of the movement is defined by this road’s course. In
case of U-turns and intersections, however, heading changes are mandatory. A sensor directly
installed within the car’s steering wheel is able to provide very high resolutions at almost no
error [ XYHO09], and yields the current steering angle, chosen by the driver. Combined with the
car’s velocity, a turn-rate in °/s can be determined. The sensor thus provides relative heading
changes, requiring the previous heading to be known. For car navigation, this value can often

be estimated, e.g. by using the course of the currently expected road as absolute heading.
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Within open environments, as in seafaring, aviation or large buildings, estimating the head-
ing based on the current location often is unfeasible, as potential directions are rarely con-
strained by the environment. Furthermore, in contrast to the sensor of the car’s streering wheel,
sensors within a ship’s or airplane’s rudder are less reliable, as the actual direction is also af-
fected by ocean current, crosswinds or similar. That is, even though the sensor’s indication itself
is precise and accurate, the actual direction can deviate due to environmental influences. Con-

cerning pedestrians, the problem is even more pronounced, requiring for different approaches.

While a compass is one of the first sensors that comes to mind when thinking of heading,
there are several drawbacks. The earth’s magnetic field is relatively weak, compared to the in-
fluence of metal objects or magnets near the sensor. Provided readings are thus easily distorted,
and often unreliable, especially indoors [Goz+11]. Furthermore, the compass relies on a decli-
nation angle, to relate magnetic and geographic north. As the earth’s magnetic field is subject to
changes, this value is not constant, and also depends on the current location on earth, requiring
the absolute location on earth to be approximately known [MMM96]. Aforementioned issues

lead to the compass not being the first sensor-choice for heading estimation indoors.

Typically, cars, airplanes, ships and pedestrians move within a plane that is parallel to the
ground, which, regarding the coordinate system from figure 2.5, is the (x, y)-plane. Changes in
heading are thus given by a rotation around the perpendicular z-axis. As building floors, and
thus the (x, y)-plane, are parallel to the earth’s surface, gravity manifests along the z-axis of this
coordinate system. Rotating around this axis will therefore not affect the measurable gravity,

and accelerometers are unable to infer the current heading when moving along that plane.

To address the problem, ships use a so-called gyrocompass. This instrument contains a
fast-spinning flywheel, attached to a gimbal ring, aligning itself parallel to the earth’s rotation
axis, and thus pointing towards geographic north/south, independent of a magnetic field. The
flywheel keeps this alignment, similar to the wheels of a fast moving bicycle. When turning the
gyrocompass, the gimbal ring allows the wheel to stay as-is. The device thus provides the ship’s

current absolute heading with respect to the earth’s geographic north/south [Lu+94; Wes50].

Airplanes often rely on a more general version of the gyrocompass, called gyroscope, al-
lowing for more degrees of freedom, needed for the plane’s attitude, heading and turn. The
gyroscope also features a fast spinning flywheel, but is allowed to rotate freely around all three
axes. Due to spinning, the flywheel keeps its orientation, even when its exterior (the plane itself)
is moving. Compared to the gyrocompass, there is no absolute alignment for the flywheel. It
just keeps the pose it had during the time of spin-up. Especially within smaller aircrafts, the
pilot thus has to manually adjust the instrument to display the correct value for the current point

in time, e.g. by using an additional compass. Hereafter, the instrument shows all movements
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relative to this initial position [ND97]. Due to the relative aspect and mechanically moving

parts, the instrument is expected to suffer from drifts, increasing over time [FM63].

This type of sensor, yet much smaller and less mechanical, is installed within most smart-
phones’ IMU. Opposed to instruments found in ships and airplanes, this sensor does not provide
an absolute angle 8’(t) with respect to the earth’s north/south (ship’s gyrocompass), or the initial
spin-up (airplane’s gyroscope), but denotes how fast it is currently being turned by influences
from the outside. This angular velocity w’(t) is given in rad/s (or °/s) for any given instant
in time ¢. An absolute value is thus given by cumulating all changes since ¢ = 0, that is, the

integral over all consecutive readings

/ de’ / ! ’ / T
w(t)=—, 0'(t)= / W(t)dt, W' =(z,y,2)" . (2.35)
0

When dealing with discrete sensor readings w’[}, provided by a smartphone’s operating system,
an approximation of (2.35) must be used instead. As mentioned earlier, readings will not neces-
sarily be provided at equidistant points in time. Therefore, the (varying) time At since the last

reading has to be included as well, to correctly convert rad/s to rad

N
~ Z Atw,[nfl} ) At = ftime (TL) - ftime (TL - 1) ) ftime (N) S t. (236)
n=1

(2.36) approximates the continuous integral, with the error becoming infinitesimally small for
At — 0. However, this value depends on the sensor’s sample rate and e.g. callbacks provided
by a smartphone’s operating system. Besides other workarounds, the trapezoid rule (2.37) is an

often used improvement when dealing with discrete integrals [KU94]:
l w’ + w
~ Y Atw oy + AtM Z Pl e A e

(2.36) and (2.37) provide the three angles ¢’ @ 9@ and ¢’ in rad, the gyroscope has been ro-
tated by since ¢ = 0. When adding the initial, absolute alignment, this derives the smartphone’s
current pose. To prevent errors, At should not only be as small as possible, according to above
equations, it should be as exact as possible. Every error in measuring this time difference will
directly affect the result of (2.36) and (2.37). If it is off by 1 %, so is the cumulated output.

As long as the IMU’s z-axis is aligned parallel to the world’s z-axis, that is, the smartphone
being placed parallel to the ground, w') read from the gyroscope directly denotes the pedes-

trian’s change in heading per second. If the phone is not parallel to the ground, this turn-rate is

/(I), w/(y) /(=

split among all three axes, w and ', depicted in figure 2.10. This is similar to the
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Figure 2.10: Impact of the smartphone’s pose with respect to the ground on its gyroscope’s readings
when being rotated counter clockwise around z. The length of the vector denotes the rotation speed.

issues previously described in section 2.4.1, examining rotation invariance of the step-detection,
where the issue was addressed by using the accelerometer’s magnitude to overcome the impact
of rotation. In theory, the same approach is feasible for turn-detection, but only if several con-
straints are met. As the magnitude removes the sign, and thus the direction of the turn, it needs
to be reconstructed. When the smartphone is held by the pedestrian in front of the body, most
rotation changes will be similar to the ones shown in figure 2.10. For typical holding patterns
with the phone slightly tilted (see figure 2.5), the z-axis will often contain a significant amount

of the pedestrian’s turn-rate w, and can thus be used as basis for the sign reconstruction

i = sgn (/1)) [|"m]| (2.38)

If the pedestrian continuously holds the smartphone in the same pose, (2.38) will provide viable
results. Shaking the phone left/right or forward/backward, however, also contributes to the
vector’s magnitude. Those movements can not be detected and removed from w, artificially

increasing this value, even if the pedestrian keeps the current heading.

Tilt Compensation For a general solution to the problem, the gyroscope’s readings w’ must
be projected onto the ground-plane (parallel to the earth’s surface) prior to integration (2.37).
That is, converting them into what they would look like if the phone was placed parallel to
the ground. To perform this alignment, its current pose with respect to this plane must be
determined. As mentioned earlier, the accelerometer is able to provide this information. Ex-
amining the constant gravity present within a, the phone’s rotation around the x and y-axis can
be identified. Figure 2.11 describes expected accelerometer readings, depending on the phone’s
pose. Comparing those values against previous findings within figure 2.10, both sensor values
— accelerometer and gyroscope — are influenced in the same way. Therefore, any function that
reverses the effect of the pedestrian tilting the phone, converting the accelerometer’s readings
back to a ~ (0,0,9.81)7, will also convert the gyroscope’s readings w’ to a form where solely

w'®) denotes rotations around the global z-axis, and thus the pedestrian’s turn-rate w.

One solution is given by estimating a rotation matrix, that reverses the rotation imposed by

the pedestrian holding the phone, hereafter multiplying all sensor readings w’ with this matrix,
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Figure 2.11: Impact of the smartphone’s pose with respect to the ground on its accelerometer’s readings.

prior to the integration step (2.37). As shown within figure 2.11, the accelerometer’s readings
a denote the z-axis of the phone’s coordinate system with respect to the world’s coordinate
system. The two remaining axes are created using the cross product and an auxiliary vector,
which must not be parallel to z. As rotations around the z-axis do not need to be considered to
project the gyroscope’s readings, (1,0,0)% or (0,1,0)% are viable choices. Depending on the
chosen temporal vector, its cross product with a either denotes the y or x-axis. The order within
the cross product is important, to ensure that a right-handed coordinate system is created. The
third axis is then given by the cross product of z and the one just created. After normalizing each
to a length of 1, they denote an orthonormal coordinate system and a rotation matrix R, that
converts (0,0,9.81)7 into a. The inverse R™' of R, given by R~ = R” due to orthogonality,

then represents the required rotation matrix that reverses the effect of tilting the phone

U, =a R: U, uy u,
lwall [yl o]

u, = (0,1,0)" x u, (2.39)
-1 T
Uy = U, X Uy R =R
The projected turn-rate w is then given by
w=(R'w)". (2.40)

However, when projecting the gyroscope’s readings to undo the rotation, changing the phone’s
orientation, e.g. from portrait to landscape, manifests as a large heading change. This problem
can be addressed by examining the behavior of the accelerometer’s readings a. The vector’s
direction changes only slightly while walking and turning, but rapidly, when the phone’s ori-
entation is changed. Whenever detected, e.g. by using a Principal Component Analysis (PCA),
readings from the gyroscope should be ignored or assumed to be uncertain [Ebn+15].
Similarly, previous discussions of the accelerometer’s readings indicated the presence of
noise (cf. figure 2.6), demanding for low-pass filtering to derive a stable smartphone pose esti-

mation (2.39). Overmuch filtering, however, will suppress minor pose changes, yielding poten-
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tially incorrect projections, and thus divergent turn-rates (2.40). A similar effect occurs when
the pedestrian turns rapidly, creating a measurable change in acceleration, and thus invalid pose

estimations, affecting the turn-rate.

Besides turns, the three axes of the gyroscope also provide information on pose changes,
and, due to the integration step, suffer from a reduced amount of high frequency zero mean
noise, at the drawback of increasing drifts [Smi99]. Examining the advantages and disadvan-
tages of both sensors, it becomes clear that the accelerometer, due to its noise level, is well
suited for slow changes and absolute indications. In contrast, the gyroscope very well captures
rapid changes, but suffers from cumulating drifts. By combining both sensors, the best of each
can be used. For the described use case, this sensor fusion is e.g. provided by a complementary
filter [GY15], depicted in figure 2.12, meant for combining the data J:h and xﬁ from two sensors

using a low-pass fi, (), and complementary high-pass filter fi; ()

Y = fro (27)) + fui () (2.41)

with both filters together satisfying

fro (21) + fus () = 2. (2.42)

Designing a complementary low-pass and high-pass is simple for FIR based filters, described
in section 2.4.1, as a direct complement can be calculated for every filter kernel [Smi99]. For
second- and higher order IIR filters, designing complements is possible, but results will not
always satisfy (2.42). This requires special complementary versions, like Linkwitz-Riley filters
[Har+13]. For both setups, the two sensors are required to provide readings at the same instant
in time, sharing a well known sample rate. As discussed, this can not be guaranteed when refer-
ring to smartphone sensors. However, as exact cut-off frequencies are not necessarily required
for gyroscope/accelerometer fusion, real-world setups often refer to a simpler form of (2.41),

inspired by IIR filters, satisfying (2.42), and mitigating aforementioned requirements [Isl+16]

Ar{n]
—_—~
Yin) = ﬁ(?J[n—l] + (2 — ) ) + (1= r)ry, 00<k<10. (2.43)
higl?-;ass low‘-;ass

r within (2.43) adjusts the strength of the high-pass, and (1 — x) the complementary low-
pass. As a:’H is high-pass filtered, it can be provided as relative input Aa:’[], just like turn-rates
from the gyroscope. The low-pass on a:ﬁ filters accelerometer readings. By combining both,

the accelerometer provides a stable pose, delayed by the low-pass, which is compensated by
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Figure 2.12: Layout and behavior of a complementary filter which combines the values provided by
an accelerometer and a gyroscope. After converting their readings to absolute rotations, the converted
results are applied to a low-pass and a high-pass filter, which are complementary to each other.

the relative adjustments from the gyroscope, passed through the high-pass. Using this setup

provides a low-noise, yet low-delay, pose estimation for the phone without drift [YNOI1].

However, as both sensors supply different kinds of data, angular velocity from the gyro-
scope, and absolute acceleration from the accelerometer, readings must be converted into a

shared unit, before (2.43) can be used.

One option is to convert both into Euler angles, describing a rigid body’s orientation by three
consecutive rotations around orthogonal axes [Die06]. According to figure 2.11 and [Jan+15],
these three Euler angles «, 3, v, consecutively rotating around z, y, and z, can be derived from

the direction of the constant gravity, present within the accelerometer’s readings a

a = atan2 (¢, a®)) | B = atan2 (—a(’”), \/(a(y))2 + (a(z))2> , 7y=0, (244

where atan2 (y, z) is a modified version of tan~'(v/z), respecting the four possible quadrants.
As mentioned earlier, the accelerometer does not provide any valuable information on the rota-

tion around the z-axis with respect to the world coordinate system, and thus v = 0 in (2.44).

At first glance, the integration (2.37) seems sufficient for deriving a similar representation
from the gyroscope readings w’. However, they describe changes based on the sensor’s point
of view, often referred to as body frame [NPM13]. With respect to the outside view, or inertial
frame, the orientation changes after every new sensor reading. This would require a cumulative
adjustment prior to the integration, converting the angular velocity w’ as seen from the sensor, to
a change in Euler angles, or Euler angle rates, as seen from the outside, described in [Jan+15].
However, due to required trigonometric operations, this approach is limited to [—, 47|, caus-
ing discontinuous behavior near £90°. While not being a problem in general, this imposes
issues when applying digital filters, e.g. fading from —m to +m or vice versa. Furthermore,

required calculations suffer from constraints, known as Gimbal lock problem [Jan+15].

All issues can be addressed by using quaternions () instead of Euler angles [Vinl7]. In

place of three consecutive rotations, orientation is described using a complex representation of
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a rotation axis u and a corresponding angle « to rotate around it
« . « . .
Q= (v,u) = (cos (§> + sin (§> (ui + u®j + u(z)k)> , QeH

(2.45)
withiZ =2 =K =ijk = -1, |u|=1.

Similar to (2.39), in order to convert the orientation measured by the accelerometer into a quater-
nion, the rotation axis must be chosen so that rotating around it converts a to ~ (0, 0,9.81)7, or
(0,0, 1) when normalized. It is thus given by the normalized cross product between those two

vectors. The amount of rotation is denoted by the angle between both, that is, their dot product

Qfy = (a, i) . a=cos™! (M-m,o,lf),
In [l || (2.46)

uw=ap x (0,0,1)" = (a!¥, —a!”,0 !

) X (0,0, > =l V)

The angular velocity w’, provided by the gyroscope, can directly be converted into a quaternion
Q“’I, where the normalized vector describes the rotation axis, and the rotation angle is defined

by the vector’s magnitude, multiplied with the elapsed time

’ w’[ ]

Q= (At ol s 7 = ) - (247)
gl

Subsequent Q‘[;’L/] can then be cumulated by quaternion multiplication. In contrast to using Euler

angles, a prior adjustment of the current readings is not required, as the quaternion multiplica-

tion directly adjusts the rotation axis
N
o’ _ w’ o’ . w’ 9’
Qv = H R = Qun=QnYn-y- (2.48)
n=1

This aspect simplifies using gyroscope readings within the complementary filter

integral like (2.48)

A

/—,/Aﬁ
Q= r (@1 Qpy) +(1 = K)QF), 0<r<1. (2.49)

(2.49) multiplies the current turn-rates Q‘[‘;L'] from the gyroscope with the previous filter output
@},—1)- This represents an integration similar to (2.48), and denotes the high-pass part. Its result
is interpolated with the quaternion Qﬁl] from the accelerometer, which contributes slowly by
(1 — k), representing the low-pass. For increased accuracy, a spherical interpolation [Vin17]
should be used. The required rotation matrix R™* can hereafter be derived by converting Q into

a 3 x 3 rotation matrix, as shown in [Die06]. An example is provided in appendix A.1.
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(2.49) provides a stable pose estimation, suppressing drift and noise. The resulting rotation
matrix R~ is used within (2.40), undoing the effect of the pedestrian tilting the phone, deriving
the projected turn-rate w. Hereafter, mentioned discrete integration techniques are applied to

cumulate the turn-rate, yielding the change in heading within a certain timeframe
Op=> Atwpy,  (t—1) < fime (n) <t, (2.50)

or the absolute heading with respect to the pedestrian’s initial orientation 6,

Oy =00+ Y Atwpy, 0= fime (n) <t. (2.51)

Probabilistic Assembly Both values can be used for a probabilistic evaluation of potential
pedestrian movements, constrained on the absolute heading ©, or the change in heading 6 within
a certain timeframe. While the latter can be expected to be stable for shorter timeframes, the
absolute © will suffer from cumulating errors, independent of the chosen pose estimation and
gyroscope projection, as it can not be compensated by the sensor fusion with the accelerometer.
Depending on the building’s architecture, one way of dealing with drifts and cumulating uncer-
tainties is to discretize turns, e.g. to multiples of 90°. Using discrete options, no-turn, 90° left
and 90° right, mitigates the impact of cumulating sensor drift and spreading uncertainties, yet,

at the cost of accuracy, especially when walking within large, open areas [Kop+14; Ebn+14].

Drifts and other errors are therefore addressed by probabilistic models, including uncertain-
ties when comparing the observed absolute heading against the pedestrian’s walking direction

in the (x, y) plane, given by the angle between two states, with respect to the x-axis
Zyy (@1, ;) = atan2 (ngy) — ", 4" — qt(f)l) : (2.52)
The smallest signed difference between two angles in rad is then given by
Za (o, B) = atan2 (sin(f — «), cos(ff — «)) . (2.53)

This difference, between the angle q,_; — g, and the absolute observed heading, should be

close to 0, including an uncertainty, e.g. given by a normal distribution

Pabsturn (01 | @1, @y_y) =N (AA <a70§6)> ’O’Utzum>
a=2ly(@1q), (@,=zy..)), (0,=(6,..)),

(2.54)
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Due to o§9) suffering from cumulating errors, the corresponding uncertainty o, must increase
over time. Furthermore, this approach requires the pedestrian’s initial heading offset O, to be

known. Both drawbacks can be mitigated by using relative comparisons instead.

To compare potential pedestrian movements with an observed change in heading, three
consecutive states q,_, — q,_, — g, must be considered. The heading change is then defined
by the difference between the two absolute walking angles (%-27 Qt—1> ,and Zyy (qt_17 qt).
This change is then compared against the observed one, also including an uncertainty:

PrelTurn’ (Ot ‘ q:, 41, qt—2) = N (ZA <a7 0150)> ‘ 07 O-t2urn)
o = 4A (éxy (qt—27 qt—l) 74xy (qt—17 qt)) (255)
(@), = (&9, )y, (0)y=((0,...));

To omit the need for including q,_, within the equation, the previous heading /,y (qt_Q, %-1)

can be remembered by adding it as a variable to the state, slightly altering above equation

DPrelTurn (Ot ‘ q;, qt—l) = N <4A (Oé, 0§0)> ’ 07 U?urn)

o (2.56)
o=25 (4% 2o (@) (@)= (@00, (o), ={(6...),.

While the normal distributions used in (2.54), (2.55) and (2.56) are a common choice for mod-
eling uncertainties, they are not ideal when referring to angular units, as fj: N (x| 0,0?) dx
will only sum up to ~ 1.0, and only for smaller o, yielding potential normalization issues. This
can be addressed by using distributions intended for angular use cases, with the range of £7 in
mind, such as the von Mises distribution [Mis18; For+10]. By being both, normalized for the

interval [—7, 47|, and periodic, angular uncertainties are handled more suitably.

Independent of the chosen distribution, an uncertainty value must be determined. Keller et
al. [KWS12] provide an overview on expected uncertainties, by examining sensors within both,
laboratory and real-world conditions. They estimated noise levels, scale offsets and long-term
drifts of gyroscope sensors, by using accurate references. Hereafter, they compared the results
of an 80 m long walk using step and turn detection, with and without prior sensor calibration,
clearly indicating calibration improvements. While hardware based drifts or scale offsets can
be estimated during a calibration process, the behavior of the pedestrian can not [ST14]. As
mentioned earlier, some movements, like fast turns, affect the measured acceleration, and thus
the pose estimation and gyroscope projection, yielding incorrect turn-rates. It therefore makes
sense to not assume a constant uncertainty in rad/s or °/s, but also a dynamic amount that is

increased whenever major changes within the gyroscope or accelerometer readings are detected.
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Figure 2.13: Local intensity of the magnetic field (magnitude of B’) in uT, and declination correction
Ogec. Adapted from the World Magnetic Model 2019, developed by NOAA/NCEI/CIRES [NOA].

A potential heuristic for smaller timeframes could thus read as follows:

constant variable

oum = At (125 ) + (nlol"]) . w=0. (2.57)

Within (2.57), a constant turn error in °/s is combined with a variable component, depending
on the amount of change, with its impact adjusted by . Both values are an empiric choice and
depend on the quality of the sensors installed within a phone. For a truly dynamic uncertainty
estimation, based on observations and other prior knowledge, more sophisticated approaches
are required [Bra+05; CYJ15]. Especially when working with absolute headings (2.54), the
uncertainty depends on the time elapsed since start, and eventually reaches a level where the
sensor stops to provide usable information. Thus, the gyroscope is mainly suited for relative

predictions, such as (2.56). For absolute indications, other sensors are better suited.

2.4.3 eCompass

As shown, relative turn information suffers from cumulating errors, eventually becoming un-
stable. This is mitigated by sensors providing absolute heading indications. Mentioned earlier,
ships use a gyrocompass pointing towards the earth’s geographic north/south by aligning itself
onto the rotation axis. A compass provides similar information, except that the alignment is
based on magnetism, and that it points towards the earth’s geomagnetic north. The geomag-
netic north differs from the geographic north, and is subject to changes over time, currently
moving by over 55 km per year from Canada towards Siberia [Clal16; Wit19].

The indication from an analog compass is provided by a magnetized needle that is allowed to
spin freely around one axis. If this axis is aligned parallel to the earth’s z-axis, pointing upwards,
the needle aligns itself towards north/south of the earth’s magnetic field. Within smartphones,

similar readings are provided by the magnetometer, present within most IMUs. Instead of a
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geomagnetic North Pole  geographic North Pole N _declination
T

Figure 2.14: Behavior of the earth’s magnetic field and its relation to the geographic poles. If a smart-
phone is placed parallel to the surface, just like an analog compass, the direction towards magnetic north
is given by the magnetometer’s readings B’ @) and B'W, Right half adapted from [Clal6, p. 198].

magnetized needle, the sensor’s internals leverage the principle of the Hall effect. When a
constant current is passed through a conductive material, every magnetic force perpendicular
to the movement direction of the electrons passing the conductor, deflects them in a direction
that is perpendicular to both, the moving direction and the magnetic flux, forcing the electrons
towards one side of the conductor (Lorentz force). Between this side and its opposite, a voltage
proportional to the applied magnetic force can be measured [Pop+07]. In contrast to other
probes, such as inductors, Hall sensors are also capable of measuring the influence of static
magnetism, like non-moving magnetic objects [Cul56]. Most smartphones are equipped with a
3-axis magnetometer where three Hall sensors are combined, measuring the current magnetic
flux density B' = (x,y, z) in uT, along three orthogonal directions. Actual intensities are
location dependent, with typical values shown in the left half of figure 2.13.

Figure 2.14 depicts the geographic and magnetic relations needed to derive a heading from
the readings B’ of a magnetometer. While the earth’s geographic north and south poles (true
north/south) are defined by its rotation axis, the geomagnetic north and south poles are defined
by its internal magnetic field, which is slightly different. This difference is called declination,
depends on the actual location on earth and, as mentioned, is subject to changes over time.
Current values are shown in the right half of figure 2.13.

The geomagnetic north pole can be thought of the magnetic south pole of a dipole bar
magnet, the compass points to. If a smartphone is placed parallel to the ground, the direction

towards geomagnetic north Oy, is given by the magnetometer’s readings in x and y
On,, = atan2 (B, B . (2.58)

To derive the angle Oy,,, towards the geographic north, the current location’s declination cor-

rection O from figure 2.13 must be added

ONgeo = ONpe T Oec - (2.59)
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portrait portrait landscape left
upright  upside down
— orientation condition yaw ¥ y |
portrait upright a®| < la®|Aa® >0 (90 +45)° E
l%_x X_% portrait upside down  |a(®)| < [a® | Aa® <0 (270 £ 45)° landscape right
y landscape left a®| > la®| Aa® <0 (180 £ 45)° X
landscape right |a("”) > |a(y) Aa® >0 (0+45)° | y—%

Table 2.1: Smartphone orientation dependent on accelerometer readings. Adapted from [Bos14].

While Oy, is location dependent, it changes hardly within the range of a few hundred kilome-
ters, visualized in figure 2.13. For indoor localization and navigation scenarios, it can thus e.g.
be stored within a floorplan, where the building is aligned towards the geographic north.

Shown in figure 2.14, there is another angle besides Ov,,,. The inclination, or angle of
dip, describes the upwards/downwards direction of the magnetic field, mainly dependent on the
current latitude. While the exact direction of the magnetic field is defined by those two angles
combined, inclination is usually omitted for north/south estimations [Clal6].

To determine Oy, for arbitrary smartphone poses, a combination of magnetometer and
accelerometer, also referred to as eCompass [KC15], is required. This need can be confirmed
when referring to the previously discussed turn-detection, but also when observing an analog
compass. To prevent its needle from touching the casing, the latter must be aligned parallel to
the angle of dip, which is approximately parallel to the ground, when not residing near the poles.
Just like earlier for the turn-rate, a heading estimation requires a projection R~ onto the world’s

(x, y)-plane, using the techniques discussed in section 2.4.2, referred to as tilt compensation
Ony, = atan2 (BY, B®) . B=R'B’. (2.60)

Due to sensor noise, low-pass filtering is advisable, if not already conducted by the magnetome-
ter itself [Pop+07; BS12; KS18]. To prevent jumps near 0° <+ 360° or —180° <+ +180°, the
input vectors B’ or B, should be filtered instead of @Nmag- In (2.60), all candidates for esti-
mating R, previously described in section 2.4.2, are applicable. However, in contrast to the
relative turn-detection based on the gyroscope, the absolute eCompass requires more caution as
the result from (2.60) rotates together with the phone. This refers to the four different smart-
phone orientations: landscape and portrait, each up and down. Changing the orientation directly
affects the eCompass’ heading indication. To compensate this, the pedestrian is either required
to hold the phone using an exactly defined pose, as it is the case for most analog compasses, or
the system must be able to distinguish between several pre-defined poses, such as portrait and

landscape mode [Ngu+16]. Integrated sensor components therefore contain some heuristic to
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distinguish between various orientations, based on the current accelerometer readings a and the
resulting yaw angle ¥ = atan2 (a(y), a(x)) shown in table 2.1 [Bos14]. A general solution for
the pedestrian e.g. carrying the phone within trouser pockets, requires additional sensors besides
the smartphone. To relate the tilt-compensated compass’ north with the pedestrian’s current axis
of forward motion. When estimating this axis using just the smartphone’s sensors, results can
be unstable, and are subject to delays [Kus+15]. The heading provided by the eCompass is
usually off by several degrees [Cas+14]. Using the phone’s estimated orientation for projection
thus is a viable choice for smartphone-only indoor localization and especially navigation, where
the pedestrian faces the phone’s display, similar to holding an analog compass.

Besides tilting issues, everything that affects the magnetic field will also cause a measur-
able effect on the sensor’s readings and thus the heading estimation. While this is often not a
problem within large, open-space outdoor environments, it is a problem indoors, where many
metal objects, such as steel-reinforced concrete, handrails, door handles, elevators and inductive
electricity, are present [Goz+11; Par+06].

However, despite negative influences on heading estimation, this allows for completely dif-
ferent inputs towards indoor localization. Architectural effects on the magnetic field can be very
unique for different regions within a building, allowing for magnetic matching [Goz+11]. Here,
the readings of the magnetic field are recorded once, for many locations within the building.
Every recording describes the magnetic behavior at a location, serving as its fingerprint. Dur-
ing the localization process, the current readings from the phone’s magnetometer are compared
against all known fingerprints. The location of the best matching one is likely to denote the
pedestrian’s current whereabouts [Shu+15]. However, it requires significant effort to record the
fingerprint database, which is also subject to changes over time. Setup and update issues can
be mitigated, e.g. using a self location and mapping (SLAM) approach, where localization is
initially provided by other sensors and the, yet unknown, magnetic field is recorded during the
localization process. The system then stabilizes itself over time, refining both, the localization
and the magnetic information, with every additional walk through the building [KS18].

Alternatively to complex fingerprinting, Ehrlich et al. [EBS16] suggest installing a few spe-
cial coil-transmitters within the building, each creating a unique magnetic signature within a
confined area. Those signatures can be measured by the magnetometer, and compared against a
database of known transmitter signatures. This approach allows for additional location hints by
using a controlled setup, as the strong coil-signature is barely affected by ambient conditions. If
three or more signatures can be detected by the magnetometer, even multilateration is possible
(cf. section 2.3) by inferring the distance from the strength of the magnetic field.

However, within this work, the focus is on absolute heading estimation, not requiring addi-

tional hardware installations or time-demanding setups.
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Sensor Calibration Independent of the chosen approach, the magnetometer must be cali-
brated to compensate for soft iron and hard iron effects. Magnetic or metallic objects mounted
together with the magnetometer, like the phone’s speaker, introduce hard iron effects. They off-
set all provided readings, independent of the phone’s current orientation. On the other hand, soft
iron effects are induced by the outside world, through nearby objects, thus yielding influences
on sensor readings, dependent on its location and orientation. Therefore, location independent
hard iron effects are easier to calibrate [Kon09]. While alignment differences between the ac-
celerometer, providing the pose projection, and the magnetometer should be considered as well,

this is not an issue for today’s smartphones, as the alignment is usually accurate [ZY15].

When placing the smartphone parallel to the ground, and rotating it around the z-axis (cf.
figure 2.14), the measurements (B’ @ B (y))T provided by a calibrated magnetometer denote
a circle, centered at (0,0)7. As the actual magnitude of the sensor readings is not required to
derive the heading (2.60), the calibrated circle’s radius can be of any size. When performing
a manual calibration, normalizing the measurements to denote a unit-circle is thus fine for the
intended use case. The same holds true for the three dimensional case. Rotating the phone
around all three axes, the resulting sensor readings should denote a sphere centered at (0, 0, 0)7.

A corresponding mean squared error metric for both cases is thus given by

1 2 (z,y)T  for2D
£E=— 1—||B}, , B'= (2.61)
N ; ( 15 }H> (z,y,2)T for3D.

During the calibration process, all B'[j are adjusted using a set of parameters, depending on the
calibrations to address, to reduce the error (2.61). Deviations from the center (0, 0,0)” can be
addressed by one offset parameter per axis. Similarly, the scale for each axis can be adjusted
using one scale parameter for each. Calibration hereafter represents an optimization problem
argminz (1 — || (B — u) ®wl| )2,

u,w

(2.62)

N
n=1

where the offset is adjusted by subtracting u, and the scale is corrected by a componentwise
multiplication ® with w. By calculating the 2nd partial derivative for all to-be-optimized pa-
rameters, and examining the requirements for each derivative to be > 0, it can be shown that the
function is convex for typical sensor inputs, offsets starting at (0,0, 0)7, and scales > 0. Thus,
optimization can be performed using common approaches such as gradient descent [HS06] or
downhill simplex method [Pow62; NM65]. (2.62) covers most constellations, but omits rare

cases where readings provided by the sensor denote a rotated ellipse/ellipsoid, requiring addi-
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tional rotation parameters for correction [Fan+11]. In case of many outliers, (2.62) will not pro-
vide ideal results. A solution can be the random sample consensus (RANSAC) [FB81], where
not all, but a (random) fraction of all inputs is used for the optimization. This step is repeated

several times, depending on the amount of outliers, eventually deriving a superior result.

As shown later, for many smartphone models aforementioned manual calibration schemes
are not required, as they are integrated directly into the operating system or sensor. The proce-
dure is triggered whenever the sensor is active, and the user rotates the phone around all three

axes, hereafter removing the influences of constant offsets, such as hard iron effects.

Probabilistic Assembly While, in theory, the eCompass can hereafter be used as single (ab-
solute) heading source, its practical use is limited by aforementioned environmental effects and
the pedestrian. Together with the turn detection from section 2.4.2, however, it can compensate
the cumulating heading drifts on the z-axis, the accelerometer isn’t able to address [Har+03].
Besides directly fusing both readings, e.g. via a complementary filter, the sensor can be eval-
uated on its own, using a probabilistic approach to model expected uncertainties, allowing for
later combination. Similarly to the heading evaluation for the gyroscope, the current eCompass
heading Oy, is compared against the pedestrian’s potential heading, either givenby q, ; — g,
or qf@). The difference between geomagnetic north from the sensor, and the orientation of the
building is addressed by Oy4., describing the angle between the floorplan’s x-axis and geomag-

netic north, estimated once per building. Potential walks are hereafter evaluated by

(ONmag)
Pcomp (Ot ’ Qt7qt—1) =N <4A <a70t e ) ’ Ova?omp)

(2.63)
= ny (qt—17 qt) + ®bldg ) <q>t = <(x7 Y, .. ’))t’ <O>t = <(@Nmag7 c )>t .
If the heading is stored as part of the unknown state, (2.63) simplifies to
(@Nma ) 2
pCOl’l’l (O |q) :N<4A <Of,0 g) ‘O7Ucom>
PR t P (2.64)

a = Qt(@) +@bldgv <q>t = <<x7y’®7"')>t7 <O>t = <(@Nmag7"'>>t'

The value for o.,mp depends not only on the quality of accelerometer and magnetometer, but
also on the pedestrian’s behavior when holding the phone (steady/shaking), and nearby metallic
or magnetized objects. The resulting heading precision can thus vary between errors as low as
1° [Kon09] and up to tens of degrees depending on location and tilt [Li+12; Hil+14; WGN15].
Changes in tilt can be detected when analyzing the accelerometer’s readings within the pose
estimation. The same holds true for changes of the magnetic field. Without architectural in-
fluences, the magnitude || B’|| varies only slightly throughout the building. Whenever large

changes are detected, oomp can be increased accordingly. Similarly, the uncertainty can be in-
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creased whenever the eCompass reports major heading changes, but the gyroscope does not.
Depending on hardware and surrounding architecture, it thus can be advisable to use a discrete

comparison instead, limiting potential directions based on heuristics Kcomp and 7comp [Ebn+17]

(ONmag)
Reomp AA (aa Oy * < T comp

Peomp (01| @) =1 o a=q% 4 Opge, (265

(1 — Keomp) else

or a compromise between (2.64) and (2.65), using the distribution from (2.21)

Deomp (01 | @) =R (Q <a,o§@ng’) ‘ o,afomp> . (2.66)

Yet, in case of e.g. turn rates beyond the pedestrian’s normal behavior, the eCompass can be

considered unstable, not providing a viable evaluation and thus peomp (0 | ;) = const.

2.5 Barometer

The first sensor providing absolute location hints is the barometer. It measures the current
atmospheric pressure in hPa, which is influenced by the amount of air that is “piled up” above
the sensor, allowing to infer the current altitude, usually measured above mean sea level. If this
altitude increases, the amount of air above the sensor decreases, indicating a drop in pressure.
This change of atmospheric pressure can be measured e.g. by analyzing the change in size of an
air-filled, flexible object, like a balloon. An increasing height above mean sea level will yield a
growing balloon, as the outside pressure decreases, while the pressure inside remains constant.
Most common analog barometers used another approach, based on a vertical column filled with
mercury, placed within a reservoir. Depending on the surrounding pressure, mercury is pressed
from the reservoir into the column, or moves from the column into the reservoir. This yields
a vacuum of varying size within the column, which adjusts until the forces inside and outside
are equal. The height of mercury remaining within the column is proportional to the current
atmospheric pressure. Therefore, besides hPa, inch of mercury (inHg), millimeter of mercury
(mmHg) or Torr also are common measuring units for atmospheric pressure [Tor44; Tim82].
As of today, some smartphone models are equipped with a barometer sensor, based on
piezo-resistive pressure sensing [Bos15; Bos18]. Initially, it was intended to speed-up the GPS’
initialization times by providing a coarse altitude information. However, experiments indicated
that its success was questionable, as GPS lock times did not improve with a barometer present
[KWS12]. As the sensor remained present within many newer models, its contribution towards

indoor localization and navigation was examined [Mur+14], e.g. by relating atmospheric pres-
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Ty 288.15 °K temperature at sea level | o9 1013.25 hPa pressure at sea level
R 8.31446 Nm/molK (ideal) gas constant L 0.0065 °K/m  temperature lapse rate
g 9.80665 m/s? gravity of earth M 0.02896 kg/mol molar mass of dry air

Table 2.2: Constants required to relate atmospheric pressure and altitude [TT08; Stul5].

sure and altitude above the mean sea level

(T T (e
fo(h) =00 (m) fu (o) = 7 ((QO) — 1) . (2.67,2.68)

(2.67) and (2.68) require several physical and chemical constants listed in table 2.2 [TTOS;
Stul5]. To be consistent with their typical notation, some previously introduced variables are
re-purposed for the barometer. For both relations, the pressure at the mean sea level is assumed
to remain constant at gy = 1013.25 hPa, at a temperature of 7, = 15 °C, decreasing constantly
with L = 6.5°C/km, referred to as standard atmosphere. The ideal gas law derives the air’s
density, expecting it to be absolutely dry (0 % rel. humidity). It thus relates atmospheric pres-
sure to a column of height A, filled with a gas of some density. Corresponding results are valid
up to ~ 11 km in altitude, before the temperature lapse rate L becomes zero [OAS76; Stul5]
For pedestrian navigation indoors and outdoors, the first few hundred meters above sea level
are the most important. The 6.5 °C/km change in temperature can thus be omitted. Hereafter,

the relation of altitude and pressure is approximately exponential, and (2.67)/(2.68) simplify to

£t = e (&)

gy o L) o)~ 5 am R m
~ o

(2.69, 2.70)

where all constants are combined as a single value [Stul5]. Figure 2.15 shows the relation
between altitude and pressure. While the approximations are similar in shape during the first
few hundred meters, a closer look reveals a noticeable offset, potentially causing issues when
working with absolute pressure readings and altitudes, e.g. yielding an invalid floor number
estimation for the pedestrian. However, due to aforementioned assumptions on dry air, fixed
temperature and pressure at mean sea level, the more correct equations also represent an approx-
imation. Every change in climatic conditions will void these assumptions, producing incorrect
results, decreasing or increasing local pressure indications, as visualized in figure 2.16.

For compensation, pilots e.g. adjust their plane’s altimeter to a reference pressure during
takeoff and landing, currently measured at the corresponding airport, known as QNH or QFE. In
doing so, the instrument denotes the height above the airport with respect to the current weather

conditions [Eur04]. During flight, the exact altitude is less important, as long as obstacles like
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Figure 2.15: Relation between atmospheric pressure and height above sea level according to (2.67),
(2.69) and (2.68), (2.70). As can be seen within the zoomed regions, the approximation is only suited for
relative comparisons due to absolute errors of several meters.

mountains are safely overflown. The distance towards other airplanes nearby is more important,
and pilots therefore adjust their altimeter to the same reference of 1013.25 hPa. While the indi-
cated height above ground will change with weather conditions, nearby aircrafts are influenced

by the same effect, ensuring that their distance in altitude remains measurable [Fed16].

Probabilistic Assembly Azevedo and Crisdstomo propose a similar approach for smartphone
based localization. The current relative pressure at several known points is recorded and shared
with the phone, to provide a relative alignment. This data is e.g. provided by nearby weather
stations and hereafter interpolated to estimate the pressure at the building’s altitude [AC16]. Or
the weather station resides within the building itself [EBS16]. Instead of using the pressure
readings from nearby transmitters, readings from the phone itself can also be used. Here, an
initial measurement o..¢ from the barometer at a known altitude h. serves as reference. This
also prevents potential calibration offsets, mitigates the impact of current weather conditions,
and does not require additional infrastructure or a data connection to a server. The altitude /¢
of this reference measurement can e.g. be inferred by using the last GPS fix before entering
the building [AY'12], performing an optical localization using the phone’s camera [HBOS], the
pedestrian scanning nearby QR-Codes or RFID/NFC tags [Lee+14; Jim+12].

In order to include an obtained reference, (2.67) and (2.68) must be adjusted, to operate
relative to an arbitrary altitude instead of the mean sea level [OAS76]. The current altitude can
hereafter be estimated directly based on incoming sensor readings, as long as local climatic

conditions are not changing, and the reference remains valid [KWS12]

gM

- To e oy Do\
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The readings from the barometer can hereafter be converted to an altitude, and compared against
potential whereabouts. However, all barometer altitudes are with respect to mean sea level, and

the pedestrian’s unknown z-location with respect to e.g. the first floor of the building. Thus, an
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Figure 2.16: Readings from a barometer at a fixed location on two different days (left and right). While
the left shows a significant variation of > 2.5 m in altitude, the right one denotes only ~ 1 m of variation.
However, due to different climatic conditions there is an absolute difference of ~ 20 m between both.

offset constant /4. is required, to relate both. Independent of whether (2.68), (2.70) or (2.72) is
used, the pedestrian’s potential whereabouts in z can then be compared against the barometer’s

readings, e.g. by using a normal distribution to model sensor uncertainties

Pharoas (0¢ | @) = N (qlgz) + Nblag ‘ In (0759)) 7U§lt>
(@), =((z-.)) {(0),={(0,-- ),

(2.73)

As discussed, a pressure reference requires either additional hardware or infrastructure within
the building, or the correct altitude of a reference measurement observed by the phone itself. To
drop those requirements, but still benefiting from the advantages of relative pressure readings,
a workaround is required. By changing (2.73) from an absolute to a relative comparison, with
respect to the first smartphone pressure reading, the reference becomes obsolete. In other words,
an initial atmospheric pressure is known from the barometer, but the corresponding altitude is
not. That is, the pedestrian is assumed to have started at an unknown height. While walking,
the sensor’s pressure readings, and the pedestrian’s altitude, both change with respect to their
initial values. Even though the starting altitude is unknown, the evaluation can examine if the
pedestrian’s change in altitude since the start at ¢ = 0 resembles the barometer’s change in
pressure since t = 0 [Ebn+15; Tor+17].

To compare pressure changes with altitude changes, the relative relation between both is
required. That is, the change in pressure per meter of altitude (hPa/m) at a certain altitude h

above sea-level, given by the derivative of (2.67)

aM_ 4
LR
, gMooTy (%)
fg (h) = — 5 . 2.74)
R(Ty + Lh)

For buildings with rather few floors, only a small range of the function is required. Within this

range, (2.67) can be assumed to behave linearly, and its derivative (2.74) denotes a constant,
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Altitudeh‘ fo ()6 1, (W) p7e 1/ £ (h) 3.7

Om | 1013.25hPa 0.120hPa/m 8.32m/hPa
200m | 989.56hPa 0.117hPa/m 8.56 m/hPa
400m | 966.53hPa 0.114hPa/m 8.81m/hPa
600m | 944.13hPa 0.110hPa/m 9.05m/hPa

Table 2.3: Expected atmospheric pressure and corresponding change rate, dependent on the altitude.

solely dependent on the building’s height above mean sea level /iy 4,. Resulting change rates for

typical altitudes are shown in table 2.3. The adjusted evaluation

AhPa—Am

A
PoaroRel (Ot | Qt) = N< ngledg) ' Az, Uzlt) (2.75)

@), = ((z-.)),, (0),={(0...),, Az=q" —q7, No=0" -0,

matches the pedestrian’s potential whereabouts against current sensor readings, by comparing
the change in altitude Az since start t = 0 with the change in atmospheric pressure Ap since
start. For comparing, the latter is converted to meters based on the expected pressure change per
meter at the building’s altitude /4., given by the reciprocal of (2.74). To remove the required
oy from (2.75), a virtual barometer sensor can be created, directly providing the required Ap
as its observation. Similarly, Az can be added directly to the unknown state, and is hereafter
updated for every movement q,_; — g,, dropping the requirement for g,. However, even with
pressure readings relative to the start of the walk, changing weather conditions, opening/closing
doors or windows, can still cause several meters of fluctuation. Changing weather conditions
usually take at least several minutes to manifest. Those long-term changes become relevant for
longer localization and navigation scenarios, where the initial reference gt or 089) gets invalid.
This can e.g. be addressed by not using ¢ = 0 as reference within (2.75), but a short timeframe

of several seconds, sufficient for determining floor changes [Mur+14].

Ye et al. [Ye+14] compensate ambient conditions by crowdsourcing, using measurements
from other smartphones within the same building. Local temporal effects can be compensated,
as they manifest similarly for all users. This allows to distinguish them from pressure changes
due to stairs or elevators. Their approach could also be used to estimate o,;, which is barely
possible without additional information. As depicted in figure 2.16, temporal effects can cause
pressure changes similar to changes in altitude > 1 m, and a floor-correct estimation is not al-
ways possible [Mur+14]. When considering data from nearby pedestrian’s, o, can be adjusted

accordingly, based on ambient conditions. Yet, due to the requirement of a server for exchang-
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ing the data, this imposes potential data privacy issues, and requires other pedestrians using the
same software within the same building at the same instant in time.

Another option for uncertainty estimation and/or suppression of temporal influences is sim-
ilar to approaches described in section 2.4.3. By including additional sensors, it becomes more
clear whether pressure is changing due to taking stairs/elevators, or temporal effects, as e.g. the
pedestrian’s step interval and pattern will change when stairs are involved (cf. section 2.4.1).

However, with ambient conditions changing rather slowly, it can also make sense to use the
barometer only for short-term indications, to e.g. determine whether the pedestrian is currently

taking stairs or not.

2.6 Activity-Detection

Previous components provided a continuous estimation of absolute and relative changes in po-
sition or heading, but suffered from various uncertainties, such as drifts, which can be hard to
address. Besides a direct indication of location or heading, a discrete classification can be used,
e.g. to determine the pedestrian’s current activity. As mentioned for the barometer, due to envi-
ronmental effects, it can be more robust to determine whether the pedestrian is currently taking
a stair, than estimating a continuous change in altitude on a per meter basis [Fet+16; Ebn+17].
The same holds true for other sensors besides the barometer, allowing to distinguish between
various types of activities for the pedestrian. Among the most common for indoor localization
and navigation are standing, walking, turning, and using stairs, elevators or escalators [Fet+16;

Elh+14; ABA11]. For an overview, the following activity classes €2 are distinguished
Q2 € { standing, walking, stairf, stairl]}. (2.76)

Recognition is based on sensor data, observed during a certain timeframe, estimating the activity
that took place within. The actual classification can be as simple as a binary decision tree,
with multiple yes/no paths based on some features, extracted from the windowed sensor data
[Elh+14; Fet+16]. As described earlier in section 2.4.1, steps cause an observable fluctuation of
the accelerometer’s magnitude ||a/||. The variance f,(a[;, AN) of all readings within a certain
timeframe can thus be used to estimate whether steps were made or not. For better readability,

the timeframe is defined by the most recent AN samples, received from the sensor

1 2 1 ’
Fol 53 = | 5 3 ()’ = (37 3 e o

with N—AN<n<N, N=|ayl.
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Figure 2.17: Binary decision tree example for activity recognition based on accelerometer and barom-
eter. If there is few variation within the accelerometer’s magnitude, the pedestrian is either standing,
or e.g. taking an elevator or escalator, distinguishable by the barometer. If there is variation within the
magnitude, this is either due to walking normally or taking stairs, distinguishable by the barometer.

If (2.77) is above a certain threshold, the pedestrian is expected to be currently walking along
a floor or taking stairs. Accelerating and decelerating elevators also affect the magnitude, how-
ever, usually in a much less pronounced way than steps do [Zho+15]. It is important to notice
that the two sums from (2.77) can suffer from precision issues, when implemented using float-
ing point numbers. The result will be incorrect for > T[] > xpy, that is, larger AN. This issue
can be addressed by data types offering more precision, if available, or via compensated sum-
mation, e.g. by using the Kahan summation algorithm, tracking individual summation errors
and adjusting a compensation value, included for the next addition [Hig02].

While both, step pattern and (2.77), are slightly different when taking stairs compared to
walking along a hallway (cf. figure 2.7), information provided by the barometer is more valuable
to distinguish between walking and stair{/stair|. The change of pressure within a short

timeframe indicates changes in altitude, and is invariant to environmental long-term influences

faley, AN) = ey — ov-an, N =loy- (2.78)

Similarly, elevators should manifest as anomalies within the magnetometer’s readings [She+09].
However, this is rarely described in literature, or the sensor’s actual contribution is hidden be-
hind machine learning and neural networks [Zha+18a]. Elevators can also be detected by ex-
amining precise gravity changes, yielding a hint on the change in altitude, by integrating the
accelerometer’s tilt compensated z-axis [Cil+14]. For a simple yes/no decision, elevators could

be assumed when a change in altitude is indicated by the barometer, but no steps are detected.

Decision Tree Classification Figure 2.17 shows a binary decision tree, combining the men-
tioned aspects to determine the current activity 2 = fq (a[], o1 AN ) . The two required
thresholds 7,cce; and Ty are estimated empirically. To compare the detected activity with po-

tential pedestrian movements, the building’s floorplan needs semantic information on the type
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of ground for every reachable location p, indicating whether it belongs to a stair, escalator, el-
evator or normal ground [Ebn+17]. This information is assumed to be provided by a function

fiype (). To support all activities from (2.76), two types are distinguished
type € {floor, stair}, (2.79)

where stair is only used for the skewed stair parts, and plateaus are handled by the same type as
normal ground floor. Potential locations within the building can then be evaluated by comparing
the detected activity with a location’s type. The uncertainty within the activity recognition is

modeled by an empiric mixing value Kpach

(

Kmatch d < Tdist o) — standing
(1 - Nmatc:h) else '
Fomatch d > 7giq A type = floor o — yalking
(1 — Kmatch) €lse t
Dactivity (Ot ’ q, qtfl) ) Kmateh d > Tgiw A Az >0 Atype = stair oY — stairt
(1 — Kmatch) else b (2'80)
Kmatch d > T4 A Az < 0 Atype = stair 0(Q> = stair]
L (1 — Kmatch)  €lse t

d= diStxy (qt717 qt) ’ type = ftype (posxyz (qt)) ) Az = QISZ) - q,gi)l
(@), = ((z,y,2,..)),, (0),=((Q,...),.

To estimate the required thresholds 7 ,ccel, Tharos Tdist and the impact Ky, labeled training data
can be used. It is e.g. obtained from recorded pedestrians walks, where each part of the walk
is labeled with the current activity. This data is hereafter passed through (2.77) and (2.78), to
derive the two features after every sensor reading. All features for one activity can then be used

to estimate thresholds, and plotting the entirety yields a hint on separability [Nie83].

Naive Bayes Classification Instead of a binary decision tree, the training data can be used
to derive one multidimensional normal distribution for each activity class {2, by estimating the

mean L, and covariance X, of all extracted features ¢ belonging to it

T
ple| Q) =N (c| o, Za) c:(f(,(au,AN)QW),fA(QH,AN)mS)) . (281

In the simplest case, omitting any prior knowledge, the most likely activity €2 is the one where

the associated normal distribution yields the largest result for a new feature c

Q" =argmax N (¢ | pg, Xq) , (2.82)
Q
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often referred to as Naive Bayes classifier. Required derivations, corresponding proof and reper-
cussions can be found in [Nie83]. Q2* from (2.82) can be used to replace the result of the decision
tree within (2.80). However, doing so discards additionally available information, as only the
most likely activity is considered, while others might be likely as well. This is especially im-
portant for a transition (2.6) , where potential movements are predicted based on the likelihood
of current activities, derived from sensor readings. Depending on the estimated probability of
each known activity, some transitions might use the stair, while others stay on the same floor,

acknowledging the likelihood for every single activity

)
p(c| standing) whengq, ; — g, is not moving

p(c | walking)  when q,_; — g, moves along floor
Pactivity (@1 | @41, 0-1) o . (2.83)
p(c| stairt) when q,_; — q, moves upstairs

Besides indoor localization, the field of human activity recognition also attracts public interest,
e.g. for supervising elderly people living on their own, where recognized activities are used
to detect whether the person might have fallen, and needs assistance [KSG18]. With other
types of sensors, such as wristbands, even typical household activities, like vacuuming, can be
detected [ABA11]. This information can e.g. be used to detect whether elderly people can cope
with their daily chores. Furthermore, detecting changes within the daily routine, gathered over
longer periods, allows for early diagnostics of diseases. Using more sophisticated classification
approaches such as the support vector machine (SVM), artifical/convolutional neural networks
(ANN, CNN) and similar, even more fine grained activities, such as whether a drawer is being
opened or closed, can be distinguished [Li+18]. Here, calculations like (2.77) and (2.78) are

often not required, as the raw sensor data within some timeframe is used instead.

Li et al. [Li+18] compare a multitude of different approaches with varying number of sen-
sors towards a detailed activity recognition. As expected, by using more sensors, more fine
grained distinctions between activities become possible. With rising pervasiveness of smart-
watches, and increasing computational power available from CPUs, GPUs and Al accelerators,
aforementioned classification and recognition approaches become of interest for smartphone-

based indoor localization and navigation as well.

Yet, while recognized activities can already be used to reduce the number of potential where-
abouts, e.g. when taking stairs, elevators or escalators is detected, this technique does not pro-
vide absolute location hints in general. Thus, other sensors still are required to solve the overall

problem of smartphone-based indoor localization and navigation.
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2.7 Wi-Fi and Bluetooth Beacons

Aforementioned sensors either provided relative location changes, only limited hints on ab-
solute indications, or were intended for outdoor use. Even if the pedestrian’s initial position
within the building is known, e.g. from the last GPS fix before entering, most sensors allow for
incremental updates only. Any error of the initial whereabouts will thus propagate and, due to
cumulating errors, increase over time. Therefore the question arises, whether there is a compo-
nent that is able to provide absolute estimations for the phone’s current whereabouts indoors,
at least at a coarse level, but preferably as accurate as the GPS. Matching with section 1.1, this
component should be available within every modern smartphone, and the requirements con-
cerning the building itself should be as small as possible. Every architectural style should be

supported, and it should not require costly hardware, setup or maintenance.

Back in 2000, Bahl and Padmanabhan conducted an experiment with three Wi-Fi trans-
mitters, statically installed within a floor about 44 x 23 m in size. A portable receiver picked
up those signals and measured their strength, referred to as received signal strength indication
(RSSI). Due to physical effects and obstacles within the floor, the three measurable RSSIs vary
depending on the receiver’s location. The authors used this effect to roughly determine the
receivers current location, by comparing the three received measurements to what should be
measurable given a certain location. Thereby they created a positioning system, similar to the

GPS, but operating indoors, working with almost every Wi-Fi equipped hardware [BPOO].

As of today, every smartphone contains a Wi-Fi component, capable of measuring RSSIs
by scanning for nearby transmitters. Likewise, the required infrastructure, namely Wi-Fi access
points, is present within an increasing number of public buildings, where localization and navi-
gation would provide a benefit, such as airports, rail stations, universities and hospitals. When
this infrastructure is not yet available, such as in older museums, a cheap solutions is given by
installing small, inexpensive transmitters within the area of interest [Fet+18]. One drawback of
this approach is the time, and thus costs, required for an initial setup and maintenance in case
of changes afterwards. The behavior of the signal strength has to be well known throughout the

whole building, for the described location estimation to work.

To determine how this comparison is conducted, which components and information are re-
quired, the following sections will first examine the basic behavior of radio signal propagation.
Hereafter, several comparison techniques with their benefits and drawbacks will be discussed,
including required prior knowledge, and how to obtain it. Finally, several strategies to signifi-

cantly reduce setup and maintenance times will be presented and discussed in detail.
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Figure 2.18: Influences on RSSI, adapted from [Rac07, p. 117]. B denotes the power used by the hard-
ware, transmitting signals into the sending antenna. This antenna might bundle the energy, yielding an
increase G. While traveling towards the receiver, the signal is attenuated by PL, increasing with distance.
Finally, bundling by the receiving antenna yields another increase ', resulting in the final RSSIL.

2.7.1 Signal-Strength and Propagation

The main metric in the approach presented by Bahl and Padmanabhan is the RSSI of the three
transmitters, measured by the portable receiver. This value provides information on the strength
of a signal that remains at the location it was picked up by areceiver. Generally, it decreases with
increasing distance, thus providing a rough hint on the distance towards its transmitter. Both, the
actual power of a radio signal, and the corresponding RSSI, are given in dBm or dB,,w. How-
ever, how the RSSI is measured is not standardized, and different devices can provide varying
readings for the same absolute power [CBO7]. Also, the signal’s strength is strongly affected
by the architecture between transmitter and receiver, varying with the receiver’s whereabouts.
Several studies thus concluded that the RSSI is too unreliable to provide a viable localization
[PHUQ9; Lui+11; Jun+12]. While this is true for the analytical relation between RSSI and
distance, depending on required accuracy, distance-based localization is still possible [BPOO;
YAOS]. Furthermore, architectural effects often yield unique RSSI behavior, which can be used
for matching approaches, to infer a location [JLH11; Sen+12; Zha+18b]. Nevertheless, due to
the rising interest in location based services and similar, newer wireless standards aim to include
additional metrics besides RSSI. For instance, travel-time measurement, especially targeting lo-
calization, addressing aforementioned drawbacks [BSA16; Ibr+18; Dvo+19]. Gradually, they
might replace RSSI-based approaches, as soon as hardware and software are commonly avail-

able. For now, using the RSSI is still the most versatile approach.

Figure 2.18 gives an overview on all components influencing RSSI readings, for a sig-
nal traveling from a transmitter, called access point (AP) or base station, towards a receiver.
The first component is the transmitter itself, where the strength is influenced by the configured
transmission power B. While increasing the power yields an increased range for the signal,
this factor is limited by local authorities to prevent pollution of radio frequencies and collisions
between nearby devices. The generated signal is passed through an antenna, distributing it into

the transmitter’s surroundings, causing an additional gain G, depending on the antenna. Radio
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Figure 2.19: Simplified radiation pattern of a dipole antenna, dependent on the opening angle. The
distance from the antenna denotes the amount of energy transmitted into a certain direction. Wider
ellipses transmit more power to the horizontal plane than to the vertical plane.

waves hereafter propagate through air and architectural obstacles, losing a major part of their
initial power, referred to as path loss (PL). The receiving antenna slightly increases the power by
(+, as multiple beams are picked up and accumulated. The receiving circuit then measures the
signal’s power, resulting in the RSSI. Whether this circuit recognizes a signal or not, depends
on its remaining power. If it is below a certain threshold, or the amount of ambient noise is too
high, there will be no indication at all [Rac0O7]. Due to environmental, physical and technical
influences on radio waves, the resulting reception quality is often distributed unevenly among

all places where it is required.

A countermeasure to weak signal qualities often suggested among hobbyists, is using a
larger transmitter antenna, to increase (. This, however, does rarely work as expected and
usually presents other drawbacks. As the transmission power R of the base station is constant,
the overall output after an antenna also remains the same, independent of the chosen antenna.
Different models only affect the way this input energy is distributed into free space. The most
common antenna type for Wi-Fi is the dipole. It transmits the signals in a pattern often described
as “donut shaped”, shown in figure 2.19. Dependent on the antenna’s opening angle, the pattern
approximates a torus, stretched into a certain direction. Antennae with a smaller opening angle
distribute most of the energy to the horizontal plane, and the signal strength, measurable by
devices on the same floor, will increase. Energy distribution to the vertical plane, or adjacent
floors, however, is reduced. This is similar to the effect of a satellite dish, focusing the signal
into a narrow beam, significantly increasing the transmission distance, without changing the
overall amount of energy [CBO7]. Yet, for a robust two-way communication, the receiver should
use the same kind of antenna, to reliably transmit a response back to the transmitter. Antennae
influence how available energy is distributed from a transmitter into its surrounding area, and
how these radio signals are captured on the receiving side. It thus represents a crucial component

when relating to signal strengths and RSSI.
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After the antenna, each radio wave follows a straight line, until obstacles are encountered,
affecting the signal in both, direction and strength. The latter is also reduced by air molecules,
yielding an attenuation, increasing with distance. Combined with the attenuation by obstacles,
this is referred to as path loss. Common effects on radio waves along their path are shown in
figure 2.20 and described hereafter [Rac07; Sey05]:

Absorption/Shadowing  Architectural materials, but also humans, can absorb high frequency
radio signals [Gra+11]. Within buildings, this often occurs for steel-reinforced concrete walls
and floors. Dependent on the spacing of the contained steel grid, the wall’s thickness, and used
radio frequency, signals can be completely absorbed. Due to the wavelength’s impact, 5 GHz

signals, e.g. used within 802.11ac, behave differently for the same materials.

Reflection Smooth surfaces, such as metal or glass, tend to reflect the majority of incoming
radio waves. For rough surfaces, such as walls, reflection, if any, is usually less pronounced.
The amount of reflection also depends on the signal’s angle with respect to the surface. Some
of the signal’s energy is lost within this process, yielding a redirected, weaker signal. This can

yield multiple “copies” of the original signal, reaching the recipient with differing delays.

Scattering  Similar to reflection is scattering. Instead of one reflection with a well-known
angle, multiple reflections with varying angles are created. This mainly occurs among rough
surfaces, where a smooth reflection is impossible. This effect can also be observed when the
surrounding air is filled by many small particles, such as water. Rain, fog and snow will yield

large amounts of reflection and scattering, often causing transmissions to fail.

Refraction The effect of refraction is well-known from water surfaces, affecting the direction
of light, due to a change in media. For radio signals, this mainly occurs among thick obstacles
of a monotonic structure, such as solid concrete objects. When the signal leaves the wall, the

direction is changed again. This also causes the signal’s overall traveling distance to increase.

Diffraction Obstacles are unable to occlude a light source in a binary on/off way. As light
rays are able to slightly bend around corners, shadows do not exhibit sharp edges, but are faded.
The same holds true for radio signals. After doors or corners, a slow fade in signal strength can

be recognized between the line of sight towards the transmitter and the edge of the obstacle.

Attenuation/Free Space Loss  All aforementioned effects cause attenuation, reducing the
signal’s strength. However, due to the surrounding air molecules, attenuation also occurs along
the line of sight between a transmitter and receiver. The amount of attenuation depends on the

used wireless standard, and 2.4 GHz signals behave differently than 5 GHz versions [Hee+11].
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Figure 2.20: Effects on radio signals due to air and architectural components. While some influences
just reduce the signal’s strength, others also affect the direction, or split it into multiple, weaker signals.
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Multipath Propagation The effect of multiple signal copies reaching the recipient via differ-
ent paths, is called multipath propagation. The delay and attenuation along each path is crucial.
If two copies are equal in strength, but delayed by half the wavelength, they cancel each other
out. Likewise, it is possible that the first signal reaching the recipient isn’t the strongest signal,
as there might be longer paths with less attenuation. Therefore, multipath propagation plays a

vital role concerning reception quality, and indicated strength of the received signal [Dvo+19].

After propagation, signals are picked up by the receiving antenna and hardware. For the
latter, the Wi-Fi standard defines minimum requirements regarding acceptable error rates for
certain signal strengths [IEE12; IEE16]. These are a hint towards receiver sensitivity, and the
weakest signal that will be receivable by hardware. Yet, actual hardware might be better than
the minimum requirements demand. Thus, a weak —90 dBm signal might be recognized by one
smartphone, but not by another [Liu+07]. This aspect imposes potential issues when comparing

RSSI readings to infer the current location.

Figure 2.21 shows real-world RSSI readings and aforementioned influences. Even for di-
rect line of sight conditions between a transmitter and a smartphone, used as receiver, signal
strength readings are varying (figure 2.21a). If pedestrians are crossing this line of sight, the av-
erage signal strength is slightly reduced and the variance around this average value is increased
(figure 2.21b). This clearly depicts the mentioned influence of the pedestrian. Similarly, when
holding the smartphone while walking along a hallway, all transmitters behind the pedestrian
will be attenuated, yielding smaller RSSIs [Gra+11]. This effect can even be used for passive lo-
calization. Youssef et al. [YMAO7] presented a system with several transmitters and receivers,
all installed at well-known locations. Humans walking between them affect the measurable
signal strengths, allowing for wireless human presence detection, and even a coarse location
estimation. The impact of antennae is shown in figure 2.21c, where the phone, and thus its an-
tenna, is slowly rotated, at a constant distance of 10 m. While the change of the average value is

insignificant, rotating the antenna increases the variance significantly. Most readings are within
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Figure 2.21: Time behavior of measurable signal strength outdoors under line of sight conditions with
10 m distance between phone and transmitter (a), 10 m distance and pedestrians walking between trans-
mitter and phone (b), 10 m distance and changing the phone’s orientation (c), a pedestrian holding the
phone and walking towards the transmitter (50 m to 1 m) at a constant speed (d).

a =10 dB boundary around the mean, with one —20 dB outlier. For comparison, figure 2.21d
shows the readings for a pedestrian, 50 m away from the receiver, walking towards it. The signal
strength of the outlier from figure 2.21c¢ is below the one at a distance of 50 m.

As shown, the value of RSSI readings depends on surroundings, hardware and antennae.
The next section revisits aforementioned aspects from an analytical viewpoint, discussing mod-

els that can be used to predict signal strength behavior within buildings.

2.7.2 Signal-Strength Prediction Models

As discussed, free space and obstacles attenuate radio waves during their propagation. These
effects can be simulated by signal strength prediction models, providing an estimation of the
signal strength, that is expectable at a given distance or location. Such models are often used
to predict where, and how many, transmitters should be installed, when buildings are newly
equipped with Wi-Fi [Raj+96]. However, as discussions will show, they can also be used for
Wi-Fi-based indoor location estimation.

Simple models only focus on aforementioned free space loss, within line of sight conditions,
where the signal is solely attenuated by the surrounding air. For walls, floors and other obstacles
to be considered as well, more advanced models are required, to include corresponding effects
on radio waves. This section provides an overview on models often used in the context of Wi-Fi
and indoor localization. While simple free space models offer analytical benefits, they are not
well suited for more complex architecture. Therefore, additional parameters and techniques to

approximate the buildings architecture will be discussed as well.

Log-Distance Model Most of the simple models are intended for outdoor use, line of sight

conditions, and are related to Frii’s transmission equation [Fri46]:

R 2@ NG 1 2
R _XNGNG 20@<A). (2.84)

B 4r 4w d2)\2 4rd



68 CHAPTER 2. PROBABILISTIC SENSOR MODELS

| Office 1 Office 2 | Grocery Store Retail Store | Textile Metalworking

MHz | 914 914 914 914 4000 1300

v 35 4.3 1.8 2.2 2.1 3.3

owsi | 128dB 13.3dB 5.2dB 8.7dB | 9.7dB 6.8dB
| [SR92] | [SR92; ARY95] | [ARY95]

Table 2.4: Typical values for v and uncertainty o.within (2.85), both varying significantly based on
surroundings and used radio frequency. Details on the actual structure of the listed environments are of
less importance here, but can be found within the provided sources.

(2.84) describes the ratio between the power R used by the transmitter and the power R remain-
ing at the receiver, dependent on their antennae, used wavelength A\ and the distance d between
both devices. Antennae are modeled using aforementioned gain factors (3 and (=, which de-
pend on the chosen type [Fri71]. For isotropic antennae, which distribute energy equally into all
directions, G, ¢ = 1. The wavelength A depends on the used Wi-Fi standard (2.4 GHz/5 GHz).
Both power indications, B and R, are absolute, and given in dBm. The equation indicates a

direct connection between the RSSI, given by R, and the distance d from a transmitter.

For Wi-Fi and indoor use, (2.84) is modified, to approximate the impact of air and obstacles
along the line of sight, using an attenuation factor . Put simply, v describes the average signal

attenuation per meter. This modified version is often referred to as log-distance model [Rap02]

B@:%—mw&%a+X,X~N@ﬁJ (2.85)
Here, the power R measurable by a receiver, depends on the distance d from the transmitter,
the attenuation factor ~y, and a reference F,. The latter describes the signal strength, measurable
at a known distance d, from the transmitter’s antenna, serving the same purpose as B within
(2.84). In literature, F, is often given at a distance dy = 1 m [SR92; Sey05]. As mentioned
earlier, R, and thus F,, depend on regulations made by local authorities. Typical values for R
of the hardware circuit are around 15 dBm to 23 dBm (= 32 mW to 200 mW), and —40 dBm
to —20 dBm for P, after a distance of one meter, when using typical Wi-Fi antennae [Liu+07;
Hee+11; Che+12; OCV12]. Uncertainties due to noise and ambient conditions, such as mul-
tipath effects, scattering and similar (cf. figure 2.21) are modeled by the zero mean Gaussian
random variable X'. When this variable is present, the model is also referred to as log-normal
shadowing model [Rap02]. The degree of attenuation per increase in distance from the transmit-
ter is modeled by the path loss exponent -y, where higher values denote an increased attenuation,

similar to more obstacles along the line of sight. Typical values for v and o, are shown in ta-
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Figure 2.22: Signal strength prediction heat map for a transmitter (black dot), using (2.85) or (2.87) with
v = 2.5 and Py = —40dBm at dy = 1m. The reference-circles are 2 m apart. The charts on the left
depict the relation between signal strength and distance, when varying the path loss exponent 7,

ble 2.4, whereby the actual structure of the listed surroundings is unimportant. But, as can be
seen, due to different architectural materials, like drywall, metal and concrete, the number of

obstacles, and their placement, values are varying significantly, including a notable uncertainty.

Similar to (2.84), (2.85) clearly relates the power measurable by a receiver to its distance
from the transmitter. This relation can be inverted, to directly convert a signal strength reading

into an estimated distance towards its transmitter, based on aforementioned model parameters
dip (R) = dy 100~ B+3)/(107) (2.86)

As can be seen, (2.86) is a crucial component towards absolute location estimation based on
the measurable signal strength of radio waves. Omitting X for now, a single RSSI reading can
directly be converted into a distance. If the location of the signal’s transmitter is known, the
location of the receiver can be constrained using (2.86), similar to earlier for the GPS (2.7).
Potential whereabouts then denote a circle around the transmitter for the 2D case, and a sphere
for the 3D variant, with the radius equal to the estimated distance. By using measurements from
several transmitters, multilateration (see section 2.3) provides a coarse location estimation for

the receiver, e.g. a smartphone, depending on the model’s correctness.

For an impression of the model’s quality, it is applied to an example floorplan with drywall
interior and concrete exterior, using a typical transmission power of F = —40dBm at dy =
1m, and a path loss exponent v = 2.5. The results are depicted in figure 2.22. As can be
seen, the attenuation always follows the shown curves. Neither walls nor windows affect the
signal strength. ~ approximates all of the transmitters surroundings as a single value, without
any locality. While this will yield large regional errors, not matching real-world behavior, this

location invariance is the basis, required for the existence of the inverse equation (2.86).
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Dependent on the use case, more accurate model predictions, considering walls and other
obstacles, can be required. To include local elements, the transmitter’s and receiver’s locations
must be part of the equations. Within the following, d is therefore replaced by the Euclidean
distance between the known location g of the transmitter and the location g to estimate the
signal strength for. To ensure readability, all parameters required for a certain model are grouped

within the tuple 1, and d =1 m, to remove the fraction, changing (2.85) to

Pip (p.,v,/)) = Py — 10vlog,, Hg— pll+&
P()?’Yagvxedjv XNN(O 02 )

) Y rssi

(2.87)

Extended Log-Distance Model Especially within larger buildings, using a mixture of mas-
sive concrete and decent drywalls, the approximation given by the single path loss exponent
~ will yield model predictions that are too strong behind concrete walls, and too weak for the
remaining regions of each floor. Therefore, Seidel and Rappaport proposed an extension to the
log-distance model, including local effects of floors and walls, named floor attenuation factor
path loss model (FAF) [SR92]. This extension was picked up by the work of Bahl and Padman-
abhan. They slightly adjusted the model and named it wall attenuation factor model (WAF)
[BPOO]. The idea behind both versions is basically the same, and given as

Pup (R,%) = Po—107logy, |l@ — g|| + T, 0, ) + X
P0777Q7X7¢ € ¢

(2.88)

The additional I'(p, g, ¢) denotes attenuations by floors, walls and other obstacles, blocking
the line of sight between the transmitter and the location, the signal strength is estimated for.
Based on the type/material of the obstacle, a certain amount is removed from the signal strength.
This negative attenuation factor for each material — like drywall, glass or concrete — must be
chosen beforehand, either by measuring, or using values from literature. After determining all
obstacles within the line of sight, each single object contributes to the signal strength estimation,

by removing a constant factor based on its type, briefly described as

isects = {all walls intersecting the line from p to p}

F(IL F.’a d)) = E fd) (1) ) ¢ = {¢ceilinga ¢c0ncretea (bdrywalla B } (289)
i€isects .
fo:imded.

(2.89) determines all obstacles intersecting the line of sight between g and g, and sums their

attenuation factors ¢, describing each material’s attenuation as a negative number.
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Window Drywall  Door  Brickwall Concrete  Wire Frame

[Wil02] —0.5 —0.5 —4.4 —21.0
[Ric+00] —6.4 —2.6 —-5.9 -7
[RacO7, p. 116] —2to —8 —2to—4 —-5to—-8 —-10to—-15 —5to—8

Table 2.5: Attenuation factors ¢ for typical building materials, examined using different measuring meth-
ods, under varying ambient conditions.

Regarding the influences described earlier, (2.88) additionally models the effects of absorp-
tion and shadowing. While reflection, refraction, diffraction and scattering are still omitted, this
represents a major improvement compared to (2.87). This, however, comes at the cost of draw-
backs. To determine the attenuation by walls and floors (2.89), the building’s floorplan must
be known, including semantic information. While a scanned image can be sufficient for inter-
section testing, it does not provide semantic information on used materials, thus enforcing the
same attenuation factor for every obstacle, representing an unnecessary approximation [BP0OO].
Another drawback of (2.88) is its irreversibility. It can not be solved for a distance d or location
g, due to the required intersection tests. Furthermore, these tests are costly, especially with
increasing complexity of the floorplan, thus potentially unsuited for embedded use [Ebn+15].
Depending on required accuracy, a compromise might be to only include floors and concrete
walls, omitting minor obstacles with small attenuation values. These values can either be deter-
mined by measurements, or taken from literature. As can be seen in table 2.5, however, there
is a large variation among different sources. This is due to variations within the architectural

structure, real vs. laboratory conditions, and the used signal frequency [Wil02].

Figure 2.23 depicts a heat map for the example floor when using (2.88). Compared to fig-
ure 2.22, the value for v is reduced to an empirical 2.2, and mainly models free space loss, as
wall attenuations are now given separately. White elements depict drywalls, dark gray elements
represent concrete walls, including cutouts for windows. Interior obstacles, such as tables and
chairs, are not considered by this propagation model. While they do affect the signal strength
[Raj+96], including them within the model would require even more computational power.
Furthermore, their location is volatile, requiring maintenance, whenever furniture is relocated.
Thus, only static furniture, such as cabinets within a museum, should be considered [Fet+18].
Examining the chart in the left half of Figure 2.23, the behavior of the extended model is clearly
visible. As soon as a wall is encountered, the estimated signal strength is reduced by the ob-
stacle’s constant attenuation factor. For the depicted example, (2.87) and (2.88) provide similar

estimations, until the concrete exterior is encountered, ~ 13 m along the line of sight.
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Figure 2.23: Signal strength prediction for a transmitter (black dot), using (2.88) with v = 2.2, Py =
—40dBm, ¢grywat = —1dB, ¢goor = —3 dB, dwindow = —4dB, dconcreie = —8 dB. The left depicts a
comparison between (2.87) and (2.88) along the path towards the lower right reference, clearly indicating
the concrete wall’s attenuation.

Ray Tracing To further enhance predictions, including reflection and refraction, more com-
plex approaches, not relying on a line of sight assumption, must be used. One potential can-
didate is ray tracing, known from computer vision, e.g. used for rendering photo-realistic 3D
images [Shi03]. Here, one ray per pixel is sent from a virtual camera, eventually colliding with
objects, placed within a virtual scene. After hitting an object, its color and lighting information
is determined, based on the location and angle it was hit. The same technique can be used to
simulate signal strength propagation within a building, by emitting several rays from a trans-
mitter’s location. As soon as a ray encounters an obstacle, the collision angle is calculated to
determine further actions. Depending on this angle, and the encountered material, the signal is
shadowed, absorbed, reflected or refracted, by emitting new rays, starting at the collision, into a
direction defined by the physical effect to simulate. This process continues, until the way along
consecutive rays reached a certain length, and the signal is too weak to be recognized. Actual
signal strengths are then determined similarly to the extended log-distance model, depending
on the distance, encountered obstacles, and reflections along a ray. Most locations are crossed
by more than one ray. Their signal strength is thus e.g. given by the maximum encountered,
or the one from the first ray reaching it, that is, the one with the smallest distance towards the
transmitter [EIK+10; Raj+96].

Figure 2.24 depicts a potential prediction result, using the same transmitter parameters and
attenuation factors as figure 2.23. Both results are similar, but differ in some regions, especially
visible near windows. Signal strengths were estimated by rasterizing all emitted rays. When
some location within the building is not traversed by a ray, its signal strength remains unknown.
Thus, this approach does not allow for determining the signal strength for arbitrary positions,

but relies on a computationally complex simulation for the whole building. To perform actual
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Figure 2.24: General ray tracing procedure (left) with refraction (red), reflection (blue) and both com-
bined (black). The corresponding signal strength prediction (right) for the transmitter located at the
black dot uses Y = 2.2, P() = —40dBm, ¢drywall = —1 dB, ¢door = —3dB, ¢Wind0w = —4 dB,

¢concrete = —8dB.

lookups, this prediction is calculated once, and persisted hereafter. The amount of required
memory depends on the size of the building, and the number of installed transmitters. Further-
more, this technique requires an accurate floorplan representation, including semantic details
on obstacle material and thickness. Especially for the 3D case, walls and floors must be mod-
eled in a non-intersecting way, for the ray tracing to correctly determine when the obstacle is
entered and left, requiring a complex and semantic 3D model. Hence, ray tracing is mentioned

for completeness, but focus remains on aforementioned signal strength prediction models.

2.7.3 Probabilistic Location Estimation

Having discussed signal propagation and prediction by models, localization strategies are now
examined. Here, three techniques, varying in complexity and accuracy, will be distinguished.

The simplest approach uses lateration via (2.86), to provide a coarse location estimation,
only requiring each access point’s position within the building, and two parameters F, and ~.
However, depending on architecture and use case, results can be too vague [Ebn+17].

To overcome these limitations, and include surrounding architecture, a discrete approach
can be used, where real-world measurements throughout a building serve as reference. Record-
ing such initial measurements once, is often referred to as offline phase [ YAOS]. Localizing the
pedestrian then represents the online phase, where current smartphone readings are compared
against the offline-database, to determine the most likely whereabouts [BPOO]. In literature, this
is referred to as fingerprinting, as each location within the building presents a unique combina-
tion of visible transmitters and signal strengths [CPP10; Lui+11]. While being accurate, due to

real-world measurements, initial setups are time-consuming, costly and hard to maintain.
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Therefore, a compromise between simple lateration and costly fingerprinting will be dis-
cussed, allowing for rapid and inexpensive setups within new environments, still providing
viable accuracy for most use cases [Ebn+15; Ebn+17]. Due to aforementioned influences on
radio signals, several drawbacks need to be addressed, independent of the chosen localization
procedure. Techniques to compensate uncertainty must be examined as well as approaches

mitigating the influence of different software, hardware and antennae [ YAOS; Ebn+17; Fet+17].

To conduct a smartphone-based Wi-Fi signal strength location estimation, the current RSSIs
of all nearby transmitters are required, including an unique identifier for each of them. In case
of Android, this is e.g. achieved by triggering a Wi-Fi scan, searching for all access points
nearby, returning their unique MAC address and corresponding RSSI. In general, two different
scan-types are available: active scan, which is the default, and passive scan [Baw+15; YAOS].

By briefly discussing the two, some limitations on Wi-Fi location estimation are made clear.

For the active variant, the Wi-Fi hardware selects a channel to scan, broadcasts a request and
waits a short period for access points to respond. Transmitters might be overlooked, dependent
on the time waiting for this response, the number of nearby devices and package collisions.
This procedure must be repeated for every available Wi-Fi channel, which depends on the used
Wi-Fi standard, and local regulations [IEEO7]. For 2.4 GHz, usually 13 or 14 channels are
available. For the 5 GHz variants, even more channels are usable, but local regulations are
strongly varying. European regulations on available channels and allowed transmission powers
are given in [ETS12]. Depending on the hardware component, not all of the allowed channels
will be available. The number of 5 GHz channels thus can be up to approximately 30, requiring
more time for scanning than 2.4 GHz. While a Google Nexus 6 takes around 600 ms to scan
the 2.4 GHz band for nearby transmitters, a Samsung Galaxy S5, scanning both 2.4 GHz and

5 GHz, needs around 3500 ms. Scanning times thus add a noticeable delay to the localization.

The passive variant relies on beacon frames, periodically sent by access points, usually every
100 ms, carrying similar information as responses to scan requests. Passive scans take longer, as
each channel must be surveyed for at least 100 ms, to reliably detect all transmitters. However,
not actively probing keeps the radio channel clean, as no additional frames are transmitted,
which can be a benefit, when many smartphones are using the system. As of today, this variant

is not available for most smartphone’s firmware, and can only be used by dedicated hardware.

Throughout the following, the current signal strength readings for nearby transmitters mea-

sured by the pedestrian’s smartphone are given by

8 = (Sap, s Sapys -+ -) 5 (2.90)
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where the MAC address allows for a direct mapping between any s, and its transmitter, includ-
ing all required parameters, such as its position. For fingerprinting, training of signal strength
prediction models, and performance evaluation, additional reference measurements throughout
a building are required. They are conducted by placing a receiver at various locations within the
building, and scanning for nearby transmitters multiple times, to provide a robust estimation for

every part of the building. This offline database is given by

S = (-, Stpapnr---) (2.91)

containing n consecutive measurements, at a location denoted by fp, for the access point given

by ap. The central question is then given by

pe|s), (2.92)

the probability for the pedestrian to reside at p, given the smartphone currently measures the
signal strengths s. However, as only the signal strength’s behavior given a certain location is
known, determined either by fingerprints or a prediction model, the two operands of (2.92) must
be swapped. Both points of view are related by Bayes’ rule
sl s) = PELEPR) o) )~ p o] )

p(s) (2.93)
assuming p(p),p(s) =const, (q), = ((z,y,2,...)),, (0),=((s,...)),.

When omitting prior knowledge, assuming p(p) and p(s) to be constant, both viewpoints are

proportional. This notation also matches with the evaluation (2.4), introduced in section 2.2.

2.7.4 Location Estimation Using Lateration

As mentioned, the simplest Wi-Fi localization approach is based on multilateration (cf. GPS in
section 2.3), using the signal strengths of nearby Wi-Fi base stations, received by the smart-
phone. If an access point’s transmission power F, and path loss exponent y are known, (2.86)
can be used to convert its measured RSSI into an approximate distance d,, towards it. Similar
to GPS satellites, for a transmitter to serve as a localization reference, its position Rap must also
be known. The connection between the receiver’s real whereabouts p, potential whereabouts p,

and the measured signal strength s,,,, converted to a distance d,y, is given by

known unknown measured calculated

= ot ~
| By — R [~ dp = Hgap —el, dyp=dmp <Sap>(2,86)7 Sap = B (2.94)
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When the phone receives a decent number of transmitters, its estimated location p* is the one

that minimizes the differences between measured and actual distances towards each transmitter

P = argminz (Hgap —p|l - dap)2 : (2.95)
R

As (2.12) for the GPS, (2.95) can be estimated using numerical optimization, or by solving a
linearized version of the equation [Pow62; Li+05; DH10]. Depending on the chosen approach,
at least four measurements are required, to estimate 3D whereabouts. The result is a single
location the pedestrian might currently reside at. Similar to (2.17), as nearby locations are
likely as well, the evaluation is given by the distance of a potential state g, from p*

DPwifiLatD (Ot ’ qt) = N (d | 0’ 0-12(1) ) d= HQ* — POS4y, (qt) H : (296)

Exemplary measurements and corresponding location results are shown in figure 2.25. As can
be seen, there might be real-world constellations, where outliers distort the localization result.
While the two leftmost results provide a viable localization for the given reference points and
distances, the two rightmost might differ from expectations. In 2.25c, four crossings can be ob-
served, not denoting a clear solution, but (2.96) estimates the result to reside directly within the
center. In 2.25d, a single outlier affects the ideal intersection between the three other reference

points, shifting the estimation (2.96) away from this intersection.

In contrast to common GPS receivers, where only the result p* is disclosed by the hardware,
for the described Wi-Fi scenario, all individual distances from the transmitters are known. By
assigning an uncertainty to every single distance estimation, and assuming statistical indepen-
dence between the measurements, they can be combined into a mixture distribution, which is

able to address aforementioned issues, by introducing multimodalities

DwifiLac (01 | @) = HN< R.p — POSyy, () ‘ ap, 0120) oy = dip (Sap)ngg) - (297
ap
Instead of estimating a single location, and applying an uncertainty hereafter, (2.97) directly in-
cludes every distance within its own uncertainty. The most likely whereabouts are given by the
location where all probabilities join together. While (2.97) uses a normal distribution to model
these uncertainties, other distributions can be applied as well, such as the one discussed in sec-
tion 2.3. For visualization reasons, figure 2.26 depicts the evaluation results, when using an
exponential distribution. As shown, size and shape of the likely area (dark regions) directly de-
pend on the quality of the calculated distances. In case of accurate observations (figure 2.26a),

the probable region is rather small. For poor distance estimations, like within 2.26b and 2.26c,
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Figure 2.25: Discrete lateration results (black dot) when using (2.95) on four reference points (gray dots)
with the measured distances (arrows). While the two leftmost results seem viable, the two rightmost
estimations might not be as expected.

the probable area is spreading. In contradictory cases, such as 2.26d, the resulting mixture den-
sity adjusts its shape and size to match the distance estimations. While this seems ideal at the
first glance, the amount of adjustment in shape and size strongly depends on the chosen distri-
bution and uncertainty o,.. While larger values allow for joining, when distance estimations are
bad, they unnecessarily increase the uncertainty when estimations are good.

One advantage of the discrete approach (2.96) over the continuous (2.97), is quantitative er-
ror estimation. While the density (2.97) somewhat adjusts its shape and size, this error can only
be visualized, but not directly quantified. (2.95), however, allows for comparing the estimated
whereabouts with all measured distances, to infer an error approximation, similar to the one
discussed for the GPS. For some use cases, this might be the preferred solution, as the quality
of signal strength readings can be quantified, e.g. to suppress potential outliers.

This leads to the question of actual values for o4 and o.. While 014 can be estimated
using aforementioned error quantification, e.g. by using the standard deviation of all differences

between measured and actual distance towards (2.95)

oh = E(X%) - (B(X)), X ={|

2, — 2| — dul |Vap} , (2.98)

0. is a rather empiric choice, based on signal strength variations, discussed in section 2.7.1.
To summarize, lateration enables a simple, computationally efficient localization, able to
provide continuous evaluation results. However, localization quality suffers from the simplic-
ity of the underlying signal strength model (2.86), where walls and other obstacles can not be
included. Furthermore, to convert measured RSSIs to distances using (2.86), the position p,
transmission power F, and path loss exponent « of all transmitters, must be known. While F,
and v can be chosen empirically, the position is crucial, but might be unavailable within some
buildings, e.g. due to non-disclosure agreements or data privacy issues. Furthermore, measuring
and recording the exact position of all transmitters is a time consuming task. Chintalapudi et

al. [CPP10] therefore suggested a big data approach, where all three parameters are assumed
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Figure 2.26: Continuous lateration results when using (2.97), but with an exponential distribution, on four
reference points (gray) with given distances (circles’ radius). The intensity of the background denotes
the likelihood to reside at a certain location, where dark areas are more likely.

unknown. Based on signal strengths recorded by pedestrians with smartphones walking through
the building, they optimize a model, containing not only each transmitter’s parameters g, I and
7, but also the unknown pedestrian locations p at the time of each measurement. To estimate
absolute positions with respect to the building, they include information provided by a few GPS
fixes, while the pedestrians walked outdoors. If GPS fixes are unavailable, other landmarks,
such as stairs or elevators, can be detected, using additional sensors (see section 2.6), and com-
pared against the building’s floorplan, providing the same absolute mapping [AY 12]. While not
requiring prior parameter knowledge, this approach demands for a large dataset of pedestrian
measurements, throughout all parts of the building, not easily available. Similar and alternative

evaluation and optimization strategies thus are the topic of the following sections.

2.7.5 Location Estimation Using Fingerprints

Depending on the building’s architecture, and the multitude of environmental influences dis-
cussed in section 2.7.1, simple signal strength prediction models will often be inaccurate. A
straightforward, yet time consuming, solution to this problem is given by conducting actual
real-world measurements at known locations throughout the whole building, capturing the re-
alities of the signal strength’s behavior. Due to architectural influences and other effects, RSSI
readings will vary greatly throughout the building, and sometimes even within several meters.
This uniqueness is similar to the one of human fingerprints, therefore in literature often referred
to as fingerprinting [Li+05; CPP10; Lui+11; Pal+11]. Mentioned earlier, it was first introduced
by Bahl and Padmanabhan [BP0O], even though they named it offline phase. Their installation
contained three transmitters within an 980 m? office floor, with 70 fingerprints, recorded solely
along the floor’s hallway, with a varying distance of approximately 2 m. To achieve a stable es-
timation, the average of 20 consecutive readings was stored. After recording this database, they
performed several walks using the same receiving hardware. Current RSSI measurements were

compared with the database, using the Euclidean distance between the three currently received
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Figure 2.27: Real-world fingerprint example for an area of 110 x 21 m and eight nearby access points.
At each location, the average RSSI for every of the eight APs is denoted by a bar, where the highest
signal strength is black. If a bar is missing (white), the transmitter could not be received at this location.

RSSIs and the three recorded for each fingerprint. The pedestrian’s most likely whereabouts are
given by the fingerprint with the smallest indicated distance in this signal space. Their approach
yielded a median distance error of 2.94 m along all measurements, indicating that Wi-Fi signal

strength and fingerprinting is a viable solution for absolute indoor localization.

For an impression of discriminability, figure 2.27 depicts a 110 x 21 m section of a real-world
scenario with eight access points installed along the floor. The eight bars beside each finger-
print denote the RSSI for every of the eight transmitters, where black describes the strongest
signal. Even for directly adjacent fingerprints, some variation can be observed. This effect
will intensify with the number of installed transmitters, as each is affected by different environ-
mental influences, increasing the chance for separability. Missing bars indicate that the access
point’s signal was too weak to be detected. Only for one in 18 fingerprints, all transmitters were
visible. This represents a crucial aspect for the comparison between the smartphone’s current
RSSI readings and the fingerprint database. Test arrangements often focus on a small area,
where every transmitter can be received at each potential location. For real-world scenarios,
like large buildings with multiple floors, this assumption won’t hold [BPOO]. When the phone
receives a transmitter, that is unknown to the database, e.g. due to newly installed hardware or
temporal Wi-Fi hot spots, effects are similar. While both cases can be addressed by ignoring
the respective entries, doing so discards available information, or might render entries incom-
parable. If a transmitter was recorded with a weak signal during the time of fingerprinting, it
is likely for the smartphone to not receive this transmitter, depending on the sensitivity of the
internal Wi-Fi component (see section 2.7.1). If the signal was strong while fingerprinting, it
is unlikely for the phone to miss this transmitter. Cheng et al. [Che+05] even suggested using
the amount of invisibility of a transmitter as metric, as it strongly depends on the distance from
it. This, however, requires several consecutive measurements to provide viable results, adding
delays to the localization process. Roos et al. [Roo+02] replace missing entries with a weak
dummy signal strength, as the transmitter might just be temporarily unavailable or was recently

removed. Yet, without additional prior knowledge, there is no ideal answer to the question of
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how to handle missing RSSI readings. Furthermore, it strongly depends on how the actual com-
parison between current readings from the phone and offline database is conducted, to infer the

most likely whereabouts.

Comparison with Euclidean Distances The simplest approach to determine the best match-
ing fingerprint compares the difference between live and offline RSSI readings by calculating
the distance between both, e.g. via the Euclidean or Manhattan distance metric. Intended for ge-
ometrical comparisons, it works reasonably well for comparisons in signal space [BP00O]. While
the phone’s current RSSI readings s contain just a single signal strength per nearby transmit-
ter, the fingerprint database contains multiple measurements, to accurately capture the signal’s
behavior at every location. For comparison, all offline measurements for one transmitter must
be combined into a single one. The most common approach uses the average of all consecu-
tive measurements for one transmitter and location [YAO5; YMAO7]. The comparison between

current smartphone readings s and the offline database ¢ at the fingerprint fp is given by

Acucia (5,6, Tp) = Z s~ E(Stpap)” (2.99)

comparing the RSSI s, of each access point received by the smartphone with its corresponding

average from the database

IE:<§fp ap ‘ Z Stp,ap,n. - (2100)

’ Stp,ap
The number of access points contained within ¢, varies depending on the fingerprint fp, as
two fingerprints will probably contain a different number of visible APs (cf. figure 2.27). For
fingerprints to be comparable using (2.99), the same number of transmitters must be considered,
independent of the fingerprint. All access points present within s, but missing within ¢, can
safely be omitted, as the offline database has no knowledge about them. Vice versa, if one
transmitter is not present within the smartphone readings s, but visible at some fingerprint, this
is viable information, and must not be ignored. To ensure that the number of comparisons is
the same for every fingerprint, all comparisons consider the entirety of all transmitters known
to the offline database. Missing entries, s,, OF Sfp ap, are replaced by a constant. As this value
models a missing/invisible transmitter, it can e.g. be chosen to be near the receivers sensitivity,
approximately around ~ —90 dBm [Roo+02]. Hereafter, all fingerprints, and the smartphone’s
current readings, contain the same number of entries, equal to the total number of transmitters

known to the database, allowing for a valid comparison. The pedestrian’s current whereabouts
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are then given by the fingerprint that minimizes the distance to the phone’s current readings

fp* = arg min Aeyeiq (8,6, fp) - (2.101)
fp

Due to its simplicity, (2.99) suffers from an important drawback. By incorporating fingerprints

using just the average of several long-term readings, information on the signal’s actual behavior

is discarded. This is addressed by using a probabilistic comparison instead.

Comparison with Probability Distributions Depending on architectural surroundings, the
RSSI of a transmitter behaves differently throughout a building. Due to multipath propagation,
there will often be more than one way for a signal to reach a location. This not only causes
its average strength to be different between locations, but also its variance. Depending on
paths and architectural influences along them, the variance ranges from small to pronounced.
Using all consecutive scans at every location from the offline fingerprint database, the variance
can be determined alongside the mean, afterwards allowing for a more profound comparison
with the smartphone’s readings. Youssef et al. [YAOS; YAAOS] suggest using the fingerprint
measurements to estimate a normal distribution for every access point and location. These are

then used to calculate the probability for each of the phone’s current readings to match

P(Sap | Stpap) =N (Sap ’ “’02)

. ) ) ) (2.102)
with  p = E(X) y 0= E<X ) - (E(X)) , X = {gfp,ap,n € gfpyap}'

Assuming statistical independence of all access points installed within a building, a fingerprint’s

overall likelihood is given by the product of the individual probabilities from (2.102)
p(s | s, fp) = [ [ P(sap | Stpap) - (2.103)
ap

When using probabilities for comparing live RSSI readings against fingerprints, transmitters
unseen by the phone can be handled in similar ways as described earlier. They can either be
replaced with a small constant probability or by a constant, weak RSSI, that is hereafter applied
to (2.102), or to a distribution around the weak constant, if the transmitter is unknown to the
current fingerprint. While the latter seems to be the most profound solution, as it directly yields

the likelihood of measuring a weak signal, the actual value can not be quantified directly.

While using a normal distribution instead of the mean value yields improvements, it is still
not ideal. Due to multipath propagation, the mean value might not be the one with the highest
probability, and there can be situations where a transmitter’s long-term signal for some location
denotes multiple peaks, as it arrives via more than one path. In those cases, the signal strength’s

behavior is non Gaussian, requiring for approaches that support multimodalities.
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Figure 2.28: Strategies to approximate the signal strength distribution for one access point and location.
A histogram of all readings (120) using a bin size w = 1 dB (a) with the mean (dashed) for comparison,
a normal distribution estimated around this mean (b), and a KDE for two different bandwidths (c), where
the dashed bw = 1.00 is an empiric choice, and bw = 2.15 was determined using (2.108).

Comparison with Histograms One way to model arbitrary distributions of measurements is
the histogram [Pea95; Smi99; YASO3; YAOS5]. All RSSI readings for one access point at one
location from the offline phase are grouped into bins, where each bin denotes the number of
measurements contributing to it. After normalizing the sum of all bins to one, each bin directly

denotes the likelihood of measuring a signal strength within the range covered by it

1 1 bin(sap) = bin(gfp,ap,n)

(5w | Stoa) = . bin(x) = ﬁJ (2.104)

|Stp.ap » |0 else

The bin size w can be chosen freely, but is hard to determine correctly. Using w = 1 dBm per
bin directly resembles RSSI readings, usually provided as integers by the underlying hardware.
This, however, might yield single bins with a count of zero, causing gaps within the histogram
(see figure 2.28). Meng et al. [Men+11] therefore suggest using a w = 2 dBm to address this
problem and simultaneously halve the amount of memory required for storing the histogram.
Using larger bins decreases the overall quality, as similar RSSI readings might be treated with
the same likelihood. This problem can be addressed by interpolating between adjacent bins,

using a weighted result, creating a more continuous output [McC86; DTOS].

Besides gaps, the edge-areas of the histogram are difficult to handle as well, as every RSSI
not encountered during the offline phase is assigned a probability of zero. This is correct from
the histogram’s point of view, but does not resemble real-world conditions, where the likelihood
is not zero but infinitesimally small. When (2.104) is used within (2.103), a single zero makes
the whole fingerprint unlikely. Roos et al. address this issue by pre-assigning a very small
constant likelihood to every bin contained within the histogram [Roo+02]. While this mitigates
the problem, it is still incorrect, as the probability is not constant, but varying depending on
the distance towards the nearest and actually covered bin. Both of the discussed issues can be

targeted by smoothing the histogram, e.g. by using a kernel density estimation (KDE).



2.7. WI-FI AND BLUETOOTH BEACONS 83

Comparison with Kernel Density Estimation For a continuous result, the histogram’s dis-
crete binning (2.104) is replaced by a continuous function, referred to as kernel, e.g. being some
narrow distribution, shaped like a smoothed bin. The idea is the same as for aforementioned
lateration approaches, including every measured distance by its probability. Therefore, all in-
dividual probabilities, given by comparing all offline readings for one location and transmitter

with the corresponding one from the smartphone, are summed up, and normalized

1 Sap — Sip,ap,n
. ) = ———— KO 22 Cbapn g 2.105
o) = o o (2 (2109

While most use cases refer to a Gaussian kernel

1 1,2
KGauss(w) = \/%67590 :N(w ‘ 0, 1) ; (2.106)

differently shaped functions can be used as well [Roo+02; GCC12]. The overall process is often

referred to as kernel density estimation (KDE) or Parzen/Rosenblatt estimation [Par62; Ros56].

For Gaussian kernels, (2.105) can be rewritten, emphasizing its essence
1
P(Sap | Stpap) = . > N (51 | Stpapm: 7). o =bw. (2.107)
papl

By using the KDE, gaps within the histogram are closed, and multimodalities are preserved.
Yet, the result strongly depends on the chosen bw, referred to as bandwidth. While small values
preserve tiny variations, gaps will remain open. On the other hand, larger values create smoother
results, but suppress minor variations. Literature covers a variety of metrics to estimate the best
bandwidth, to minimize the error between the KDE and the unknown density function [SS09;
BNO9]. For many use cases, the rule-of-thumb described by Silverman [Sil86] provides viable
results, whenever a Gaussian kernel is used. Here, the bandwidth depends on the number and

standard deviation of all signal strengths recorded for one access point and location

405\ 5
bW (Stpap) = (ﬁ) . o= \/E(XQ) — (E(X)?, X = {cpapm € Sipap} . (2.108)

Figure 2.28 depicts a comparison of all discussed techniques using 120 real-world readings for
one transmitter at one location. As can be seen within the histogram 2.28a, the measured RSSIs
are split into two large groups. The average is exactly between both of them, indicating major
drawbacks for the simple Euclidean distance approach. The same holds true for the normal
distribution 2.28b, relying on the same mean value. Using the histogram itself is slightly better,
yet there are major gaps throughout the recorded data, yielding near-zero probabilities for some
RSSIs. Both issues are addressed by the KDE in 2.28c, where gaps are closed, but still included.
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Location Estimation Previously discussed techniques yield a distance/probability for every
fingerprint within the building, based on the current phone RSSIs s. The pedestrian’s most
likely whereabouts are given by the position of the fingerprint which matches best. Similar to
lateration described in section 2.7.4, this yields a single, discrete location, even if nearby loca-
tions are just as likely. When two, or more, fingerprints are similar, they can easily be confused
with each other, independent of the chosen metric, potentially causing large localization errors
and jumps [Liu+12]. Just like with lateration, this can be addressed by letting every single

fingerprint contribute to the solution, instead of solely focusing on the best one.

Bahl and Padmanabhan [BP0O] suggested using the average of the positions of the k nearest
fingerprints. While this provides a more continuous result, all k£ fingerprints are treated equally,
even though their Euclidean distance might vary. While the resulting location is not bound to
fingerprint positions, it is still a discrete location. Therefore, Youssef et al. [YAOS] focused
on discussed probability metrics, to hereafter estimate the regional weighted average position
among the k£ most likely fingerprints, weighted by their probabilities. While including weights

yields more viable results, the output is still a single, discrete position.

As each fingerprint’s probability represents a discrete, weighted sample, like a bin within
the histogram, the KDE can be used to estimate the unknown continuous density, by combining
adjacent fingerprints [TBFO05]. In contrast to the KDE applied to signal strengths, a three dimen-
sional kernel is required for estimating a position within the building. However, when assuming
the same bandwidth bw for all three dimensions, the kernel can be reduced to a single dimen-
sion, using the distance d between each fingerprint’s three dimensional position pos,,, (fp) and
a potential location pos,,, (g,) within the building. The evaluation of the pedestrian’s current

RSSI readings depending on this location is then given by

dlstance kernel ﬁngerprint probability

d ] 0,0 ) (S | C»fp)(2103;
Pwitikne (0¢ | q;) .
% > (1+p(s16,1)0103)

with  d = Hposxyz (fp) - posxyz (qt) || ) o =bw )

(2.109)

where the denominator is required for normalization. (2.109) provides viable results if the band-
width bw is determined correctly, and the building is covered by a decent number of fingerprints.
However, this approach relies on multiple nested loops. One for all fingerprints, one for all ac-
cess points for each fingerprint (2.103), and, dependent on the chosen comparison strategy, all
consecutive measurements for every fingerprint and access point (2.104) or (2.105). This yields
O(n?) as worst case scenario for every single location evaluation, potentially causing issues for

embedded use when multiple locations are evaluated, and many fingerprints must be examined.
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2.7.6 Location Estimation Using Propagation Models

The approaches from section 2.7.4 and 2.7.5 come with different benefits and drawbacks.

Lateration solely requires the positions of all access points installed within the buildings
and some empirically chosen parameters for F and . Yet, it only supports simple invertible
signal strength prediction models, thus tendentially providing poor results, especially under the

influence of heavily attenuating concrete walls, which can not be included individually.

Fingerprinting addresses this problem via real-world signal strength measurements. How-
ever, the time needed for the initial setup, creating hundreds of fingerprints, each with several
consecutive measurements, is tremendous. Recommendations for those repetitions range be-
tween 20 [BP0OO] and 1000 [Men+11], being almost unfeasible for large buildings like airports,
or other multi-level architecture. Palaniappan et al. [Pal+11] therefore suggest using robots to
perform required measurements automatically. While this can reduce setup/maintenance time
and costs, necessary efforts are still notable. Furthermore, fingerprints are discrete and require
for costly computations, such as the kernel density estimation, to infer continuous results. While
techniques to perform rapid KDE approximations exist [Bul+18], required computational power
is still a concern for recent smartphone CPUs/GPUs, especially when considering the third di-
mension as well. Also, fingerprinting needs special treatment of invisible transmitters for valid
comparisons with smartphone readings. Thus, neither of the two approaches represents an ideal

choice for an indoor localization system that is accurate, fast to set up and easy to maintain.

A compromise between both is utilizing advanced signal strength prediction models. As
they usually are not invertible, they can not be used to convert a phone’s measured RSSI into
a distance estimation, like performed in section 2.7.4. Instead, the models are used to estimate
each transmitter’s signal strength, that is, predicting what fingerprints would look like [EIK+10].
Thus, the strategies presented in section 2.7.5 are applicable, comparing smartphone readings
with model predictions, instead of fingerprints. However, in contrast to the latter, model pre-
dictions are calculable for every single location within a building. Thus, transmitters are never
invisible to the model, and this approach is completely continuous. This reduces computational
costs, not requiring any interpolation steps, such as the KDE. To use this strategy, the parame-
ters required by a chosen model, like v and F), must be determined in some way. Depending
on available prior knowledge, like known transmitter locations, and the chosen model, these pa-
rameters can either be determined empirically, or must be estimated. This can e.g. be performed
by training, based on a few reference measurements. While these measurements are similar to
fingerprinting, they are much more sparse, and thus significantly faster to set up and maintain.
For this approach, setup and maintenance times are reduced at the cost of accuracy, depending

on the chosen model and reference measurements [Ebn+14; Ebn+15; Ebn+17].
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The following discussions focus on comparing RSSIs received by the phone with model
predictions, and how to determine necessary model parameters. They are provided in a general
form, independent of a chosen model. That is, they apply to all signal strength prediction
models, including the three representatives (log-distance model, extended log-distance model,

ray tracing) discussed in section 2.7.2. Implementation examples are provided afterwards.

Comparing RSSIs With Model Predictions In the following, a model’s signal strength pre-
diction for a location g and access point ap is referred to as Py (g, ¢ap) . It is based on the
parameters t,, required for a transmitter, containing e.g. its location (cf. section 2.7.2). The
probability for residing at g is then given by comparing s,, measured by the phone with the
model’s prediction (cf. section 2.7.5). For example, by using a probability density function

(PDF), including the model’s uncertainty, and the signal’s multipath behavior at this location

model prediction ~ PDF dep. model dep.
——f— =
P(sap | @ Wap) = P(Sap | Proat (R:%p) » -+ ) Bap » -+ € Wy - (2.110)
. 7/ (. ~
Vv
PDF for model/multipath uncertainty model parame;;rs for one AP

Type, shape and additional parameters of the PDF strongly depend on the chosen model. The
log-distance model, and its extended version, predict the mean signal strength given one loca-
) (cf. section 2.7.2).

Here, the PDF from (2.110) can be chosen to be a normal distribution. Its o, is either deter-

tion, with the uncertainty being a zero mean random variable X ~ A(0, 02
mined empirically, or estimated, e.g. by comparing the model predictions with reference mea-
surements. However, for more advanced prediction models, supporting multipath propagation,
such as ray tracing, more complex PDFs are required, including support for multimodalities
[Ebn+14]. Every single ray reaching the location in question could e.g. be added to a histogram,
hereafter applying a KDE to estimate the signal’s unknown distribution for this location. Again,

this represents a tradeoff between quality, and memory/computational complexity.

Assuming statistical independence of all access points, the evaluation of the phone’s current

RSSI values s against a state g, is given by the product of the individual probabilities (2.110)

Pwifimdl (Ot ’ qt) = Hp (Sap ’ posxyz (qt) 7¢ap)(2.]10)
ap (2.111)

(@), =((zy,2..)), {0),=((5,-));

As mentioned, compared to fingerprinting, prediction models are always able to provide a sig-
nal strength estimation, even if the resulting value is far below the sensitivity of the receiving
hardware. This reduces the problem of invisible transmitters solely to the smartphone side,
where unknown entries can simply be ignored, using only transmitters that are both, currently

seen by the phone and known to the model [Ebn+14].
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Model Parameter Estimation To calculate P,,g ( 2, wap) in (2.110), the parameters 1), for a

ap?
certain model and transmitter, must be known. Shown earlier, most models require the transmit-
ter’s location Rap> to infer the distance towards it, and to perform intersection tests. Besides, they
e.g. require values for the signal’s attenuation within free space, or for encountered obstacles,

discussed in section 2.7.2. The following discussions examine potential estimation strategies.

For simple models it is possible to use the positions of all transmitters installed within a
building, and using empirical choices for the remaining parameters [Ebn+14; Ebn+15]. How-
ever, for larger public buildings it can be hard to gain access to documents containing these
positions, if available. Also, physical access to the transmitting hardware can be prohibited, or

the number of installed transmitters is too large for this approach to be worthwhile [Tor+17].

Alternatively, by conducting several reference measurements at known locations throughout
the walkable area, numerical optimization can be used to estimate all required parameters. Goal
of the optimization is to determine ¢ap (e.g. p, Fo, v or ¢), so that the model’s predictions
hereafter match with real-world signal strength behavior. Being similar to recording a few

fingerprints, reference measurements are also referred to as fp, stored within the database g.

When referring to the extended log-distance model, every transmitter has its own location
R,, and transmission power Fy,,. In theory, the remaining parameters v and ¢, are identical
among all transmitters, and could thus be optimized together. However, this model represents a
vague approximation of the signal’s real behavior, omitting many physical effects. Estimating
parameters per transmitter instead of globally will thus often increase its prediction quality
[Ebn+17]. For more realistic models, such as ray tracing, a global parameter estimation can
be suitable, as it increases the amount of available training data, and allows for a more robust
estimation, e.g. of the individual attenuation factors ¢, also reducing the risk of overfitting. With
the required equations being marginally different, the following focuses on the per transmitter

optimization only, without loss of generality.

Independent of the chosen model, its predictions must match real-world conditions as closely
as possible. This is achieved by comparing predictions with conducted reference measurements,
determining their difference. The to-be-optimized target function for a single transmitter’s
model parameters ), is defined as the sum of squared errors between each reference mea-

surement at position pos,,, (fp) for this transmitter, and the corresponding model prediction

repetitions  measured model prediction, e.g. (2.87)

s ™~

~ N 9
gap (C, apa ¢ap) - Z Z ( gfp,ap,n - Pmdl (posxyz (fp) 7¢ap) ) . (2112)
fp n

As can be verified, this error should be as small as possible. For a quantification of resulting

values, it makes sense to also determine the Root Mean Square Error (RMSE), dividing (2.112)
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by the total number N of the two nested summations, and extracting the square root

1
RMSE, (s, ap, ¢,,) = \/ + e (Siapaby,) (2.113)

Concerning optimization, there is no difference between (2.112) and (2.113), as the general be-
havior remains the same, and actual values are unimportant, as long as the minimum is reached.
However, due to requiring less mathematical operations, optimizing (2.112) is faster. Thus, the

best model parameters T/’Zp for one access point are the ones that minimize (2.112) or (2.113)

¢Zp = argmin &,y (g, ap, 1/Jap) = arg min RMSE,, (g, ap, ¢ap) . (2.114)

ap wﬂp
(2.114) is solved by using the previously mentioned optimization algorithms. Which one per-
forms best, strongly depends on the chosen signal strength prediction model. While simple
models can denote continuous convex target functions, advanced variants often show discontin-
uous behavior, with many local minima. Details are now discussed by using a synthetic example

for the log-distance and the extended log-distance model.

Optimizing the Log-Distance Model When using the log-distance model (2.87) as imple-

mentation for Py ( o3 ’l/)ap), five model parameters t,, must be optimized for every transmitter

2oy Powps Vap € Yaps By = (4,4,2)7 . (2.115)

Figure 2.29 depicts an example setup, optimizing these parameters based on 14 reference mea-
surements, shown in the upper left corner. The 14 values were generated by the ray tracing
simulation, depicted in figure 2.24. Minimizing (2.113), minimizes the difference between
these 14 reference measurements and corresponding model predictions, by adjusting %,,. The
optimal result 1, corresponds to the one with the smallest error. Resulting differences in dB,

between reference measurements and predictions based on ), are shown in the upper right.

ap?
The floorplan is drawn transparently, to emphasize that the log—distance model is unaware of
any obstacles. The RMSE of 0.6 dB can be verified by squaring each of the 14 differences, sum-
ming the squared values, and taking the sum’s square root. As can be seen, the error between
model predictions and reference measurements is negligible, and the black cross, indicating the
estimated access point position g, , almost matches the actual location. The same holds true for
Fo,p and ,,, both being close to values used for generating the reference from figure 2.24. The

five plots below denote the change in error (2.113) when using 1),,, but modifying one of the

*
ap?
five parameters. That is, keeping all values as determined by the optimization process, but e.g.

moving the access point left or right. Denoted by the first three plots, changing the transmitter’s
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Figure 2.29: Optimizing the log-distance model (2.87), by minimizing (2.113) to match the 14 reference
measurements shown in upper left (in dBm), with the two axes denoting (0, 0). Resulting model param-
eters ¥y, were g, = (5.6,5.0,-0.4), Py, = —36.0 and v, = 2.8, yielding a RMSE of 0.6 dB. All
individual errors are depicted in the upper right (in dB), where blue denotes a model prediction lower,
and red higher than the reference measurement. The five plots below depict the change in RMSE (2.113)
when manually adjusting a single parameter from 'z,b:p.

location can yield non-convex behavior of the error function, with causes shown in figure 2.22.
Due to the nonlinear behavior of the log-distance model, individual errors behave in the same
way. Depending on the location of each reference measurement, the change in error between
prediction and reference is different when moving the transmitter, yielding non-convex behav-
ior. In contrast, changing Fy,, or 7,, denotes a convex output, as they represent an addition and

a multiplication, affecting the signal strength prediction model (2.87) linearly.

While results are encouraging, there is a major caveat, as the presented setup referred to a
drywall-only environment. Typically, drywalls attenuate radio signals only slightly, approxi-
mately matching with the continuous behavior of the log-distance model. Within most build-
ings, other materials, such as concrete and metallized glass, significantly attenuate radio propa-
gation, causing discontinuous behavior. Repercussions are determined by adding four additional
reference measurements, residing behind concrete walls, shown in figure 2.30. The four new
reference measurements are strongly attenuated by the concrete, yielding a rapid depletion in
signal strength. This behavior does not match with the floorplan-agnostic log-distance model.
The impact is shown within the upper right part of the figure, depicting the differences between
predictions and reference measurements, where the three leftmost entries clearly deviate from
their reference measurements. While the center one (—3.0 dB) is within the line of sight to the
transmitter, the upper (43.8 dB) and lower (+3.6 dB) ones are occluded by concrete. To miti-

gate this impact, the optimization process chose the path loss exponent to be 7,, = 8.1, which
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Figure 2.30: Optimizing the log-distance model (2.87), by minimizing (2.113) to match the 18 ref-
erence measurements, shown in upper left (in dBm). Resulting model parameters 1)y, were Rop =
(6.7,5.1,=5.7), Poap = 19. and Yap = 8.1, yielding a RMSE of 2.3 dB. The four new reference mea-
surements cause significant errors, due to the attenuating concrete.

is unnaturally high, and causes a more rapid drop in signal strength with increasing distance.
Additionally, the process placed the transmitter 5.7 m below ground, increasing the distance
towards all reference measurements. In doing so, the optimization tries to increase the dis-
tance/path loss towards the four exterior reference measurements, to match their lower RSSIs.
By increasing the distance towards all reference measurements, the process works within an
almost linear range of the log-distance model, explaining why changing the transmitter’s x or y
now looks more convex than earlier. To compensate for the large ,,, and increased distances, the
optimization determined the transmission power to be [%,, = 19 dBm, which is numerous times
the typical value of ~ —40 dBm, indicating an overfitting to the given problem. When reference
measurements on additional floors above and below are introduced, the situation changes, as the
z-coordinate can not be used for compensation. With v,, being the only remaining parameter,

the model will yield unsatisfying results for most multistory buildings [Ebn+17].

Optimizing the Extended Log-Distance Model When using the extended log-distance model
(2.88) for Pya (g, wap), 7ap Mainly models free space attenuation. Walls and ceilings along the
line of sight are included as separate attenuations based on their material. Within the following,

six materials are distinguished

¢ = (¢ceiling> ¢concretea ¢drywalla ¢glassa (bmetalGlass’ ¢door) ; (2-1 16)

where @q00r 18 Only required when doors are considered, and assumed to be closed. The corre-

sponding optimization process estimates the same parameters as for the log-distance model, but
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additionally includes the attenuation factors ¢

gap7P0ap7’Yap7¢ € wap7 (2117)

yielding a highly multidimensional optimization problem. As discussed earlier, this model rep-
resents a discontinuous function. When the line of sight intersects an obstacle from the floor-
plan, its attenuation is added, yielding a jump of the predicted signal strength, also affecting the
to-be-optimized target function. Previously used optimization algorithms will rarely converge
when dealing with discontinuous functions. Yet, brute force approaches might not converge

either, due to the “curse of dimensionality” [Nie83].

Another option is given by choosing optimization algorithms that are better suited for dis-
continuous and non-convex problems. Typical representatives are all types of genetic algorithms
[Rec73; Sch77; HNG94], where optimization is performed by creating a population of several
entities. Every entity is e.g. initialized by drawing a random value for each to-be-optimized
model parameter. Hereafter, the whole population is sorted by its fitness, e.g. using (2.113),
determining the quality of the parameters within each entity. The best entities, with the lowest
errors, are randomly combined with each other, e.g. by exchanging, averaging or mutating their
values, hopefully using the best parts of both, hereafter replacing unfit entities. Sorting and
combining is repeated several times, until a limit is reached. Due to the random approach, the

probability of finding a better, global minimum is increased, yet, not guaranteed to converge.

The chance for convergence can be increased by a few adjustments. For the discussed target
function/model, the range of the individual parameters is approximately known beforehand.
This knowledge can be included during the process, by randomly creating the initial population
based on the provided min/max range for every parameter of 1,,. The access points can e.g. be
assumed to reside somewhere within the building’s bounding box. Similarly, typical values for
Py, v and the attenuations ¢ were presented in section 2.7.2. After sorting the population by its
fitness (2.114), some % of best entries are kept as they are, in order to not lose good results. The
remaining population is replaced by randomly combining fit entities, and/or creating a copy of
a random fit entity, with slightly mutated values. In order to find a stable minimum, the amount
allowed for these changes starts with a fraction of the known parameter range, and is further
reduced over time, inspired by cooling from simulated annealing [KGV83]. Using such random
adjustments of promising starting values needs some time to converge, but often yields viable
results for hard optimization problems, such as the presented one [Ebn+17]. The same strategy

can be applied to other complex signal strength prediction models, like ray tracing.

Figure 2.31 depicts the result of using (2.88) in (2.113), with the reference measurements
from figure 2.30. The RMSE of 0.3 dB denotes a viable estimation, confirmed by the 18 indi-
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Figure 2.31: Optimizing the extended log-distance model (2.88), by minimizing (2.113) to match the 18
reference measurements, shown in upper left (in dBm). Resulting model parameters '¢;‘p were g, =
(5.8,5.2,2.3), Poap = —39.5,"yap = 2.2, Pconcrete = —7.9 and Pgrywann = —0.9, yielding a RMSE of
0.3 dB. Changing the transmitter’s position yields highly discontinuous behavior, clearly denoting the
location of the exterior concrete wall, ground-floor and ceiling.

vidual errors within the upper right of the figure. Furthermore, all resulting parameters are close
to the ones used for the ray tracing that generated the synthetic reference measurements (cf. fig-
ure 2.24). Shown in the plots below, the behavior when changing the transmitter’s location is
highly discontinuous. The first two plots modify its x and y, clearly indicating the location of
the exterior concrete wall as an abrupt change in error by @concrete- Similarly, adjusting z denotes
the location of ground-floor and ceiling. As earlier, changing ~,, and Fo,, yields a linear impact,
as does changing the attenuations ¢, which represent an additive factor, defined in (2.89).
While the presented optimization will consume significant amounts of time for larger build-
ings and numerous transmitters, it needs to be performed only once. During the localization
of the pedestrian’s smartphone, however, many intersection tests must be performed, in order
to determine all attenuations induced by obstacles. Depending on the building’s architecture,
these intersection tests can be costly. Furthermore, for being used within the prediction model,
the floorplan should be detailed, and must include information on each obstacle’s material. For
real-world scenarios, and use on smartphones, a compromise between both, the log-distance

model and the extended log-distance model, should be taken into account.

Regional Log-Distance Model To be suited for use on smartphones, the complexity of the
extended log-distance model must be reduced, e.g. by lowering the number of needed intersec-
tion tests. One way of doing so is focusing only on obstacles imposing major attenuations, like
ceilings, concrete walls and metallized glass. The latter are mainly found along a building’s

exterior, affecting localization outdoors, where GPS is available, and thus might be irrelevant,
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(a)

Figure 2.32: Potential encounters with floors/ceilings between a transmitter and some other location, in
multi-level buildings. Several floors of equidistant height (a), cutouts for stairs or elevators (b), adjacent,
shifted floors with different heights (c), atriums or galleries (d).

depending on the use case and building. Also, many modern buildings use steel-reinforced con-
crete in a few regions for structural purposes, and can thus be omitted as well. If the intersection
problem is reduced to just ceilings, computational complexity can be decreased even further.

For buildings with stacked and similarly sized floors, ceilings can be expected everywhere,
except a few small cutouts for stairs, and elevators. One option for modeling the effect of
floor/ceiling attenuation is then given by artificially scaling the z-distance within the model. By
increasing the distance towards the transmitter, the attenuation is increased as well. Doing so
yields a target function similar to the one presented for the log-distance model, allowing for
typical optimization algorithms. However, besides other drawbacks, such as invalid predictions
along stairs, this approach is only suitable for buildings with equidistant floor heights.

Alternatively, the intersection test is replaced by discretely counting the number of floors be-
tween the transmitter’s z-coordinate, and the one of the location in question. This also supports
varying floor heights. Within older buildings, however, floors often are not evenly stacked, and
multiple floors of different altitudes are adjacent to each other [Fet+18]. Here, the number of
floors in between is (x,y) location dependent, requiring a different approach. The same holds
true when floors contain larger cutouts, yielding a direct line of sight towards other levels, often
encountered within modern architecture, with atriums, galleries, light wells, and observation
platforms. When near such regions, counting the number of floors/ceilings will yield results
differing from an actual intersection test [Ebn+17], with the signal strength estimation of the
model far below real-world readings, due to invalid attenuations. The discussed cases are shown
in figure 2.32, where counting the number of floors (dashed lines) between transmitter (black
dot) and location in question (gray dot) is not always equal to an intersection test (cross).

One way to address aforementioned issues is given by splitting the building into sections,
and to estimate one model for each such region. This is achieved by defining several bounding
boxes, e.g. one per floor. All reference measurements that belong to one bounding box are used
to optimize one log-distance model for every transmitter receivable within this bounding box.
For evaluating the pedestrian’s potential whereabouts based on current smartphone readings,

the models that belong to the bounding box containing the location in question are compared
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Figure 2.33: Example separation for a regional signal strength prediction model. By dividing a building’s
area into several regions, signal strength prediction models can focus on special needs within every
section, thus reducing prediction errors.

with the phone’s readings. As the check, whether a bounding box contains some point, is cheap,
especially for axis-aligned bounding boxes, this approach yields major performance improve-
ments compared to intersection tests. Furthermore, it is possible to use additional bounding
boxes for sensitive areas, where the optimization process indicates major model errors, e.g.
within stairwells, surrounded by massive concrete walls, shown in figure 2.33. However, every
single bounding box needs at decent number of reference measurements for the optimization to
converge, and to prevent overfitting [Ebn+17]. Also, similar to fingerprinting, invisible access
points must be considered, as not all transmitters are visible within every bounding box, thus

not yielding a model that provides predictions for every transmitter and location.

Bluetooth Beacons While aforementioned discussions were solely focused on RSSIs from
Wi-Fi, they also apply to different radio hardware available for pedestrian smartphone local-
ization, such as Bluetooth beacons. Independent of varying transmission protocols, they use
similar frequencies, and are thus influenced by the same effects. One major difference is given
by the transmission powers B and Fy. Like with access points, B is configurable for beacons.
Yet, F, is also broadcasted by the protocol, making it visible to receiving clients. In theory,
this value can thus be omitted from the presented optimization processes. However, as previ-
ous discussions have shown, models represent an approximation of real-world conditions, and
parameters resulting from optimization are not necessarily equal to real-world parameters. Fur-
thermore, beacons often are battery powered, thus using lower transmission powers than access
points, also ceasing gradually. Thus, they are mainly suited for coarse location based services,

or as supplement, used in locations, where Wi-Fi reception is poor [Ebn+15; Ebn+16].
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2.7.7 Error Compensation

All of the discussed Wi-Fi localization approaches suffer from similar types of errors and un-
certainties. Many of them could be addressed by using specialized hardware, which is not (yet)
available within commodity smartphones. While current development is promising, eventually
providing new components that increase the accuracy of smartphone-based location estimation
[Ibr+18; Dvo+19; BSA16], it will take time for them to become widely available. The follow-
ing paragraphs thus focus on the most common issues encountered for signal strength-based

location estimation, and how to mitigate them.

Effects on RSSI  As mentioned in section 2.7.1, different kinds of antennae strongly affect the
RSSI measurable by the smartphone. They are encountered as an additive gain s,, = s, + &,
present within all readings received by the phone (cf. (2.84) and figure 2.18), affecting all evalu-
ations presented earlier. Chintalapudi et al. [CPP10] address this problem by treating the indoor
localization as crowd-based global optimization problem, where all unknowns, pedestrian lo-
cations and model parameters, are optimized together via genetic algorithms. While they also
compensate for individual antenna gains, this is a big data approach with huge computational
complexity, mainly intended for offline use. Wang et al. [Wan+11b] propose a more versatile
solution. As antenna gain is a constant factor, all readings from a phone are affected in the same

way. By evaluating relative instead of absolute signal strengths, the additive gain is removed

/

Sap, = Sb0 + &, Sy, =8 + @
o e (2.118)
Sapy — Sapy = (Sgp, T &) — (Syp, + &) = 55, — 5,

ap, ap, apy °

To use relative RSSIs, a common basis must be defined. Wang et al. suggest using the strongest
transmitter received by the smartphone as reference, where all of the RSSIs within s are con-
verted to be relative to the strongest one. Depending on the setup, the same step is applied
to each fingerprint, or the values returned from signal strength prediction models. They are
converted to be relative to the transmitter that was the strongest within the phone’s readings.
Discussed evaluations pyis (0; | ;) can hereafter be performed analogously [Ebn+14]. While
this approach will often work as expected, the influence of the pedestrian shadowing all trans-
mitters behind the phone can cause severe estimation errors. However, the same effect is also

noticeable when using absolute readings [Zha+11].

Human Influence As water strongly affects propagation of radio waves, and human bodies
mainly consist of water, they strongly absorb Wi-Fi signals. When a pedestrian carries the
phone upfront (cf. figure 2.5), all transmitters behind the pedestrian are attenuated, causing

errors within the fingerprint or model comparison. If the current position and absolute walking
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direction are known, e.g. from a previous location estimation or the phone’s eCompass, and
the pedestrian is assumed to carry the phone upfront, the measured RSSIs for all transmitters

behind the pedestrian can be artificially increased, to compensate the effect of the human body.

Grouping Virtual Access Points Another major drawback is presented by signal strength
fluctuation due to environmental effects, such as multipath propagation, influences between
nearby transmitters, and other pedestrians moving within the building, absorbing radio waves
[YASO03]. While this can be addressed by low-pass filtering incoming RSSI readings, this causes

already discussed side-effects, such as increased delays, affecting responsiveness [Ebn+14].

Network infrastructure within public buildings is often separated into domains with vary-
ing access rights. While staff members log into Wi-Fi A, guests use Wi-Fi B. To not require
two identical installations for such scenarios, most access points support virtual access points
(VAPs). Here, the same hardware supplies several networks, usually on the same channel
[Kit06]. This fact can be exploited while scanning for nearby transmitters, as each VAP will
send its own response to a phone’s scan request. VAPs can usually be identified by analyzing the
MAC address, where only the last byte is different. This yields several RSSIs for the same phys-
ical hardware, sent with a minuscule time delay between them. By using the measurements’

mean or median, the RSSI can be stabilized without introducing notable delays [Ebn+17].

This strategy especially applies to passive scans. If the receiving hardware supports promis-
cuous mode, which captures every single packet on one Wi-Fi channel, each data frame sent
by a transmitter can be used as RSSI measurement. Within public buildings, where a constant
amount of traffic can be expected, this provides dozens of additional signal strength indications,

on each currently examined channel.

Varying Infrastructure A major problem for all discussed Wi-Fi localization approaches are
changes in infrastructure. When new transmitters are installed, or existing ones are (re)moved,
new fingerprints or reference measurements must be conducted, or models must be adjusted.
While new installations do not directly affect the location estimation, the system will not ben-
efit from them until they are added. The impact of removing transmitters strongly depends on
how invisible access points are handled within comparisons (cf. section 2.7.6). When exist-
ing transmitters are relocated, the evaluation becomes inoperable, as future smartphone RSSI
readings do not match with fingerprints or model predictions. Similarly, within most build-
ings, there are more Wi-Fi transmitters besides the permanently installed infrastructure, such as
smart TVs, digital projectors, medical equipment, personal hot spots, etc. Such non-stationary
devices must be omitted within fingerprints or reference measurements, to ensure system oper-
ability. Besides consulting the building’s IT Service Center to get an explicit list containing all

permanent transmitters, manual approaches can be used as well. Usually, most administrators
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will tend to install a single brand of devices for the Wi-Fi network architecture. By using the

MAC address, the hardware vendor of a transmitter can often be identified.

Setup and Maintenance Times For new installations, or major changes of the Wi-Fi infras-
tructure, fingerprints and reference measurements must be (re)created. In case of fingerprinting,
robots can be used to automate and speed up the process [Pal+11]. Instead of conducting indi-
vidual measurements at fixed locations, walks along several ground truth points can be used to
reduce the amount of time required for reference measurements [Tor+17]. Here, a few locations
within the building are selected, and connected to denote a path. A person carrying a smart-
phone walks along this path at a constant speed, meanwhile recording the current signal strength
readings and confirming whenever a ground truth point is reached. The constant walking speed
allows for linear interpolation between adjacent ground truth locations. Combined with the
timings of whenever such a location was reached, the pedestrian’s position during the time of
any RSSI measurement recorded by the phone can be determined [Gui+16]. This is similar to

individual reference measurements, and can hereafter be used for model optimizations.

Overfitting When optimizing models based on training data, there is always a risk of overfit-
ting. Thus, a decent number of reference measurements is required, especially when optimizing
regional models for smaller fractions of the building. Another way to prevent such issues is
given by including prior knowledge within the optimization process [SS09; GI10]. Applied
to the presented target functions, the unknown parameters can be limited to a range, which is
expected to be sane for real-world values. Whenever one of the parameters is outside of its sane
range, the output of the target function is artificially increased, e.g. by adding a large penalty.
The penalty should not be introduced abruptly but e.g. in a linear fashion, depending on how far

the parameters are out-of-range, to not render the target function unnecessarily discontinuous.

Other Metrics Predicting signal strengths often is erroneous. Complex models, detailed
floorplans, and reference measurements are required to achieve good results. Even if the models
produce accurate results, or fingerprints are used, the pedestrian carrying the smartphone and
the phone’s antennae affect the RSSIs. This leads to the question of alternative metrics besides
RSSI, that are more stable, less affected by architecture, and require reduced setup efforts.

Sen et al. [Sen+12] proposed a fingerprint-based approach, including additional information
from the hardware layer of the Wi-Fi component. By using the phase and magnitude of multiple
signal subcarriers instead of the RSSI, they achieved an accuracy of ~ 1 m. While the used
hardware components were typical consumer products, the required metric is neither available
by every commodity hardware, nor exported by smartphone operating systems.

Ancient seafarers and surveyors often used visible landmarks at known positions, such as

special buildings, to estimate the current position. As the distance towards them was unknown,
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they referred to angles, drawing lines, cutting each landmark at the observed angle, hereafter
revealing the own position where all drawn lines intersect, known as triangulation. Applied to
radio waves, multiple antennae, or antenna arrays, can be used to estimate the angle a signal
is arriving from. Due to discussed multipath effects, however, there often might be more than
one angle, or the required line of sight angle is not observed due to attenuation [DLKO7]. Fur-
thermore, smartphones and/or transmitters would require special antennae, potentially affecting
their cost or normal use of Wi-Fi data transmission [HBS09].

Another complex thus focuses on the time needed for the signal to travel from the transmitter
towards the receiver, referred to as time of arrival (TOA). Slight variations use the time differ-
ence of arrival (TDOA), where the timing difference between several signals is used instead,
known from the GPS. The signal transit time is less affected by obstacles than the RSSI and thus
more reliable [GHOS]. Yet, multipath effects still play an important role [Ibr+18; McC+00].
Due to the speed of light, radio waves just need ~ 3.3 ns to travel 1 m. Distance measurements
based on such timings thus require complex and fast dedicated hardware components, suffering
from drifting over time, demanding for compensation techniques [McC+00; KAOOS8]. Giinther
and Hoene [GHO5] suggested an approach that is intended to work with consumer hardware,
measuring the round trip time between transmitter and receiver on the hardware level, using a
certain part of the Wi-Fi standard, where the receiver is required to immediately respond to a
received packet. As their hardware only contained timers with 1 ps accuracy (=~ 300 m), they
utilized several statistical effects to estimate more accurate timings by combining many individ-
ual measurements. They point out that a viable distance estimation from a transmitter is possible
after approximately 1000 measurements, or ~ 1s. With at least three distances required for a
2D location estimation, the resulting delays are too substantial for indoor navigation.

Lately, distance measurements based on the signal’s time of flight (TOF) have been added
to the Wi-Fi standard [IEE16], referred to as fine timing measurement (FTM). Hardware com-
ponents supporting this standard are able to infer their distance towards each other, using the
TOA. By adding this to the standard, upcoming smartphones and corresponding operating sys-
tems will, or already do include this technique [Gooa], yielding completely new attempts for
smartphone based indoor localization. While Ibrahim et al. [Ibr+18] have recently shown that
this approach works in general, they still observed large errors due to multipath and similar
effects. Nevertheless, this approach is expected to be refined over time, offering new fields of

research, increasing the accuracy of upcoming Wi-Fi-based localization techniques.
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2.8 Summary

Throughout this chapter, sensors available within commodity smartphones were examined, con-
cerning their suitability for indoor localization and navigation. Therefore, sensor errors were
discussed, distinguishing between accuracy and precision. Hereafter, these errors and indoor
localization were brought together, by giving a probabilistic problem formulation, introducing
the concept of evaluation and transition. Both relate to an unknown state, which is problem
and sensor dependent, and e.g. denotes the pedestrian’s unknown whereabouts, and the walking
direction. Then, the general functionality of every sensor was presented, including required
equations, providing an impression on repercussions, advantages and disadvantages. Thereby,
a new probabilistic model was derived for every component, implementing the evaluation, de-
noting the probability for certain sensor observations, given some potential state.

Unavailable indoors, the global positioning system was mentioned for reference, and to
discuss the concept of multilateration, which applies to other sensors as well. The location
information provided by this sensor often is not zero mean. Therefore, a new probability density
function was introduced, similar to a normal distribution, but without a clear mean value. This
density is applicable to other sensors and components as well.

After introducing (pedestrian) dead reckoning, the smartphone’s IMU was presented. Its ac-
celerometer was used to perform a step-detection, by analyzing the behavior of the measurable
gravity. To enhance detection results, sensor noise was suppressed using digital filters, which
were introduced briefly. With steps being not always clearly measurable, the concept of prob-
abilistic steps was introduced. Afterwards, step-detection was accompanied by turn-detection,
using the gyroscope to estimate the pedestrian’s turning behavior. For this to work, the readings
from the gyroscope must be projected into what they would look like if the phone was placed
parallel to the ground. This tilt compensation was given by the accelerometer’s gravity read-
ing, which was improved by the complementary filter, including readings from the gyroscope.
However, due to the nature of the gyroscope, the probabilistic evaluations developed hereafter,
suffer from cumulating drifts and increasing uncertainties.

The magnetometer was then presented as a source for absolute heading indications. Similar
to the gyroscope, it required a prior projection, based on aforementioned concepts. Hereafter,
probabilistic evaluations were developed and presented. With the sensor being subject to en-
vironmental effects, causing offsets, the density introduced for the GPS was applied to this
evaluations as well. While not providing accurate results, the sensor can be used in conjunction
with the gyroscope to suppress cumulating drifts.

Afterwards, the barometer was introduced as absolute altitude estimator. However, based on

brief experiments, the influence of ambient conditions was depicted. Relative-pressure strate-
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gies were introduced, to mitigate some of the resulting offsets. Yet, results are only valid as
long as ambient conditions remain stable. Therefore, a relative probabilistic evaluation was
developed besides the absolute variant.

With the barometer being mainly suited for short-term information, the field of activity-
detection was briefly discussed. Here, the barometer was e.g. used to detect short-term altitude
changes, to infer whether the pedestrian is currently taking stairs or walking along ground. The
developed probabilistic evaluation provided a coarse absolute location estimation, for example
by limiting potential whereabouts to staircases.

With neither of the previous sensors providing true 3D location estimations, Wi-Fi was
introduced as a potential source for 3D localization indoors. After discussing physical effects
on radio waves, the relation between signal strength and distance became clear. Hereafter,
signal strength prediction models were briefly introduced. One of them was used to convert
measured signal strengths into distances, allowing for lateration, as introduced for the GPS.
With the resulting accuracy being too coarse, and results limited to a single result, the concept of
fingerprinting was introduced. Based on numerous real-world measurements, they allow for an
accurate, yet discrete, probabilistic localization. A compromise was developed, using advanced
signal strength prediction models, predicting what fingerprints should look like. This allowed
for a continuous and probabilistic location estimation, but required several model parameters
to be estimated. The latter was performed using a few reference measurements, and numerical
optimization. Hereafter, several workarounds were developed, improving the localization result.

Based on the presented models, potential pedestrian movements and whereabouts can now
be evaluated in a probabilistic manner. However, it is yet unclear how to combine the infor-
mation of all individual sensors. Furthermore, with only Wi-Fi providing 3D localization, ad-
ditional information and constraints are required, like from the building’s floorplan. Similarly,
for navigation to be performed, this mapping information is required as well. These aspects

represent the topics of the two following chapters.



Chapter 3

Probabilistic Movement Models

One of the main problems with previously discussed sensors is measurement noise, even if their
uncertainty is known beforehand and modeled via probability densities. The location estimation
given e.g. by a GPS sensor can span several meters, even under good conditions. While weather
has only a minor effect on accuracy, occlusion by trees and tall buildings affects performance,
reducing the number of usable satellites [Ogall]. However, no commercial navigation system
displays a virtual car jumping around the screen, while waiting at a red traffic light, surrounded
by skyscrapers. For the described situation, additional information, such as the car’s current
velocity, might be used to suppress movement due to GPS measurement noise, e.g. by using the
presented complementary filter [Bon+01; AP99; SND99]. While this approach will work for a
non-moving vehicle, it is only a partial solution when moving, as the known velocity can only

be used to limit the distance of the movement, not to constrain its direction.

As cars can be expected to reside on a road most of the time, mapping information provides
additional constraints. Therefore, navigation systems e.g. snap the virtual car onto the street
nearest to the estimated position, using some sort of heuristic or geometric rules [JSZ04]. Yet,
if there is more than one street nearby, like for trunks and intersections, this approach can yield
incorrect results, snapping the estimation onto the wrong street (cf. figure 3.1a). Furthermore,
while this ensures the virtual car to be located on some street, measurement noise can still cause
leaps along, or jumps between adjacent roads. As with the sensor estimations from chapter 2,
such discrete approaches often do not provide a satisfying solution to the problem. Instead,
the derived continuous probabilities for sensor readings should be used, and combined with the
map. To suppress invalid locations on a probabilistic basis, leaving only those that match with
the surroundings, shown in figure 3.1c. When additional information, such as the current driving
direction is available, potential whereabouts can be constrained even further. In figure 3.1d, a

single road remains likely, with the car’s location uncertainty distributed alongside.
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Figure 3.1: Example combinations of sensor readings and map data for car navigation. Snapping discrete
GPS indications to the nearest street (a), using probabilities without map knowledge (b), combining map
and probability information (c), additionally including movement direction information (d).

The described approach does not only improve the current location estimation, but can also
be used to refine subsequent steps. Dependent on the receiver, the GPS provides the next loca-
tion reading between one and ten times per second [TY09]. Hereafter, the car’s new location
is not only constrained by recent sensor values and the map. New whereabouts also depend
on the previous location, the elapsed timeframe, current driving speed, surroundings, like the
type of street (highway, farm road), nearby intersections, one way streets, and similar. The road
map, and some set of rules on typical car movements, can be used to create a model, statis-
tically predicting the car’s potential movements, incorporating additional information, such as
speed limits, the size of the vehicle, whether it has to slow down to take a certain road with
a narrow turn, the driver’s desired destination, and many more. Instead of simply snapping a
single discrete measurement onto the nearest street, the probabilistic prediction of the model is
combined with recent measurements, including their uncertainty. New potential whereabouts

are then given where both, the model and the sensor readings, agree.

3.1 Probabilistic Problem Formulation

The same applies to the scenario of indoor localization and navigation, where the model de-
scribes potential pedestrian movements within a certain timeframe. Instead of road maps, the
building’s floorplan is used to limit potential walks and whereabouts. This prevents noisy sen-
sor data from yielding unlikely or impossible movements, by including walls, obstacles, stairs,
and elevators. Describing the change, or transition, from one location, or state, to a new one
within some timeframe, it is referred to as transition model. 1t defines the probability of a new
state g, after some time At, given an old state q,_,. The probability to “move” from one state

to another during some time At is written as

pla; | g, 1) 3.1

A simple 1D transition model is depicted in figure 3.2. The pedestrian is assumed to walk to the
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Figure 3.2: Several one-dimensional transitions using (3.2), starting from a known position at time ¢ = 0.
Each transition makes one step to the right, using an average step size fisep With some uncertainty oep.
The uncertainty of the potential whereabouts increases with every additional transition.

right, with an average step-size jiqep, and uncertainty ogep, modeled by a Gaussian. Walking is

limited solely to the x-dimension, and initial whereabouts q(()‘r) at time ¢ = 0 are known exactly

pla; | q;) = N (qu)

0+ e O (@) = (@), (32)

Regarding probabilities, the exactly known initial position q(()‘r) is denoted by a single spike.
A transition from this position is similar to the pedestrian taking one step, introducing some
uncertainty, which is equal to o, after the first step. Intuitively, this uncertainty increases with

every subsequent transition, similarly to the cumulative sensor errors discussed in section 2.4.

For predicting actual pedestrian movements indoors, the state is required to contain at least
the current 2D location for single floors, or 3D for multistory buildings. The actual formulation
strongly depends on available knowledge. Based on the initial car navigation example, a floor-
plan, the current walking speed, and heading represent a valuable contribution. The following
discussions gradually include prior knowledge, starting without using sensor information at all.

The model’s suggestion for new whereabouts is constrained by the distance a pedestrian is
able to walk within a certain timeframe. Depending on age and gender, the average walking
speed ranges around 1.4m/s with a deviation of approximately 0.1 m/s [KPN96; Bro+06],
varying with the current surroundings. Regarding pedestrian walking behavior near outdoor
street crossings, or indoors when taking stairs, the deviation in walking speed among several
study participants was as large as 0.25 m/s [GB15; FT04]. In case of stairwells, the taken step
size directly depends on the tread length of the stair [TG91]. If the model is able to distinguish
between situations, such as walking outdoors, indoors or along stairs, it could simply rely on
average speeds from literature. However, the pedestrian might not be moving at all, resting at
the current position. This behavior could be described by a model including both cases, where
some transitions use the average velocity, and others do not move at all. Alternatively, the
velocity could be completely randomized. Yet, this mainly yields movement predictions not
resembling real-world conditions [Ebn+14; KGD14].
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While walking speeds can be included using values from literature, this does not apply to the
current heading and its changes. Even if the previous heading is given, the amount of change
within a certain timeframe is unknown for pedestrians. Unlike with cars, where the driving
direction can be assumed to follow the course of the road until some intersection is reached,
indoor navigation is often open-spaced, providing fewer limitations on potential movements.
While there are experimental analysis of human walking behaviors, e.g. for pedestrian groups
leaving narrow passages conducted by Daamen and Hoogendoorn [DHO3], it usually does not
make sense to assume a fixed heading deviation for the pedestrian, as directional adjustments
are based on desired destination, obstacles, and building architecture. While simply using an
empiric best-fit choice as heading deviation is possible, a single value does not model all poten-
tial walks, as the pedestrian might turn at any point in time. Like with walking and resting, there
are several options to address this issue. Assuming a large heading deviation per second, using
a small deviation but allowing multiple directions (forward, left, right, turning backwards), or
omitting the heading information completely, to allow walking into any reachable direction.

Especially the latter reveals an important aspect on the behavior of transition models.

To examine the impact, (3.2) is altered, omitting the known movement direction towards
the right, by replacing +fusep With =£yigep. For the newly created model there now is a major
difference between one prediction of a 5s timeframe and five consecutive predictions, with 1s
each. For the first case, the velocity is simply increased by a factor of 5, with the result denoting
two peaks. One to the left, one to the right, both at a distance equal to the adjusted velocity. For
the second case, the behavior is far more complex. After the first of five steps, two peaks with
their distance equal to 1s of walking are created. The second transition starts from this result,
again into an unknown direction, yielding two new peaks for each of the previous ones. After

five steps, this produces a highly complex, non Gaussian, and possibly unexpected result.

This lack of prediction quality, resulting from the unknown heading, can e.g. be improved
by information from turn-detection or the eCompass (cf. section 2.4) [Ebn+14; Ebn+15]. To
include such observed sensor data within the transition in general, (3.1) is adjusted, yielding the

same notation as (2.6), previously discussed in chapter 2

p(a; | gi-1,06-1) - (3.3)

Depending on the information available, the prediction of the model will look completely dif-
ferent. Furthermore, its behavior depends on the required dimensionality. In a two dimensional
setup, sufficient for single floor buildings, possible movements can be described using velocity
and a heading angle O, restricted by walls or obstacles. Referring to three dimensional se-

tups, implementation strongly depends on the surroundings. For mid-air airplanes, for example,
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Figure 3.3: Brief comparison between analytical and simulated probability density estimation. When
using random samples and a KDE, arbitrary non-analytical densities can be modeled. Shown in the
right, this e.g. allows for obstacles (dashed-line) to be considered within predictions.

there is no limitation on potential movements in 3D space, described by a velocity and, at least,
two angles, or a 3D heading vector. In pedestrian indoor localization, however, only stairs,
escalators and elevators allow for changes along the z-axis. Most of the time, movements are
restricted to the (z, y)-plane, and the possibility of z-changes depends on the underlying archi-
tecture. This drops the requirement for a second angle, and the floorplan represents the most

important information to constrain potential walks.

As walking through walls is impossible, and movements in the z-direction require stairs,
escalators or elevators, the floorplan adds discrete constraints on potential transitions. A wall
within figure 3.2 would prevent movements, causing an abrupt drop in probability for all loca-
tions behind it. Due to this discontinuous impact, analytical solutions, such as (3.2), are often

unavailable, and the density can neither be calculated nor visualized directly.

Complex transition models are thus statistically approximated by simulation. For every
input state q,_;, potential output samples g, are created by a random process, approximating
p(q; | @,—1) or p(q, | q,_,0:1), with theoretical backgrounds examined in chapter 4. The
resulting density is described by a set of multiple samples. Similar to the discussions on finger-
printing (see section 2.7), a continuous representation can hereafter be derived, e.g. by applying
a KDE to these samples. A brief comparison between a 1D analytical and simulated represen-
tation is shown in figure 3.3, where a wall abruptly limits density propagation. The number
of samples required for such an approximation strongly depends on the to-be-approximated
density, where broader densities require more samples for a viable result. However, due to

computational costs, this number is a crucial aspect, concerning use on embedded devices.

This chapter focuses on presenting different types of movement models, with and without
additional sensor information, ranging from simple analytical setups without prior knowledge,
towards complex discontinuous approaches based on a floorplan. Though not explicitly men-
tioned within above notation, all models can utilize this floorplan. For now, it is assumed to
be given, including all semantic details, potentially required for a specific model, shown in fig-

ure 3.4. This mainly covers individual floors including their walls, obstacles, doors, stairs, and
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Figure 3.4: Example showing a 3D and top-view of a single floor with a corridor and adjacent rooms.
Besides walls, there can be other types of obstacles. The upper floors can be reached via a stairwell.

elevators, which are relevant to localization and navigation. The actual creation of the floorplan
is discussed later in chapter 5.

Due to the work’s focus on smartphone-based pedestrian indoor localization and naviga-
tion, computational complexity and memory constraints are examined as well. This not only
affects the complexity of the possible movement models, but also the complexity of included
prior information, such as the floorplan. Depending on the actual use case, simple analytical
models without architectural knowledge might be sufficient, and allow for fast calculations with
small memory footprint. For fully featured navigation, more sophisticated setups, including the
actual architecture, are required. Resulting constraints, advantages, and disadvantages of the
individual approaches will also be part of the following discussions. Furthermore, the different

requirements between single-floor 2D and multi-floor 3D setups are examined as well.

3.2 Simple Models without Floorplan Information

Similar to sensors in chapter 2, models for potential movements should include uncertainty ex-
pectations, as depicted for the unconstrained one dimensional walk in figure 3.2. Instead of
using a single scalar value to describe new whereabouts, a distribution models the likelihood of
nearby locations as well. The most simple setup uses a normal distribution to describe this un-
certainty around the mean, or expected value. This section introduces simple transition models,
based on such analytical distributions, and examines the required steps to adapt them for 2D and
3D localization setups. While being both, computationally efficient and continuous, environ-
mental information, such as a floorplan, can not be considered. Due to the continuous nature,

the distribution propagates through walls and other obstacles, reducing the number of use cases.
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Similar to the 1D case from figure 3.2, for a simple setup with no obstacles nearby, a 2D/3D
variant is given by the multivariate normal distribution, describing the uncertainty around a

mean value g using a matrix 3, resulting in a multidimensional Gaussian:

1 1 Tl
pl@)=N(g|wnX) = T e () exp (—E(q — )X (q— p,)) . (3.4)

In (3.4), q and p e.g. denote a 2D location (z,y)T or 3D location (z,y, 2)T. The covariance
3} describes the uncertainty around . For the 1D case, the uncertainty o distributes equally to
either side of the mean. For the multidimensional case, it distributes into as many directions
as the problem has dimensions. While the distribution is still symmetric around g, it is neither
distributed with the same amount into each dimension, nor are the dimensions required to be
aligned with the axes of the coordinate system, as long as they are orthogonal. This can easily
be verified when looking at pedestrian movements. Depending on current heading and speed,
x, y and z will be affected differently. The amounts and directions of uncertainty distributions

are modeled within the covariance matrix > [BC12; HTF09].

Assuming a 2D localization problem, where the pedestrian’s initial position q, = (z,y)T
at time ¢ = 0 is known with some uncertainty, and no additional information is available.
The initial whereabouts g, can be described using a two dimensional normal distribution, with
the mean equal to the known position, and the covariance as diagonal matrix with the same

uncertainty in z and y, and no dependency between both

2
P(a0) =N, o), gy =po = (z.y)", Zo= (a ) : (3.5)

0 o?

The 1o contour of (3.5) denotes a circle around the mean that ensures with ~ 68 % confidence
that the pedestrian resides within. If neither the current heading nor the velocity are known, this
uncertainty is expected to grow around the initial center over time. This is achieved by keeping
p as-is, and increasing o, e.g. by the average walking speed of 1.4m/s, every second. The
resulting 1o contour still contains the pedestrian with a confidence of 68 %, when not walking

faster than 1.4 m/s on average

_ _((t+1)0) 0 B , (142 0
p(a,) = N(pg, =), &—( . <(t+1)0)2) =(t+1) ( ) 1.42> . (3.6)

As (3.6) describes o linearly increasing with ¢, visualizing the 1o contour for several ¢ yields a
set of circles with their radius increasing by a constant factor, shown in figure 3.5. This absolute

notation, describing the uncertainty at time ¢, can be converted to the initially introduced relative
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notation (3.1), describing the change in uncertainty between two timesteps, by using the linear

increment that must occur for every such step

p(Qt | qtfl) :N<d1 ‘ CdQ,UQ) , o0—0
t+2 (3.7)

dy = distyy (90,9,) , d2= distyy (q07 qt—l) ) <q>t = <(x7y)>t’ = H—l

Assuming p(q,) was well defined, e.g. by using (3.5), (3.7) ensures that all subsequent steps
propagate in the same manner. If g,_; was d away from the initial q,, g, must be (d away
from it, where ( enforces the linear growth from (3.6). When not insisting on this growth to be
linear, just allowing some variation within every timestep, the relative update from (3.7) can be

reduced to a significantly simpler, straightforward representation [Ebn+15]:

o2 0
Ty

P la)=N(g|a.,2), T=[0 o2, 0], (@, =(=v2"),. G8
0 0 o2

(3.8) enforces g, to be within the vicinity of g,_;, and also applies to the 3D case, allowing for

a different variation along the z axis, which is usually smaller than for x and y [Ebn+15].

While (3.6) is an absolute analytical model that is directly calculable, (3.7) and (3.8) are
not. As they are relative, they depend on the previous density, to perform the adjustments. The

coherence between both is given by the law of total probability [BC12, pp. 69]:

plq,) = /p(Qt | q,1)p(q;_y) dg;,; - (3.9)

As can be seen, (3.9) denotes a recursive chain that propagates until the terminal p(g,) is
reached. Whether it can be calculated in an analytical way, depends on the used probability
density functions (PDFs). While (3.7) can be calculated analytically by (3.6), most transition
models presented within this chapter can not, and are approximated by simulation. To derive
p(q,), the simulation starts with the set of samples for p(q, ), and applies (3.9) recursively, where
each g,_, leads to a new sample set for p(q,). To accurately approximate the resulting density, a
decent number of samples is required, strongly dependent on its size and shape. An example is
shown in Figure 3.5, containing both, the analytical 1o contours shown as circles, and simulated
samples shown as dots. In the right, the expected continuous output after applying a KDE to the
samples from the left, is shown as dark background shading. While the 1o contour increases
constantly over time, the figure clearly shows that major parts of the probability mass remain
centered around the mean value, typical for a single Gaussian. Intuitively, this setup does not

represent true expectations on pedestrian movements indoors.
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Figure 3.5: Behavior of (3.6)/(3.7) during five timesteps, with corresponding 1o contours as circles. The
two left images denote the simulated sample sets and contours for ¢ = 0 and ¢ = 4. In the right, the
contours for ¢ € {0, ..., 4} are shown together with p(q,) at ¢t = 4 denoted as dark shading.

A slightly more realistic model is given by the following assumption: At any point in time
t, a pedestrian could either be walking with a velocity jiyak, Or resting, with the information e.g.

provided by an observed activity of)l (see section 2.6):

N(d|:uwalk»(73valk) OE
N(d]0,0%,y) o

stand

d= disty (@, 1.9) (@), = (@ D)y (o), = {(2..),.

walking

p(a; | gy, 00-1) =
Y standing (3.10)

The standing case of (3.10) is similar to the previous model, and describes an increase in uncer-
tainty, around the previous location estimation q,_,. The walking case, however, is completely
different, and models the next whereabouts to reside along the circumference of a circle, with
the radius defined by the expected walking speed fiwax. Even though the walking case is de-
scribed using a normal distribution, the resulting likelihood denotes a non Gaussian distribution
(cf. figure 3.6). If the information, whether the pedestrian is walking or resting, is unavailable,

heuristic assumptions can be made instead [Ebn+15]:

p(qt | qt—l) = /iw/sN (d | Mwalkaa\?valk) + (1 - K‘W/S)N (d ‘ Oaaftand) : (311)

Using kw5 € [0, 1], a general empiric probability for walking or resting can be used to mix both
cases. Figure 3.6 shows a simulation for xy, = 0.9, with the chance of standing to be 10 %,
and a small uncertainty oy = Ogang = 0.05 for visualization reasons. After one timestep, the
result is as expected. One inner spot that kept the previous position, and a circle fiy,x = 1.4m
apart. The results of the followings steps are rather unexpected. As (3.10) and (3.11) do not

contain any constraints on the walking direction, all movements from (b) to (c) are completely
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Figure 3.6: Simulated behavior of (3.11) using piwax = 1.4m and owax = Ostana = 0.05. While the
first step is as expected, all following steps behave differently. This is due to (3.11) not constraining the
walking direction, just staying at or departing from the previous location by a given distance. All samples
from (b) end up in (c) somewhere nearby (when resting), or are located along a circle (when walking).

undirected, and solely enforced to either rest with a chance of 10 %, or move by approximately
1.4 m. This yields each simulated sample from (b), to end up in (c) with the same spot/circle
pattern, as from (a) to (b). An unrestricted heading for every subsequent step within a small
timeframe does not resemble human walking behavior. As within chapter 2, considering the
heading in some way seems mandatory.

Again, this can be addressed by adding a heading information © to the unknown state gq.
If no prior information is available, the initial heading qé@) at time ¢ = 0 remains unknown,
and thus qé@) ~ U (0,2m). When simulating p(q,), this yields a set of samples, with uniformly
distributed heading. All subsequent transitions use this heading, and allow only slight deviations
from it, modeling a pedestrian walking almost straight from the starting position. Assuming

statistical independence, this is achieved by multiplying another probability as constraint

p(qt | q;_1, Otfl) =N (a ‘ 07Ut211rn) p<qt | Qt—170t71>(3,10)
pla, g ) =N (2] 0,000) p(q; | €)1 (3.12)
(C]
o = AA <q1$7%7 4xy (qt—17 qt)) ) <q>t - <(JI, Y, @7 .. ))t .

The additional constraint enforces the state’s heading to be kept approximately, yielding almost
straight walks. This is achieved by comparing the expected direction qt(?i against every potential
heading, given by the angle between previous and new whereabouts Z,, (qt_l, qt) (2.52). The
difference £ (v, 5) between the expected and the potential angle is provided by (2.53). This
angular difference should be rather small, and is thus applied to a zero mean normal distribution
with some uncertainty, to allow slight variations. Again, other PDFs, such as the von Mises
distribution [Mis18], are possible as well. The simulated result of (3.12) is shown in figure 3.7,
and resembles water drops, with several equidistant circles, denoting the potential whereabouts

after consecutive transitions.
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Figure 3.7: Simulated behavior of (3.12) with uniform initial heading ¢°) ~ U/ (0, 27), walking speed
fwaik = 1.4m/s, and uncertainties owax = Ostand = O = 0.1. The result looks similar to sea waves,
where the equidistant circles denote potential whereabouts, created by the underlying model.

(3.12) is versatile, and also applies when the pedestrian’s initial heading is known, e.g.
from an eCompass, or prior knowledge. However, it does not define how this assumed heading

might change between qt(f)i and qt(e)

, €.g. when the pedestrian is turning. Therefore, another
component is added. It describes the probability of the new state’s heading, based on observed

changes (2.50), absolute indications (2.51) and (2.60), or when unobserved by sensors

p(q: | G4—1,0t-1) = Phead (Qt | g1, 01— 1) (g | ;-1 Ot*l)(3.12)
) 0 .
N(ng ‘ qt 1 + 05 )17Ut2um) , (0),=((,...)), relative
Phead (@ | @41, 01-1) = N(qfe | ot 1,amm) , (0), =((0,...)), absolute
N (qﬁ ‘ qt I’Uturn) unobserved .

(3.13)
A simulation of (3.13) for a synthetic scenario, where the pedestrian’s initial whereabouts and
heading are approximately known, and updated relatively hereafter, is shown in figure 3.8. Up
until (c), the behavior is similar to the one from figure 3.7, except that the whereabouts only
denote a fraction of a circle, due to the initially known heading. As soon as a sensor indicates
relative changes, this rotation affects the shape of the whole probability density. After several
45° turns, the result in (h) does not resemble an arc, but looks similar to a Gaussian. This effect
occurs after consecutive larger turns, increasing the uncertainty in multiple directions, based on

owm- For longer straight walks, the density will often be shaped as seen in (b) and (c).

When not distinguishing between walking and resting, or this information is provided by
some sensor, it is possible to approximate aforementioned model analytically. Using a single
normal distribution with a relative update function, the model becomes directly calculable, and
does not require simulation. The current covariance, omitting time indices for readability, can be
derived by using an uncertainty for the walking speed, and one for the heading. This diagonal

covariance matrix 3 is hereafter transformed by a 2D rotation matrix R (see section 2.4.2),
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Figure 3.8: Simulated behavior of (3.13) with narrow initial heading ¢{® ~ A/(0,0.1), walking speed
fwak = 1.4m/s, and uncertainties owax = Oganda = 0.05 for speed, and oy, = 0.25 for heading.
Visible in (b) and (c), the approximately known initial heading yields only a fraction of the circle from
figure 3.7. When the heading starts to change between (c) and (d), the shape of potential whereabouts is
affected, and rotated as well. After several 45° turns, the result in (h) is similar to a Gaussian.

defined by the current heading qt(e). RYRT (see [CKO08]) rotates the uncertainties in speed and
direction, defined in 3, to match the current heading. The covariance at time ¢ can be combined
with the previous one from ¢ — 1, adjusting its shape and size over time. The new mean value p
at time ¢ is given, by adding a vector denoting the current walking direction (cos qt(e), sin qt(e))T
times the estimated walking speed figep, to the previous mean from ¢ — 1. Even though being
an approximation of the unique shapes from figure 3.8, such basic analytical setups, also like
(3.8), can already be sufficient for certain use cases.

However, neither of the presented methods considered actual floorplan information when
deriving new whereabouts. Shown in figure 3.5, this creates potential issues, with predictions
crossing walls. Including obstacles is non-trivial, as it results in discontinuous behavior. Deriv-

ing movement models with support for such information will be the topic of the next section.

3.3 Simple Models with 2D Floorplan

To accurately predict potential whereabouts after a certain amount of time, constraints given
by the surroundings must be considered. Similar to car navigation systems, which limit poten-
tial movements based on mapping data. Within indoor environments, walls and other obstacles
limit the pedestrian’s potential movements. When currently residing in front of a wall, the pos-
sibility of being located on the opposite side after a certain amount of time is rather small, and
strongly depends on the presence of nearby doors. Including such constraints in an analytical
way, where one equation describes a probability density function based on the current where-
abouts, considering obstacles, is not feasible. Literature suggests several strategies, which are
mainly based on aforementioned approximation, by simulating several potential movements,
each considering the ambient surroundings.

Proceeding from one of the previous relative movement models, such as (3.13). A simple

solution for considering obstacles is then given by adding a new probability, testing whether the
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Figure 3.9: Potential whereabouts (3.14) after 1, 3 and 5 consecutive transitions, starting from the black
dot, walking straight with pwax = 1.4 m/s and owax = 0.1, into an unknown direction q(()@) =U(0,2m).
Darker shadings denote an increased likelihood. After 1 s, whereabouts are placed along a circle, similar
to figure 3.7. As soon as obstacles are encountered, the potential walk is blocked. After 5 steps, the
circular shape is still visible, split into several fractions, where movements were not blocked by obstacles.

potential movement from location pos,, (%-1) towards pos,, (g,) is blocked by an obstacle,

and, if so, assign this movement a zero or near-zero probability [Ebn+14]:

p<qt | Qt—laotfl) = Dfree (Qt ‘ qt—l) p(qt | -1, Otfl)(3,13)

1.0 q,_, — q, free (3.14)
Drtree (qt | qt—l) =
0.0 g,_; — g, blocked.

A simulation example for p(g, | g,_;) is shown in figure 3.9. It starts from the position

3.14
indicated by the black dot, with an init(iall)y unknown heading. Each heading is kept approxi-
mately, using oy, = 0.05. The mean walking distance iy, 1S 1.4 m with an uncertainty of
owak = 0.1. The three figures denote the resulting density p(q,) after 1, 3 and 5 consecutive
simulations. When no obstacles are blocking the movement, results are similar to figure 3.7. In
case of obstacles, walking is prevented, and rooms can only be entered using doors.

How to determine whether there is an obstacle between q,_; and g,, depends on the way the
floorplan is modeled. For two dimensional setups, walls could e.g. be given as lines between
two points, allowing for a simple geometric intersection test [Ber17; Sch17] of the line between
pos,, (g, ;) and pos, (q,), and each wall from the floorplan. However, depending on the
number of required samples, and the number of obstacles within the floorplan, the amount of
required intersection tests can be significant. Especially when used on smartphones, realtime
usage is limited [Ebn+14].

Besides describing obstacles by lines, there are other options for storing the building’s floor-

plan, such as the occupancy grid [Mor88], often used for mobile robots and simultaneous local-
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ization and mapping (SLAM) [GSBO05; EIf89; ThrO3]. Here, a discrete grid with many small
cells is used to remember whether a location contains an obstacle (is occupied), or not. This al-
lows for quickly testing whether a known location is blocked. Furthermore, it corresponds with
sensors measuring distances, often used for mobile robots, such as the LIDAR [Hes+16]. They
can be used to populate the grid, and to compare measurements against it. This storage strategy
affects the intersection testing between the potential walk from g,_; to g, and known obstacles.
The way from A to B is blocked, if there is one occupied grid cell along it. Performance thus
directly depends on the distance between both points, scaling linearly with the number of cells
to be checked for occupancy. The provided result is an approximation, depending on the size of
each grid cell, used for discretization. Furthermore, depending on the size of the floorplan and
the chosen cell size, the grid might require large amounts of memory for storage, demanding

for special data structures to reduce this overhead [JGB14].

The grid’s concept of locality can be applied to the line-based representation, reducing the
number of required intersection tests, by only examining walls that are of interest when moving
from g,_, towards q,. That is, all obstacles which are near the potential walk, and thus might af-
fect it. This question can quickly be answered using data structures such as the octree [Mea80]
or k-d tree [Ben75], both dividing multidimensional space into smaller sections, storing all ob-
Jects belonging to them. This allows for fast lookups of all obstacles that are near pos,, (qt_l)
and pos,, (q;), and potentially block this transition. The strategy is also applicable to three
dimensional setups, where walls and obstacles are defined as 3D objects. By adding them to
a spatial hierarchy, fast spatial lookups are possible. This is well-known from ray tracing in
computer graphics, where data structures, such as the bounding volume hierarchy, are used to

speed up required intersection tests [Shi03].

Nurminen et al. [NRP16] propose a different solution to prevent time consuming intersection
tests at runtime, by moving them into an offline phase. Therefore, they divide the walkable
area into a grid of 0.5m sized cells. For every such cell an intersection test is performed,
starting from the cell’s center into each possible direction 0° to 360° using 5° steps. For the
resulting 72 rays, the distance to the nearest intersection is determined and remembered. This
approach yields a database containing the nearest obstacle, depending on the current position
and walking direction, with some degree of uncertainty due to the discretization to 0.5m in
location, and 5° in direction. This database not only allows fast lookups whether a potential
movement is restricted by architecture, but also favoring movements into more open spaces. As
it is less likely for pedestrians to walk near or to approach obstacles, directions with no nearby
intersections are more likely to be taken. Therefore, Nurminen et al. converted their database

into a PDF, describing the likelihood for walking into some direction, based on the distances of
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surrounding obstacles. Due to the 0.5 m spacing, memory consumption is moderate, and only

critical for large multistory buildings.

Though simple in implementation, this approach shows an important drawback. p(q, | q,_;)
and p(q, | q,_,, 0,—1) are small, when the movement is blocked by an obstacle. Even if there is a
door, or other type of entrance, nearby. Thus, this approach will not provide viable predictions,
whenever an obstacle can be avoided, or circumvented. Yet, as each detour takes additional
time, this flaw becomes mainly relevant when predicting movements for larger timeframes. It
is unlikely for a pedestrian to circumvent a wall with a door nearby during one footstep or one

second. After five or more seconds, however, chances are much more likely.

Thus, for all following discussions, the timeframe used for the prediction will be considered,
as most models work better for small timeframes up to a few seconds. Similarly, the visual
representation of a navigation system is more appealing to the user, when updates occur more
often. This can be verified by comparing today’s car navigation systems with older ones. Recent
devices update the location estimation several times per second. Older ones only every one or
two seconds. However, while increasing accuracy, more updates require more calculations, and

thus easily exceed the limits of embedded computation power and battery life [Ebn+15].

To address the problem of including potential detours within the movement prediction pro-
cess, a different approach is required. Previous models were based on the assumption of the
pedestrian walking straight most of the time. In case of obstacles, this is incorrect. Most likely,
the pedestrian uses the shortest way possible to circumvent the obstacle. That is, the shortest
distance required to reach any arbitrary location from the starting point must be considered.
This still matches with the previous discussions, as walking straight yields the shortest distance

towards a target location. Potential whereabouts after a certain timeframe are given by locations,

*
Xyz

where expected walking distance iy, and the smallest distance dist (qtfl, qt) required for

reaching, are similar:

Dudist (qt | qtfl) =N (d* ‘ Mwalba\?valk) , 4= diSt:yz (qtfla Qt) (3.15)

Within this example, the probability of the pedestrian currently resting instead of walking, and
the current heading, are omitted, to focus solely on the impact of detours. To determine the
shortest path dist

*
Xyz

(qt,l, qt) between two locations g,_; and q,, algorithms such as Dijkstra
[Dij59], or its modification A* [HNR68], can be used. Both require a graph-based data structure,
using vertices connected by edges, to derive the shortest possible connection between two ver-
tices, if there is one. To apply this algorithm to navigation indoors, a graph must be built based
on the building’s floorplan beforehand. Discussed in detail later, vertices are placed throughout

the whole walkable area, e.g. using an equidistant spacing as placement pattern, similar to the
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Figure 3.10: Simulation of (3.15) for a 1s, 3s and 5s timeframe, assuming the pedestrian to use the
shortest way possible to reach a location, starting from the black dot, walking with ~ 1.4 m/s into an
unknown direction. The shortest path is estimated using a graph based data structure, partially shown on
the left. After 1s, whereabouts are placed along a circle, denoting straight walks from the center. When
obstacles prevent straight movements, the shortest detour is used. For the 5s timeframe, the circular
shape vanishes and is split into several arcs, e.g. after entering a room through a narrow door.

approach presented by [NRP16]. Hereafter, adjacent vertices are connected by a bidirectional
edge, if there is no obstacle in between [Ebn+15]. An exemplary fraction of such a graph is

shown in the left of figure 3.10. This data structure is able to determine the shortest possible

*
Xyz

way disty,, (¢,_1,q;) between two locations g,_, and g, within the building, by following the
created edges. As the state g contains a continuous 2D or 3D location, determining the ver-
tices corresponding to q,_; and g, involves numerical rounding of the coordinates. If there is
no direct correspondence in location between the state and a vertex, the nearest vertex can e.g.
be used instead. The quality of the returned result thus directly depends on the distance cho-
sen for placing the vertices, where smaller distances, that is, more vertices, yield better results.
Again, the simulated timeframe must be considered. For longer timeframes, the approximation
imposed by larger vertex distances is barely noticeable. For shorter ones, like 1s or 1.4 m, the
impact of a larger vertex spacing is significant. This correlation results in a tradeoff between

required precision, resulting memory footprint, and computation time [Ebn+16; Hil+14].

A simulated result of (3.15) is shown in figure 3.10, using a 20 cm distance between the
vertices. The left shows an excerpt of the underlying graph, using 50 cm vertex spacing for
visualization. Potential whereabouts, when starting from g, are simulated for walking dura-
tions of 1s, 3s and 5s. All resulting locations g, are placed directly on the vertices, that is,
all resulting coordinates are multiples of 20 cm. Within 1 s, no obstacles are encountered, and
the whereabouts predicted by (3.15) are equal to the ones from (3.12), denoting a circle. For
longer simulation timeframes, pyax and its uncertainty oy, were adjusted accordingly. As

soon as obstacles are encountered, the overall circular shape vanishes, and smaller circles start
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to form immediately after narrow passages, such as doors, visible within the room in the lower
right corner. Compared to figure 3.9, figure 3.10 indicates potential whereabouts near the ones
within the line of sight from the starting point, yielding more realistic results.

One important drawback of this approach is computation time. Mentioned earlier, multi-
ple samples are required to approximate pg;s (qt | Qt_1) by simulation. That is, the shortest
path algorithm must be executed for every unique q,_;, to determine which g, are reachable.
Depending on the actual implementation, Dijkstra’s algorithm has a time complexity between
O(|V|log |V|+ |E|) and O(]V'|? + | E|) for the number |V| of vertices and | E| edges within the
graph [Cor09]. Together, this prevents realtime use on embedded devices. Even though the A*
variant is faster, computational requirements are still significant.

Similar to the aforementioned enhancements from Nurminen et al., Koping et al. address
this issue by pre-calculating all costly operations once during an offline phase, yielding a data
structure that provides efficient lookups [Kop+12; KGD14]. However, a data structure contain-
ing the shortest distance from every single vertex towards all other vertices within a building,
will consume large amounts of memory, and does not scale for larger floorplans [ARC12].

Furthermore, (3.15) does not consider prior knowledge on the current heading, introduced in
(3.12). This absence will yield a similar behavior as shown in figure 3.6. For every consecutive
simulation, starting from a previous result, the walking direction is completely randomized,
causing unexpected behavior. Yet, it is unclear how to correctly combine the shortest path
approach with heuristic heading constraints, such as (3.12). Especially when longer walks are
simulated and detours due to obstacles are required, as taking a detour does not match with
the assumption of the pedestrian walking straight. For small timeframes, however, a movement
prediction based on shortest paths requires a very dense graph-based data structure, to prevent
errors, introduced by rounding. Furthermore, when the simulated timeframe is decently small,
shortest path calculations can often be completely omitted, as detours rarely occur within short
timeframes. The shortest path approach is thus mainly suited for smaller buildings, and for
longer simulation timeframes, e.g. stabilized by additional sensor observations.

One important drawback that concerns most models discussed within this section, is their
applicability to three dimensional setups. For the 2D case, movements in (z,y) are sufficient.
For true three dimensional approaches, a continuous z-coordinate is required as well, to model
movements along stairs, escalators and elevators. Assuming the floorplan contains the required
semantic information, some sort of data structure is needed for the transition model. It denotes,
when the z-component must remain static, due to walking along ground floor, and when it
requires adjustment, due to using stairs, escalators or elevators.

The additional z-component also affects intersection tests discussed for (3.14). Simple 2D

line-line intersections will not work, when the pedestrian is taking a stair, escalator or elevator,



118 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

due to insufficient information on the third dimension. For most floors, the (z,y) coordinate of
a 3D setup can be assumed to be unique, as walking below stairs is rarely possible or required,
and typical stairs reach the next floor with < 180° turns, that is, the stair does not overlap
itself in (x,y) within the same floor. While the discussed shortest paths, based on a grid, are
close to being suited for 3D, they need adjustments as well, to properly include the additional
z-component, and to correctly model potential and invalid movements in all three dimensions.

To prevent requiring large amounts of memory for 3D representations, many approaches
found in literature revert to a tradeoff, keeping each floor continuous in (x,y), but using dis-
crete values for z, simply representing the current floor level [GF06; Hil+14; WHO8]. Those
2.5D approaches allow for using all of the techniques discussed above, and discretely change
to another floorlevel, when needed. The current level can be determined e.g. by using current
barometer readings [EBS16; Ebn+15], or Wi-Fi measurements [Zha+18b; Ebn+17], represent-
ing a discretization of the approaches discussed in chapter 2. While this is a viable solution in
terms of data structures and implementation, user experience is reduced [Ebn+16].

Referring to user experience, additional aspects are important for indoor localization and
navigation. For wheelchair users, semantic information whether some area is passable, or the
elevator is suited, represents crucial information. Partially blind pedestrians might benefit from
restricting the walkable area, to proactively avoid nearby obstacles for a safer navigation. Within
security aware areas, access rights to certain doors or elevators might be viable as well. Again,
those requirements clearly denote that a single Gaussian and most other analytical representa-
tions are unable to model movement predictions, considering all environmental constraints.

The following sections will focus on movement models allowing for true three dimensional
setups with respect to the building’s floorplan, including a continuous z-component for stairs,
escalators and elevators, providing realistic predictions with support for prior information, such

as the current heading, still being computationally efficient, suited for smartphone use.

3.4 Overview on Spatial Models for Indoor Floorplans

To calculate realistic movement predictions within indoor environments, the building’s floorplan
must be considered in some way [AY12; Fro+13; Ebn+14]. Literature provides an extensive
list of strategies for creating required spatial models, supporting for different types of lookups
needed for localization and navigation. A brief example is shown in figure 3.11. Afyouni et al.
[ARCI12] and Yanbing [Yan06] conducted a survey on different options, mainly related to the
field of geographic information systems (GIS), yet also applicable to indoor use cases. Among
all presented variations, two major groups can be identified, either using a regular or irregular

way of representing the underlying architecture.
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Figure 3.11: Brief overview on various spatial representations for the single floor in the left.

The group of regular patterns can be summarized as a sort of equidistant rasterization of a
floor’s or building’s architecture. Either in 2D or 3D space, dividing the architecture e.g. into
several, equally sized rectangles (2D) or cubes (3D). This group is often related to autonomous
mobile robots, having to navigate within their surroundings [Sie04; Sch+12]. One simple im-
plementation are 2D or 3D arrays, where each index corresponds with a real-world location.
The values stored in such an array e.g. denotes whether an index’ location, and its vicinity, be-
long to free space, or represent a blocking obstacle. This type of representation is thus often
referred to as occupancy grid [Mor88]. The size of the array’s dimensions depends on the size
of the modeled architecture, as well as the required resolution. More entries correspond to more

locations with smaller vicinities within real world, and thus a higher spatial resolution.

This information can also be provided by irregular patterns. However, when e.g. using dy-
namically sized rectangles or cubes, it is not directly clear what the best size for each of them
might be. Each object should be sized in correspondence with its neighbors, to accurately de-
scribe the building without gaps (cf. figure 3.11). Therefore, most irregular approaches refer
to other geometrical structures or primitives. One example is known from computer graphics,
where 3D objects are often described using differently sized and connected polygons, referred
to as meshes [KSS17]. Applied to architectural use cases, the walkable area can e.g. be fesse-
lated, converting it into arbitrary geometric objects, connected to denote the surface [Led06].
Size, shape and placement of those geometric objects strongly depend on the chosen algorithm.
For most real-world architecture, this results in irregular sizing and placement, to correctly de-
scribe local architectural details [WulO]. It can be thought of as describing indoor environments
using a mesh of connected primitives, such as triangles or polygons. Each primitive denotes a
part of the walkable surface, such as a floor or stair. The irregular nature allows for an accu-
rate representation of wide open areas, as well as narrow passages, such as doors, stairwells
or elevators [Fet+18]. In contrast to cubes, these meshes describe a surface, instead of a 3D
volume. However, for indoor localization and navigation this is sufficient, as the pedestrian can
only walk along ground. Whereas underwater or mid-air use cases require the whole volume to
be modeled.
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Concerning indoor localization, navigation, and movement prediction models, both groups
come with benefits and drawbacks that relate to lookup strategies for different types of queries,
memory requirements affecting embedded use, and accuracy of the architectural representation.
[Wul0] mentions different data structures and options, including underlying storage strategy
for efficient lookups, that can be used for regular or irregular representations. Similarly, Yan-
bing [Yan06] provides a list of various real-world examples using different models and types of
geometrical shapes for their respective use cases, also with corresponding data structures, used
to improve lookups, as well as resulting advantages and disadvantages of each approach. Be-
sides the already mentioned requirements, there can be additional constraints, dependent on the
actual use case, such as semantic information to support navigation for the visually impaired, or
wheelchair users. Afyouni et al. [ARC12] list several requirements concerning spatial models
for indoor environments in general, and give an extensive overview on potential candidates for
different groups of models, dependent on the use case. They also mention the importance of
realtime capabilities, support for semantic information, the tightly coupled memory concerns,
and maintenance options, often requiring a compromise between all aspects.

Independent of the chosen representation, the to-be-modeled floorplan must be provided,
which is a broad field of research on its own. It e.g. covers reconstruction based on panorama
images [CF14], or an automatic conversion of scanned blueprints to semantic vector graphics
including rooms, walls, doors and obstacles [Liu+17]. 3D scans from depth cameras [Zha+15],
or laser scanners [SCI13], can also be used to estimate geometry and obstacles. For example, by
using autonomous mapping-robots equipped with LIDAR scanners to derive a map [Hes+16].
But even crowd-based movement data from pedestrians can be used to estimate rooms, and
corridors [AY 12]. Within this work, the floorplan is assumed to be a given, including all the re-
quired semantic information to derive a corresponding spatial model. Details on a tool-assisted
creation of the floorplan from blueprints are omitted for now and briefly discussed later on.

Based on the existing floorplan, the following two sections focus on two different spatial
models, viable for representing indoor architecture, compatible with the discussed transition
models, and suitable for smartphone use. One of them belongs to the group of regular models,
the other one is irregular. Each of which comes with certain advantages and disadvantages,
that are tightly coupled to the explicit use case scenario. Both are derived from the floorplan

automatically, ensuring a fast setup time for the overall system.

3.5 Regular Spatial Models for 3D Movement Prediction

Afyouni et al. identified grid-based models to be one of five groups of geometric models, suit-

able to spatially model indoor environments. Grids, which belong to the type of regular repre-
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sentations, are able to accurately describe complex architecture and obstacles, are well suited
for different types of lookups, and support adding semantic information. The authors also men-
tion that this type of representation requires high amounts of memory when large buildings are
modeled by a dense grid. However, their perception of grid-based is mainly related to afore-
mentioned occupancy grids [Mor88], where each floor is stored within something similar to a
2D array or an image, with each pixel’s color denoting whether the corresponding real-world
location is part of free space, or occupied. Occupancy grids are often created dynamically, e.g.
by combining several noisy sensor measurements, to distinguish between free and occupied
space [MES85]. Thus, the occupancy information is rarely stored as a binary indication, but as
a probability, increasing the memory requirements. Depending on the ratio between one pixel
and the real-world area covered by it (resolution), as well as the size and number of floors of the
building, memory requirements can be significant. This is also due to the image representation
being dense, covering a rectangular area, using one pixel for every location, even if it is not
part of the building’s area. This effect increases if three dimensional environments are to be
modeled, requiring several stacked images per floor. The resulting data structure is referred to
as voxel grid, as it divides the volume of the building into many small cubes, called voxels. As
mentioned, volumes are not required for pedestrian indoor localization, and are better suited for
aerial or nautical use cases [DMX10; LJ14]. Concerning pedestrians, only stairs, escalators and
elevators provide a walkable connection between adjacent floors. The surrounding areas might
not be blocked by obstacles, but are still unreachable, as they reside in mid-air. Within voxel
grids, those areas require large amounts of unnecessary data that could safely be omitted.
Furthermore, if the grid is crafted based on an actual, exact blueprint of a building’s floor-
plan, probabilities can be omitted and replaced by discrete free/occupied entries, requiring a
single bit for each location, significantly reducing the memory footprint. However, if semantic
information is to be added for each location, memory requirements are increased by the amount
of this information, again consuming unnecessary data for impassable locations. As discussed,

especially for 3D grids, this effect will severely affect the applicability for embedded use.

Sparse storage strategies address this issue. Instead of e.g. dense bitmaps, a sparse list of
walkable locations can be used, dropping the requirement to store regions that are impassable by
pedestrians. For the three dimensional case, this reduces the number of stored elements signif-
icantly. Furthermore, when using a sparse data structure, all occupied locations can be omitted
as well, as it is unimportant whether a location is unreachable due to obstacles, or any other
reason. This results in a list of all walkable locations within the building, each with correspond-
ing semantic information, if required. To still provide efficient lookups, like within occupancy
grids, an appropriate data structure is required [ARC12; Yan06]. For discrete queries, determin-

ing whether some location belongs to the list, and thus the walkable surface, trees or hash-sets
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Figure 3.12: Two regular spatial models for an example floorplan (left). The occupancy grid (center)
shows walkable areas in white, obstacles in black, and unknown regions, which might either be free or

blocked, in gray. The graph on the right describes the walkable area using equidistant (here: 50 cm)
vertices (circles), which are connected by edges (lines), if walking between them is physically possible.

[GD18] are a viable choice. For spatial or range-based queries, octrees or k-d trees are a suitable
alternative [Mea80; Ben75].

Again, to determine whether walking from one location to another is possible, it must be
checked whether both are part of the list, and connected by entries in between. However, the
latter information is not yet part of the list-based representation described above. Being sparse,
there is no indication whether two walkable locations are adjacent, and reachable from one an-
other. Thus, this connectivity information must be added explicitly. While this increases mem-
ory requirements, these connections also allow for adding semantic information concerning the
corresponding movement, and provide additional benefits for previous transition models.

The resulting data structure represents a graph, with its vertices denoting the walkable area,
connected by edges, if walking between them is physically possible [Ebn+15; Ebn+16]. For the
2D case, it will consume more memory than dense occupancy grids, due to additionally storing
individual edges. For the 3D case, however, memory consumption can be assumed to be less
than for a dense voxel grid, due to the sparse nature of the graph. Actual requirements strongly
depend on the building’s architecture, the amount of semantic information to be stored, and the
needed resolution, which is given by the distance between two adjacent vertices. However, be-
sides memory overhead, the described representation offers several benefits, that are especially
useful for indoor localization and navigation, discussed within the following.

Figure 3.12 depicts a comparison between a dense occupancy grid and a sparse graph-based
representation for an example floorplan. The grid stores a probability for each pixel being free
(white), occupied (black) or unknown (gray). The graph places vertices only along the actually
walkable area, connecting adjacent ones by edges. This section focuses on the graph-based

representation of building floorplans, as they are suited for indoor localization on smartphones.
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The first part examines the detailed representation of the graph and how to derive it from var-
ious types of existing blueprints or floorplans. Hereafter, actual movement prediction models
p(q; | q;_1,0:-1) are discussed in detail, referring to the requirements and issues discussed for

previous transition models.

3.5.1 Generation Based on an Existing Floorplan

To use a graph-based data structure as transition model, it must be created based on the buildings
architecture. The graph G = (V, E) uses vertices v € V' to denote all the reachable locations
within the building. The edges e € E model the reachability between two vertices. Each vertex
v; stores at least its own 3D position within the building, and optionally, additional semantic
information, thus v; = {z,v, 2,...}. Two vertices v; and v; are connected if there is an edge
e;; € E, which is also able to store semantic information ¢; ; = {...}. Differing from typical
notations for graphs, like the ones used in [Tit11; Aigl5], edges do not contain their starting
and ending vertex, due to the way the data structure will be kept in memory. All required steps

and the final result are shown in figure 3.13, and will now be discussed in detail.

Within this work, deriving the graph requires the floorplan to be readily available, and to
contain all required semantic information. Concerning a single floor, this e.g. refers to knowl-
edge on whether some location is walkable, and if the line of sight between two locations is
blocked by an obstacle. The described creation process is independent of the format the floor-
plan is provided with, as long as it contains the required information. Potential formats cover

scans from blueprints, 2D vector representations, or complex 3D meshes of the building.

Using this information, the first step places vertices throughout the walkable ground of each
single floor. Depending on the floorplan’s representation, this area is e.g. given by a connected
group of white pixels within a scanned blueprint. Within this step, only the two dimensions z
and y are considered, and three dimensional architectural objects within each floor are omitted.
The z-value of all newly created vertices is assumed constant, and equal to the height the current

floor resides at, e.g. relative to the building’s main entrance.

Concerning the vertex placement strategy, the two previously presented options are appli-
cable. Either using a regular placement pattern, similar to the occupancy grid, or using an
irregular pattern, adjusting to the shape of the architecture. The latter can provide a better
approximation of the underlying architecture, e.g. in case of curves or other non-axis-aligned
architectural components [Hil+14]. A regular pattern is deterministic, as potentially walkable
locations are well defined by the pattern itself, and can thus easily be retrieved from the data

structure [Ebn+15]. The following discussions thus focus on the regular placement only.
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Figure 3.13: Individual steps to derive a walkable 3D graph based on an existing floorplan: Add vertices
along every floor using (3.16) with gs = 50 cm (a), add vertices along stairs, escalators, and elevators
(b), remove impassable vertices above and below stairs (c), remove vertices blocked by obstacles (d),
add semantic information (e.g. doors) (e), three-dimensionally connect adjacent vertices using (3.19) if
they are physically connected (f), remove small isolated areas (g).

All vertices are placed with a constant distance in between, referred to as grid size gs
VoeV:o® o™ =ngs, neN. (3.16)

Due to this equidistant spacing, each vertex denotes a rectangle, centered at the vertex’ position

(v, v®)), and its width and height equal to gs , referred to as navigation grid.

Depending on the use case, semantic information, whether a vertex belongs to a specific re-
gion, can be valuable. Vertices near doors can e.g. be handled differently during movement pre-
dictions [Ebn+16]. Similarly, the information whether a vertex belongs to an outdoor or indoor
region can e.g. be used to determine whether the GPS is trustworthy at its location [Ebn+17]. If
this information is not given by the floorplan, it can sometimes be estimated based on the cre-
ated navigation grid. Whether a vertex belongs to a door can e.g. be determined by considering
all vertices within the vicinity that were omitted due to obstacles. If such omitted vertices exist,
their locations can be used to calculate a 2D covariance matrix. When the two corresponding
eigenvalues greatly differ in size, and the covariance is rather elliptic than circular, a narrow

passage, thus potentially a door, has been found [Ebn+16].

Hereafter, adjacent vertices are connected by edges, to model all physically possible moves.
Visualized in figure 3.13, depending on the vertex placement, and the floorplan, there can be
situations where adjacent vertices are not reachable from one another, separated by an obstacle.

In such cases, not placing an edge between both denotes their physical separation. Due to the
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placement pattern (3.16), only eight potential neighbors need to be considered for potential

connections. The locations of all eight neighbors are well defined. If such a neighbor exists

Vei €E:(i# ) A (i€ VAv e VYA =0 +d) AW =0l +d)

’ (3.17)
d € {—gs,(),—l—gs} 3

and there is no obstacle in between, the vertices v; and v; are connected by an edge ¢; ;. This
algorithm yields a graph for one floor of the building. Individual floors are yet to be connected.
The simplest solution just needs the information on starting and ending positions of stairs,
escalators and elevators, and directly adds a single edge between them. Such approaches are
often referred to as 2.5D, as changes along the z-axis are discontinuous, and based on dis-
crete floor levels [EBS16; GF06]. While working reasonably well for straight stairs, escalators
and elevators, it represents a harsh approximation for stairs that include turns (see figure 3.13),
present within the stairwells of most larger buildings. Furthermore, this discretization imposes
issues during the movement prediction. The single edge has a long distance between the start-
ing and ending point, and strongly deviates from the regular gs. If potential movements are
evaluated per-edge, and constrained by sensor readings (see chapter 2), model and the sensor’s
observations might not match. A barometer, for example, denotes continuous pressure changes
while walking upstairs. The single edge between two floors, however, denotes an abrupt and
large change in z. An evaluation of the barometer’s indicated pressures changes does not match
with moving directly from one floor to another, and floor changes can be missed [Ebn+15].
True 3D connections, as used in figure 3.13, thus represent the desired way of modeling, to
accurately resemble actual architecture, and to match with expected sensor readings. In case of
straight stairs, escalators, and elevators, this is e.g. accomplished by replacing aforementioned
single edge with multiple vertices and edges along its way, using interpolation. Every new
edge represents a small segment, and thus a small change in z. For complex stairs, e.g. includ-
ing turns, more sophisticated approaches are needed, and the provided floorplan must contain
semantic information on size, shape and inclination of individual stair segments. Such infor-
mation could e.g. be given by describing each stair as 3D mesh. Here, the stair’s vertices can
be created through samples from the mesh’s surface by using inclusion checks [NS80; Gl1a90],
and are simultaneously satisfying (3.16). For typical stairs in buildings, with all vertices’ (z, y)
pairs being unique throughout a single floor, rasterization can be reduced to a 2D problem.
First, the z-component of all stair primitives is omitted, sampling 2D raster points in the (z, y)
plane, similar to the previously discussed rasterization of the floor itself. Hereafter, the omitted
z-values are re-calculated via interpolation. This approach is well known from computer graph-
ics, where barycentric coordinates are used for arbitrary interpolations within triangles [Vin17].

A similar approach is suitable for quadrilaterals, where a bilinear interpolation can be applied
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after projecting the quad to a unit rectangle, using an affine transformation [SGM14]. In case
of polygons, a prior triangulation is required [Ber+08]. The described process will often create
stair vertices having the same (x,y, z) as an existing floor vertex. This is addressed by simply

omitting duplicates
Y, v; € Ve (UE” # vgm)) Y (vgy) # vgy)) V (vgz) # U§Z)> . (3.18)

The described creation process can be thought of projecting the whole stair onto the 2D plane
of the floor it starts at, rasterizing vertices (x, y) within the area of the projected stair, hereafter
undoing the projection by interpolating the correct z-value. Whether the resulting z-values need
rounding to multiples of gs to match the regular pattern from (3.16), is not directly clear. Stairs
come with various inclinations that are usually well below 45° to be walkable [RRF02]. A
potential gs, for z should thus be smaller than the gs used for = and y, to allow for such angles,
and a smooth linear z-transition between adjacent vertices. Furthermore, for stairs, the z-value
is the result of undoing the projection. Increasing or decreasing a potential gs, will not alter
the number of vertices required for each stair, but only the smoothness of their placement. It
thus makes sense to keep the z-value as-is, and only round it within the data-structure used for
lookups. An actual grid spacing gs, for z is only important for elevators, where the vertical
placement requires sampling along the z-axis [Ebn+15]. Yet, this neither affects the amount of
required memory to hold the graph data structure, as there will not be many elevator vertices,
nor will the accuracy of elevators increase when choosing values gs, < gs.

To ensure proper modeling of stairwells, the algorithm hereafter removes all vertices that
are directly above or below a stair. That is, vertices sharing the same (z,y) as a stair vertex,
with their distance in z below a certain threshold. Put another way, this step removes impassable
vertices above or below stairs, where the pedestrian would e.g. have to crouch, in order to fit
beneath. This deletion is shown in figure 3.13c.

Typical stairs, with one plateau in between, consist of two parts. One with treads, and one
without, parallel to the ground (cf. figure 3.13). Mentioned earlier, for both, the pedestrian’s
walking speed will be different. The same holds true for elevators and escalators, where the
pedestrian might move without necessarily walking. To be considered during movement pre-
dictions, the vertices must carry appropriate semantic information.

To finally connect all floors, (3.17) is altered, in order to also search for neighbors that are
slightly above or below. In doing so, vertices related to stairs, escalators, and elevators are

connected as well as the ground floor

‘v’em GE(%%])/\(UZ GV/\U]' GV)
A @Y =0 +d) A WP =0 +d) A 07 =0l +d).
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(3.19) yields a maximum of 26 connections per vertex, nine above, nine below, and eight di-
rectly around it. However, for real-world setups, ten neighbors are sufficient, e.g. for elevators,

where all eight (z, y) neighbors are present, and two additional, for moving up and down.

Based on the building’s architecture, the described algorithm can cause small groups of
adjacent vertices that are disconnected from the vast majority of the others. Such isolated
regions can safely be removed, to reduce the amount of required memory. This is performed by
searching for the largest connected set, and deleting all vertices and edges that are not part of it.

Such a disconnected group, and its deletion, is shown in figure 3.13f.

After the algorithm used for creating, the navigation grid’s data storage is briefly discussed.
As mentioned, vertices are stored within a sequential list, where each vertex can uniquely be
identified by its index. Besides variable semantic information, each vertex contains, at least, its
position (x,y, z) within the building. Due to the regular, discrete placement, this position can
e.g. be stored as integer value in cm. Even when the grid size is as small as gs = 1 cm, 16 bit
are sufficient for 2! cm ~ 650 m in each dimension. A hash-map provides fast lookups, using

a combination of x, y, and z as hash value, and returns the vertex’ index within the list.

For directed graphs without additional semantic information, edges are typically modeled
by an adjacency matrix [Titl1; AiglS]. This is a square matrix, where each cell denotes the
number of edges between the vertex identified by the row index towards the vertex identified by
the column index. For the presented use case, this would yield a large matrix with many entries
equal to zero, and thus is impractical. As vertices are uniquely identified by their index, each
vertex can store a list of indices, pointing to its connected neighbors. While this is typically
done using some sort of dynamic data structure [GD18], a fixed-size list is possible as well.
Discussed earlier, the largest number of neighbors is assumed to be ten, for elevator vertices.
While the smallest number of neighbors is one, most vertices will belong to open spaces, with
an average of eight neighbors. Using a fixed-size list for up to ten neighbors, storing their index
numbers, thus is a viable choice. Furthermore, this keeps the neighbor-information close to
the vertex’ details, which allows for caching [BD13]. However, when edges are additionally
equipped with semantic information, a dynamic data structure will be more suited, and reduces

the memory overhead by not storing unused placeholders.

To summarize, the resulting navigation grid describes the building’s walkable area as small
rectangles, defined by vertices. They are connected to neighboring tiles, if there is no physical
object in between. Due to each vertex holding a list of its adjacent neighbors, they can quickly
be identified. As will be shown, this setup allows for various movement prediction strategies,
and for incorporating prior knowledge, such as the pedestrians desired destination when navi-

gating through a building.
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3.5.2 Random Walks on Graphs

As within section 3.3, the navigation grid is used to estimate the probabilities p(q, | q,_;)
and p(q, | gq,_,,0,_1) of potential pedestrian movements during a certain timeframe. Initial
discussions will focus on p(q, | q,_,), where no additional prior knowledge o, 1 is available.

Previous techniques suffered from various drawbacks, such as producing poor results, being
computationally complex, or limited to two dimensional predictions only. Based on the created
navigation grid, a completely different strategy is used for the movement prediction. Instead of
deriving a calculable representation like (3.15), p(g, | q,_,) is estimated by simulation, using a
technique referred to as random walks on graphs [GS97; DS84; Gril8; Tia+02]. In contrast to
section 3.3, this approach is computationally efficient, and allows for 3D movement predictions,
based on the building’s floorplan, discussed within the following.

As with all previous simulations, the starting setup for time ¢ = 0 is given by g,. The
term p(q, | q,_,) denotes one simulation of a certain timeframe, given by two points in time,
t — 1 and ¢. Each random walk is initialized by looking up the vertex corresponding to its start,

denoted by g,_,. This is the vertex v; with its position

T

pos,y, (v:) = (01 0”0l | (3.20)
equal to the position pos,,, (qtfl) stored within the starting state q,_;, after rounding it to
multiples of gs. This vertex can be determined instantly, using aforementioned hash-map. The
algorithm then randomly walks along one of the edges connected to v;, to reach another vertex
v;. Hereafter, the process continues from the newly reached vertex in the same way. Thus, at

every vertex, a new edge is taken by chance. For every such edge, its individual distance

Hei,jH = diStX)’Z (viv Uj) = Hposxyz (Ul) — POSyy; (vj> H (3.21)

is added to a cumulated value. The simulation stops, as soon as this value reaches a chosen

distance dy .k

> il < dyac. (3.22)

The vertex, this simulation ends at, is remembered. As earlier, the probability p(q, | g;_,) of
reaching g, from g,_, could be derived by repeating this process several times, creating mul-
tiple samples. By applying a KDE, a continuous approximation of this probability is derived.
Alternatively, the sampled result could be used to determined how often g, was reached among
all samples, also resulting in aforementioned probability. Similar discussions, using random
walks for simulating electric networks, can be found in [DS84]. Which strategy serves best, is

discussed within the following.
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Performing multiple random walks to derive the probability for a single destination, is sim-
ilar in complexity to calculating shortest paths. Yet, random walks provide several advantages,
like considering additional information, such as semantics attached to vertices and edges. Fur-
thermore, as within section 3.2 and 3.3, the number of simulations required for a stable result
strongly depends on the behavior of the underlying density. The same holds true for the time-
frame of the prediction. Smaller timeframes result in less scattering, thus narrower densities,
and less samples required. The underlying model, assumed for pedestrian movements, affects
the size and shape of the density in a similar way: If d,, is the only constraint, and the heading
is completely flexible, the resulting density resembles a Gaussian with increasing size, as in
figure 3.5. When the model also distinguishes between walking and standing still, the density
loses its Gaussian shape, as in figure 3.6. If the pedestrian is assumed to walk straight, potential
whereabouts denote a circle, similar to figure 3.7. When the heading is approximately known,
only a small fraction of this circle remains likely, as depicted in figure 3.8. As can be seen, de-
pending on available constraints, the number of required samples can be reduced considerably.
Due to the navigation grid being a discrete spatial representation, the number of likely vertices
is even smaller. Depending on the model and resulting density, down to a few. To be suited
for smartphone use, this number should be as low as possible, yet, high enough to accurately
describe the resulting density throughout the whole state space [Ebn+16].

Within the following, several movement models with increasing complexity and amount
of used prior knowledge are discussed. Regarding strategies, the ideas from section 3.2 and
section 3.3 are considered, and applied during the random walk, where edges are picked based
on a probabilistic metric. For every single step between two vertices, each outgoing edge e; ; of

a source vertex v; is assigned its own probability p(e; ; | g,_,), which is equivalent to

pleij | 1) = p(vj | vi, ;1) (3.23)

If additional prior knowledge o,_; is available, p(e; ; | q,_;,0,—1) is used instead. After this
assignment, one of the up to ten edges is randomly selected, with respect to the calculated
probability. Edges with higher probabilities are thus selected more often than ones with a lower
probability. Actual algorithms for this kind of biased random selection process are topic of

chapter 4, and, for now, assumed to be given.

For comparison, a truly random, and thus unbiased, strategy assumes all outgoing edges of

one vertex to have the same, constant probability

1

= 24
| neighbors(v;)|’ (3-24)

Pconst (ei,j | qt—l)
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which depends on the total number | neighbors(v;)| for each vertex v;. This is similar to using
a random number generator [HD62], to draw a uniformly distributed random index, deciding
which edge (neighbor) to take. After every random selection, the process continues from the
newly reached vertex v;, until the walking distance is reached. As earlier strategies, (3.24) is
inaccurate in several ways. It allows for walking back and forth between two vertices, which is
unlikely for actual pedestrian movements. Furthermore, the number of potential whereabouts is

expected to be fairly large, requiring many samples for a stable result.

According to the findings from section 3.2 and section 3.3, pedestrians tend to keep their
walking direction most of the time. The recent heading should thus be considered, when select-
ing edges within the random process. As earlier, the heading is modeled as part of the unknown

(®). Even if the initial heading is unknown, and thus q(()e) ~ U (0,2m), it is as-

state using ¢
sumed to be fairly constant throughout a random walk. At least, for short timeframes. In case

of existing observations, it can be updated between consecutive transitions, using (3.13)

Phead (ei,j | Qtfl) - N (a ‘ O’ Ut211rn) y = AA (ny (ei,j) 7q§(—9i>

(S}
qg ) ™~ Phead (qt | q:—1, 075*1)(3_13) ) <q>t = <(@7 c )>t :

(3.25)

(3.25) determines a potential edge’s 2D angle Z,y (e; ;) in the (z, y) plane, relative to the z-axis

J 7

Zyy (€ij) = atan2 (U(»y) — o), ng) — vz@) : (3.26)

and compares it against qf{. The difference between both should be close to 0°, thus using a

zero mean Gaussian, or comparable von Mises, as PDF. Here, one important aspect must be
considered. Due to the regular placement of vertices, and each vertex being connected only to
adjacent neighbors, all edge angles /,, (e; ;) are multiples of 45°. This would require o, from
(3.25) to be relatively large, for other edges to be considered at all, which does not match previ-
ous findings on straight walks. When using (3.25) as-is, an absolute heading, such as qt(?% =5°,
can not be modeled at all. For small oy, the random process will almost always choose the
same edge, in this case, the one pointing towards the positive x axis having Z,y (e; ;) = 0°.
This drawback can be addressed by modifying (3.25) to include an error value epe,q as part
of the state, remembering the difference between the desired heading qfi, and every actually
walked heading Zy (e; ;). The angle used for comparison within (3.25) is then adjusted by this
error, and approximates the desired angle using zig-zack walks along the navigation grid. This

approach resembles Bresenham’s line-drawing algorithm [Bre65], known from 2D graphics.

Similar to the angular error, rounding vertex locations to multiples of gs yields an error in

walking distance. Adjacent vertices are either gs or /2 gs apart. Walking exactly 1.4 m, for ex-
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ample, is impossible for gs = 30 cm. This can be addressed in the same way, by storing another
eITOor £g4iyt, carrying the previous overshoot compared to the requested walking distance. Con-
secutive random walks, continuing from gq,, consider this overshoot, and reduce the requested

walking distance. For several walks in sequence, the desired distance is met approximately.

function WALK(dyai, q;_1)

(Ehead)
€head < qt—l

1:
2
3
4 v; = INDVERTEXFORPOS(pos,, (g, ;))
5: while d' < dy, do
C)
6 O «— QE,} + Ehead
7 v; <~ PICKRANDOMNEIGHBOR(v;, ©)
8
9

(C)
€head € Ehead T AA <qg—i> ny (eiJ))

: d — d +||e ;|
10: Vi &= V;
11: end while
12: Edist < d — dwalk
13: q; < (POSxyZ (vi) , ng Edist » Ehead)
14: return q,

15: end function

Algorithm 1: Directed random walk, including distance and heading error compensation.

The overall process is best explained using the pseudo code, shown in algorithm 1. First,
distance and heading errors from previous runs, if any, are retrieved in 1.2 and 1.3. These values
are considered when limiting the walk’s length in 1.5, and when randomly selecting an edge in
1.7 that matches the requested heading, after applying the compensation in 1.6. For every taken
edge, 1.8 adjusts the heading error by the difference between requested and taken angle. The
error in walking distance is adjusted in 1.12, after the walk is completed. The reached location,
and both errors, are finally assigned to the returned g, in 1.13. That is, the errors are available,
when another walk is started from this result.

A schematic example of six consecutive random walks using algorithm 1 denotes the impact
of distance and heading error compensation, and is shown in figure 3.14. The requested heading
was qé@) = 5°, and the distance d,,,x = 1.4 m. Most of the time, 0° edges are used, as they are
closest to 5°. Due to the cumulating heading error, eventually a 45° edge is taken for correction.
Similarly, the length of each of the six random walks is adjusted, dependent on the distance
error of the previous one. For several consecutive walks, dy.x = 1.4 m is met on average.

The impact of heading error compensation, and varying parameters for oy,,, are shown in
figure 3.15. Based on a navigation grid with gs = 20 cm and no obstacles, four different setups

were simulated. Each performed 1000 random walks to estimate p(q, | q,_, ), starting from q,_,
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30em o M
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Figure 3.14: Schematic visualization of six consecutive 1.4 m long random walks into q(()@) = 5H%alonga

graph using gs = 30 cm, algorithm 1 with strategy (3.25) and o2, near zero. Most of the time, 0° edges
are taken as they are closest to 5°. When the cumulated difference between requested and taken angles
becomes large, a 45° edge is taken instead. The same holds true for the distance. If the previous walk
was too long, the next one is shorter, approximating the requested distance throughout several walks.

located in the center, walking into an unknown direction qt(f)i = U (0, 27). The dots denote the
distinct vertices, reached after the repetitions. Due to the discrete rasterization, the number of
different vertices is far below 1000. To visualize a continuous PDF, a KDE 1is applied to all
resulting samples, shown as gray background. When not using the heading error compensation,
and enforcing a small oy, = 0.01, as shown in 3.15a, the random walk always picks the
direction closest to the initial qfi. As all edges are multiples of 45°, the result is given by
eight distinct vertices, and the corresponding KDE denotes eight smaller blobs. Increasing the
allowed heading deviation to oy, = 0.1, the number of distinct vertices, shown in (b), increases
rapidly. The KDE, however, barely changes, and is as within (a). This is due to the majority
of the resulting samples still being the same. Only a few random walks used other directions,
enabled by the increased o. When the allowed deviation is further increased to oy, = 0.5,
shown in (c), the number of distinct vertices advances again. This time, the KDE is affected
as well, starting to resemble a circle. Setting the allowed deviation back to oy, = 0.1 from
(b), and enabling the heading error compensation, the result of (d) is generated. Here, distinct
vertices are as within (b), but the KDE output is similar to (c). This is due to the vertices now

being uniformly distributed as they should be, based on qf% =U (0,2m).

The main intentions behind the graph-based approach are to avoid costly intersection tests
with the floorplan, introduce semantics, and to enable three dimensional setups. For the random
walk to be comparable against the continuous variant with floorplan intersection tests from
(3.14) and figure 3.9, two changes are required. Pedestrian’s can not be expected to walk exactly
1.4m/s, thus, a slight variation of the walking distance must be included. Furthermore, the
pedestrian might not be walking at all, but is currently resting [Ebn+16]. Both adjustments can

be included by modifying the walking distance d,, before every execution of algorithm 1

X stan Y < Ky X stan ~N O,Uzan
dyare = ¢~ o Ao~ N 2”‘), Y~U@0,1). (327
X walk 1 dwalk y > Kwis Xwalk ~ N (0’ Uwalk)
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(d)

Figure 3.15: Result of a random walk (3.25), starting from the center, into an unknown direction qfi =

U (0,27). Simulated 1000 times, and with four different parameter sets, along a graph of gs = 20 cm
with no obstacles. The first three results do not use heading error compensation, and oy, = 0.01 (a),
0w = 0.1 (b), owm = 0.5 (¢). In (d), heading error compensation is used with oy, = 0.1. Dots denote
reached target vertices. The gray background is the result of a KDE on top of these vertices.

Both random variables A" are used to adjust the requested walking distance dy, by a zero mean
Gaussian with some uncertainty. Additionally, the uniformly distributed )’ and the thresh-
old ky, are used to decide, whether walking or standing behavior is used for a random walk.
Kwis = 0.1 equals a 10 % chance of standing, and 90 % chance of the simulation to be walk-
ing. Results after 1, 3 and 5 consecutive random walks with algorithm 1 are shown in fig-
ure 3.16. As each yields a single potential destination, the depicted densities were approxi-
mated by 5000 repetitions, generating 5000 potential destinations. The results are comparable
with figure 3.9. The three densities are less continuous, and expected circles appear as octagons.
Furthermore, the result after 5 consecutive walks looks notably different than the one from fig-
ure 3.9. This is due to a disparity between the graph-based simulation, and the intersection tests
from section 3.3. For the latter, all movements that crossed an obstacle were completely omitted
from the resulting density. For random walks, this is different. As soon as a walk encounters a
wall, it has reached a vertex with no neighbors pointing into the desired walking direction. The
closest possible direction is chosen instead, letting the random walk move alongside the wall.
Due to the heading error compensation, the algorithm alternates between the possible direc-
tions, trying to keep the heading. Large obstacles prevent further movements, and the random
walk gets stuck in front. The density shown in figure 3.16 thus contains high probabilities along

the corridor walls, as many simulations ended there, and could not move on.

To prevent such cases, several options can be taken into account. The walk’s uncertainties
can e.g. be redrawn, randomly selecting a new oy, and oy, hopefully not encountering the
obstacle when restarting with the changed parameters. Or, the result is simply omitted. The
latter assumes that it is not possible, or likely, to start walking from pos,, (g, ,) into the
direction given by qf(_a%, as it will encounter an obstacle, a pedestrian would avoid. Further

details on strategies and implementations will be topic of the following two chapters.
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Figure 3.16: Result after 1, 3 and 5 consecutive random walks from the dot in the center using algo-
rithm 1 based on (3.25) and (3.27) with ¢\®) = 1/ (0, 27), dyax = 1.4m and oy = 0.1, approximated
by 5000 samples. Darker shadings denote more likely regions. The result is directly comparable against
figure 3.9. Due to the regular placement, the density’s shape is more octagonal than circular. Further-
more, many simulations stopped at the walls thus yielding a different density than figure 3.9.

By replacing costly intersection tests with random walks, the computational complexity is
reduced significantly. Furthermore, additional benefits are enabled. One of which are flexible
walking speeds. Mentioned earlier, when taking stairs, the typical pedestrian walking speed
of ~ 1.4m/s is reduced significantly, ranging somewhere around 0.55m/s [FT04; TG91],
dependent on the layout of the stair’s treads [SJP13]. The most simple solution uses semantic
data, to determine whether the starting vertex belongs to a stair-part with treads (see figure 3.13),
and, if so, adjusts the requested walking distance dy, beforehand. This, however, yields issues
for larger timeframes, where a single walk covers both, vertices that belong to stairs, and ones
that do not. Here, a flexible walking speed is required, achieved by modifying algorithm 1.
Instead of cumulating the walking distance by each edge’s physical length ||e; ;|| in 1.9, this
value is artificially increased by 2.5, when the edge points upstairs or downstairs. Effectively,
this reduces the requested walking distance dy,x by a factor of 2.5, whenever taking stairs.

Furthermore, the semantic information on stairs is also well suited for the discussions from

section 2.6. Detected activities og?)l can e.g. be used to prioritize certain edges [Fet+16]:

Pact (€3j | @i—1,00-1) = (3.28)

(1 — Kaer) else.

\

(3.28) represents a brief example of favoring edges that match a detected activity, like walking

stairs, by using an empiric value x,,, > 0.5 as importance heuristic. Assuming statistical in-
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dependence, (3.28) can be combined with (3.25) by multiplication, improving the movement
prediction model by including observed activities. Other observations, such as barometer read-
ings discussed in section 2.5, can be included similarly, favoring edges that match with the
readings from the sensors. As can be seen, the random walk allows for a powerful integration
of arbitrary metrics, to favor potential movements during the prediction process. Alongside

sensor observations, prior knowledge can be included in a similar way.

3.5.3 Navigation

Besides localization, navigation indoors also represents a crucial aspect, especially within large
public buildings like airports, hospitals, museums and similar [Fet+18]. As mentioned in sec-
tion 3.3, graph data structures are ideal for the required shortest path calculations. Previously,
they were used to estimate the shortest distance between two locations, to determine the proba-
bility for certain movements. With the number of potential locations being numerous and con-
stantly changing, this was inefficient, and computationally too complex. However, concerning
navigation, an efficient implementation for smartphone use is possible.

Typically, the user selects a destination, and the system determines the shortest path for
reaching it, once. As long as location estimations are stable, and the user follows the calculated
route, no additional calculations are required. Based on the discussions from chapter 2, the
location estimation can be assumed to often be unstable, and the pedestrian can not always be
expected to strictly adhere to a calculated route. Furthermore, the walkable area of a building
is more open than e.g. streets for car navigation. To provide a solution that is able to cope with
uncertain location estimations, and the pedestrian deviating from the shortest path, while still
being suited for smartphone use, the implementation should be different than for typical outdoor
navigation systems, which only consider a required fraction of the map [SA11].

After selecting the desired destination pgse = (, y, 2), the corresponding vertex vges Within
the navigation grid is determined. Counter-intuitively, this vertex is used as starting point for
Dijkstra’s algorithm [Dij59]. By not specifying a farget, the algorithm executes until all vertices

were visited. The required edge-weight is given by the three dimensional distance (3.21)
W dijkstra (ei,j) = Widijkstra (Uj | Ui) = diStxyz (Ui,Uj)(3_21)- (3.29)

After this calculation, every single vertex v; within the navigation grid knows its shortest phys-
ical distance dis.t;tyZ (v, Vgest) towards the destination vger [Ebn+16]. Depending on the build-
ing’s size and gs, the calculation requires several seconds. However, it is valid as long as
the pedestrian’s destination remains as-is. A corresponding result within a two story example

building is shown in figure 3.17. The heat map denotes each vertex’ distance towards the desired
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Figure 3.17: Shortest path and distance example within a fraction of a two story building, using gs =
20 cm and (3.29). The requested destination is within a small room on the second floor, denoted by a
flag. A heat map visualizes the walking distance from this point towards all other locations within the
building. Warm colors (red) denote a short, and cold colors (blue) a long distance. If the pedestrian were
to reside in the lower left corner, two potential routes (black, gray) lead to the destination.

destination, which is within a small room on the upper side, denoted by a flag. Warm colors
indicate being near this destination, cold colors are farther away from it. To determine what this
means in terms of actual routing, two example paths are visualized. Assuming the pedestrian
currently resides at the lower left corner, two stairs are available for reaching the upper floor.
The black path, 25m in length, uses the right stair, and is the shortest path for reaching the
destination from the pedestrian’s current location. When the right stair is unavailable, e.g. due
to construction work, the left one can be used instead, shown by the gray path, 28 m in length.
While the presented algorithm estimates the shortest path for every vertex within the building,
neither of the two depicted paths is realistic. Both stick unnaturally close to walls and obstacles.

To predict realistic pedestrian walking paths, a few modifications are introduced.

To avoid walking near walls and obstacles, exterior vertices must be treated specially during
the shortest path calculation. A simple solution is to artificially increase the weight between
two vertices, if one of both is near an obstacle. When using this adjusted weight within the
shortest path algorithm, walks along obstacles are made artificially longer than they physically
are. If the increase in distance is longer than the savings from sticking close to walls, resulting
paths are farther away from obstacles and more realistic [Ebn+16]. This is achieved by adding
a new semantic attribute UEL) to every vertex, denoting the likelihood for being stepped onto
by a pedestrian. To reduce this likelihood for vertices that are close to obstacles, the distance
towards the closest obstacle is determined. If this distance is small, an obstacle is nearby, and
the vertex is less likely to be considered by the pedestrian. To determine this distance, the
vertices themselves can be used. Mentioned earlier, most of the vertices have eight neighbors.
If a vertex is directly adjacent to an obstacle, this number is reduced. Thus, all vertices with
less than eight neighbors potentially belong to the exterior, close to obstacles. The distance
towards the closest obstacle is thus given by the smallest distance towards any vertex with less

than eight neighbors. This value can quickly be determined using data structures for nearest-
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and gs = 20 cm (left). Dark elements denote vertices near obstacles, which have a lower importance.
White elements are farther away from obstacles, resulting in an importance of ~ 1. The right depicts the
shortest path and distance calculation towards the black flag, when including the importance factors by

using (3.31). Compared to figure 3.17, the two resulting paths are notably more realistic.

Figure 3.18: Importance factors v, from (3.30), calculated for every vertex, when using oya = 0.5 m

neighbor problems [Cla83; Ary+98]. To provide a smooth transition for the likelihood UEL), a
continuous metric is used. It is designed to start at 1, decreasing when approaching an obstacle.

1—-N(d]0,02,), with the distance d towards the nearest obstacle, thus is a viable choice

’UEL) :1—./\/'(d{0,02 )

wall

3.30
d = min distyy, (v;,v;) , v; € {v €V | |neighbors(v)| < 8}. (3.30)

vj

(3.30) is calculated only once, after the navigation grid was created. The left half of figure 3.18
visualizes the behavior of vgb) for every vertex when using oy, = 0.5m and gs = 20cm.

Darker colors denote the adjacency to an obstacle, brightening up with increasing distance. To
(1)

affect the shortest path calculations, v, is used to adjust the weight metric (3.29)

1 .
W dijkstra (ei,j) = Wdijkstra (Uj | Ui) =0 dlStxyZ (Uz’, Uj)(3_21)- (3.31)
V.
J

In (3.31), the Euclidean distance between two vertices is multiplied by the reciprocal of the
(1)
J

impact depends on the value chosen for oy, in (3.30). An example for oy,; = 0.5 m is shown

target vertex’ v:’, causing an artificially increased distance when this importance is < 1. The
in the right half of figure 3.18. As can be seen, when approaching walls and other obstacles,
the distance towards the destination increases, denoted by the heat map’s color getting colder.
While still leaving room for further improvements, the two shortest paths from figure 3.17 are

now more realistic, avoiding obstacles, and using the center of narrow passages.
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Finally, the modified weighting is used to favor all movements that approach the destination

Paes (e | @) = i (05 Utew) < sty (4, Vi) (3.32)
(1 — Rgest) else.
The heuristic Kges 1n (3.32) is used to adjust the importance of the destination. While lower val-
ues allow for detours, 1.0 enforces every taken edge to approach the requested destination. This
represents a tradeoff between prior knowledge, and the behavior of the pedestrian [Ebn+16].
Besides adjusting the weight metric (3.31) to yield more realistic walking paths, the vertex

likelihood (3.30) can also be used directly within the random process of algorithm 1, to proac-
(v)
J

heuristic, or directly as probability. Depending on the actually used metric, a normalization 7

tively avoid approaching nearby obstacles. v~ can either be included using another threshold

might be required beforehand

Pwall (ei,j | qt_l) = T]U§-L) . (3.33)

Using (3.33) within algorithm 1 alongside with other probabilities will yield more natural walks,
by avoiding obstacles whenever possible. Yet, it will not fully prevent the walk from getting

stuck near obstacles, when there is no other option.

3.5.4 Continuous Results

The main disadvantage of the navigation grid is its discrete nature. By randomly walking from
vertex to vertex, as shown in figure 3.19a, directions are limited to multiples of 45°, and dis-
tances to multiples of gs. While impacts are mitigated by the two introduced error metrics, gs
must still be reasonably small for individual errors to remain reasonable.

With walks and results directly tied to vertex positions, the approximated density p(g, |
g,_,) is also rather discrete. This can be mitigated by introducing additional noise. Instead of
using the last vertex directly as prediction result, this position can be slightly modified, creating
a slightly more continuous output. One option is to e.g. use a location drawn uniformly from the
rectangle denoted by this vertex instead [Ebn+17]. This is shown in figure 3.19b, where start
and end of the random walk are located somewhere within the rectangle around each vertex.
When performing thousands of random walks, this technique does neither affect the walking
distance, nor the heading, on average. The distance and heading of individual walks, however,
can deviate significantly, depending on the chosen walking distance d,,x and vertex spacing gs.
This approach thus represents only a minor improvement towards continuous results, and the

discussed KDE is a better, yet much more costly, alternative [Bul+18].
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Figure 3.19: Different strategies for walking along a graph-based data structure. (a) matches the tra-
ditional approach, walking from vertex to vertex. (b) reduces the discreteness by randomly scattering
around the destination vertex. (c) completely omits edge probabilities, just picking the destination based
on given distance and heading, when such a location is reachable. (d) is a combination of all three,
randomly moving between adjacent cells, without being bound to the vertices themselves.

A solution that satisfies each requested walking distance and heading exactly, but is still
computationally efficient and suited for smartphone use, is given by using the continuous wall-
intersection approach from section 3.3, but replacing costly intersection tests with cheaper
queries on the graph data structure: Given a starting point g,_;, heading qfi, and walking
distance d,x, the destination is known directly. This case is shown in figure 3.19c. Whether it
is actually reachable from the starting point, and not blocked by obstacles, can be determined by
following edges that approximately point into the requested direction, similar to the A* shortest
path algorithm [HNR68]. Compared to the intersection tests from section 3.3, the graph directly
allows for fast, locally constrained queries, considering only a few edges that reside within a
certain direction and distance. Furthermore, as the query returns the vertex that the requested
destination belongs to, if being reachable, it provides a 3D location with known z-component,

which was impossible for the 2D intersection tests from section 3.3.

Compared to random walks, there is no uncertainty or variation when using the approach. If
reachable, the destination is used directly as-is, based on the requested heading and distance. To
add an uncertainty in walking speed and direction, qf% and d,,x must be modified beforehand,
e.g. by adding zero mean random variables N'(0, 02,,) and N'(0, 02 ;). The navigation grid is
then solely used to replace the costly intersection test with a more efficient solution. Random
walks are completely omitted, as well as any semantic information stored on vertices. When
directly approaching an obstacle, where random walks got stuck in front, this approach will
directly indicate that the requested walk is impossible. As earlier, one of several options, like

omitting the current simulation, must be chosen, to address this case.

When modifying this setup, at least, the information whether a vertex belongs to a stair, can

be included, to dynamically adjust the walking distance. For that, the algorithm sequentially

departs from q,_,, into the direction indicated by the heading qt((?}. Each step is chosen to reach
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the rectangle of the next vertex, if any, shown in figure 3.19d. In doing so, every segment of the
walk knows its underlying surface, enabling dynamic walking distance adjustments. However,
due to considering only vertices along the path defined by the requested heading, individual
probabilities assigned to edges can not be considered. As discussed in section 3.3, while such a
direct walking technique yields a continuous result, it is only suited for smaller simulation time-
frames, as it relies on line-of-sight connections, where walking around corners is impossible.
For longer simulations, the random walk is more suited, supporting fine-grained probabilities,

yet producing more discrete results.

Some issues with discreteness can be mitigated by decreasing gs. However, this has a nega-
tive effect on computational requirements, as random walks have to follow more edges to reach
a given distance, and memory requirements are increasing quadratically. For a 100 m by 100 m
sized single floor, where 80 % of the surface is actually walkable, and 20 % belong to walls and
other obstacles, 200 000 vertices are required when using a vertex spacing of gs = 20 cm. As
3D placement only occurs for stairs, escalators and elevators, this number scales approximately

linear with the number of floors in a building

width depth
gs

V] ~ 80 % ( ) N, N = |floors|. (3.34)
For a five story building, this results in 1 M required vertices. To uniquely identify this many
vertices, a 24 bit integer is needed for the numbering index. As discussed earlier, vertices can
store their location (z,y, z) using e.g. three 16 bit integers. Besides location, every vertex has
to store a list of ten neighbor indices. All combined, each vertex requires at least 36 byte of
data storage. While today’s smartphones carry enough memory to easily handle this example,
the situation is different for much larger public buildings, such as airports or hospitals. In
case of multiple-compound buildings, connected by large outdoor areas, even more vertices are
required, to model their interconnection. When additional semantic details are added to vertices
and edges, memory consumption increases even further. At worst, a single map can require

several hundred megabytes, becoming impractical for use on smartphones.

According to (3.34), memory concerns can be addressed by increasing gs, at the cost of
accuracy. However, starting at gs >~ 60 cm, there is an increasing risk for overlooking parts
of the building. When the regular placement pattern does not align with the walkable surface,
doors or narrow passages can be missed, excluding everything behind from being added to the
navigation grid. Real-world setups thus require more dense grids, ranging near gs ~ 25 cm to
provide accurate results [Ebn+15; Ebn+16]. To predict movements within floorplans of huge
buildings, or multiple compounds connected by large outdoor areas, simultaneously addressing

the issue of discreteness, other data structures are required [Ebn+17].
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Figure 3.20: Different irregular spatial models for an example floorplan (left). The navigation grid
can use irregular sizing and placements, to model the walkable surface using rectangles (a). Instead of
modeling the whole walkable surface, only the walkable paths can be described (b). Polygons properly
adapt to the shape of surrounding architecture (c).

3.6 Irregular Spatial Models for 3D Movement Prediction

As shown in the surveys from Afyouni et al. [ARC12] and Yanbing [ Yan06], irregular placement
patterns can address some of the aforementioned problems. They are more flexible, and adjust to
local architectural details, allowing for a better representation with reduced memory footprint.
Especially when compared against the navigation grid. Referring to the latter, its vertices could
e.g. be placed irregularly. Using many small ones to describe stairs, doors, and narrow passages,
while approximating open spaces with a few larger ones saves memory, and adds details only
where required, shown in figure 3.20a. However, this causes the length of their connecting edges
to vary significantly. Likewise, walkable directions become more discrete, not allowing for the
random walks as discussed in section 3.5. Also, it is not directly clear how to correctly describe
neighborhoods, when a single vertex describes a large region and connects to many vertices
with smaller rectangles. Furthermore, rectangular shapes only work well with axis-aligned
architecture, like shown in the figure. For buildings with a complex interior, the rectangular
primitive suffers from several drawbacks, not representing an ideal data structure [Fet+18].
Besides modeling the walkable surface, some irregular approaches model only the walkable
paths within a building, shown in figure 3.20b. An often used representative, are minimum
spanning trees [Kru56] of a 2D Voronoi diagram [Lej50; Vor08]. First, the Voronoi diagram
tessellates the walkable surface into smaller sections, adjusting to architectural details, such
as doors, walls, and other obstacles. This results in an irregular placement of sub-surfaces,
represented by polygons (cf. figure 3.21b and 3.21d). The edges in between adjacent polygons
can hereafter be connected, forming a tree [Aur91]. A special variant of such a spanning tree
is the generalized Voronoi graph (GVG) [CB95]. Applied to indoor scenarios, it describes
potential routes through the building, similar to streets for car navigation, and can be used to

describe potential walks. It is often slightly modified, to remove some extends of the tree, which
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Figure 3.21: Delaunay triangulation and Voronoi diagram for an example floorplan. The corners of
walls and other obstacles, shown as black dots, are connected by a Delaunay triangulation (a). This
representation can be converted to its dual, the Voronoi diagram (b). Using additional interpolation
points along all wall segments increases the quality of both diagrams shown in (¢) and (d). The GVG in
(d) connects edges of the underlying Voronoi, describing walkable paths within the floorplan.

are considered unlikely, or unnecessary for modeling pedestrian walking behavior. This variant
is referred to as reduced generalized Voronoi graph (RGVG) [NC99].

Mentioned earlier, another spatial representation are 3D meshes, describing the walkable
surface by triangles, or polygons in general, shown in figure 3.20c. A well known algorithm
for creating such meshes, based on a given set of edge-points, is the Delaunay triangulation
[Del34]. Aforementioned Voronoi graphs and Delaunay triangulation are closely related by
duality. That is, one representation can be created from the other [DZMO7]. Due to this duality,
a 3D Voronoi graph can be derived from a triangulated 3D mesh, and vice versa. GVG and
RGVG routes thus also work for 3D walking paths within buildings, along stairs, escalators and

elevators, even though most of the aforementioned literature covered only 2D or 2.5D setups.

Depending on the way the floorplan is provided, the Voronoi diagram can e.g. be created by
first performing a Delaunay triangulation, using the corner points of walls and other obstacles
as to-be-triangulated vertices. This is shown in figure 3.21a, where all corner points, shown
as black dots, are connected by the Delaunay triangulation, which is hereafter converted to its
dual, the Voronoi diagram. This conversion can be performed by estimating a circle for each
triangle, covering its three corners. For any two adjacent triangles, the centers of their circles
are connected, forming the Voronoi diagram [Joe99]. However, the result in 3.21b does not
reveal any walkable paths. This is due to using only a few corners to perform the triangulation,
not clearly separating between walkable areas and obstacles. By interpolating additional ver-
tices along each wall segment, the Delaunay triangulation in 3.21c gets more dense. Now, the
walkable surfaces can clearly be separated from impassable areas. The latter is also described
by triangles, which must be deleted, as they reside within obstacles. Calculating the corre-
sponding Voronoi diagram 3.21d, the GVG is now visible as the spanning tree along the edges
of the Voronoi cells [CB95]. The quality of the GVG thus directly depends on the number of
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interpolations along obstacle outlines. When the building’s floorplan is provided as 2D vector
graphics, the Voronoi diagram can be created directly, using individual obstacle segments, given
as 2D lines [Kar04]. If the floorplan is provided as a triangulated 3D mesh, the corresponding
Voronoi and GVG can also be created directly, using aforementioned translation.

The GVG in figure 3.21d denotes walkable routes within the map, which are centered be-
tween walls and other obstacles [BJKOS]. Resulting from an irregular tessellation, it can effi-
ciently model complex architecture, and requires only a fraction of the memory demanded by a
navigation grid. Similar to the latter, the GVG represents a walkable data structure, formed by
connecting several nodes. Yet, it models completely different movement predictions, as it does
not cover large open spaces. Containing only a single path for traversing every region of the
building, it is mainly suited for narrow corridors, shown in figure 3.20b. To also cover scenarios
with pedestrians walking through large open spaces, adjustments are required. Hilsenbeck et
al. [Hil+14] suggest a mitigation by placing a dense mesh of walkable nodes throughout large
open areas. While the result hereafter covers the whole walkable surface, it suffers from the
same issues with discrete headings, previously discussed in section 3.5.

GVG und RGVG denote only a fraction of actually possible walks within the building. This
has consequences for movement predictions p(q, | q,_;) and p(q, | q,_;,0;—1). In contrast
to random walks along the graph, the risk of simulations getting stuck in front of obstacles is
reduced, as there are less dead ends. On the other hand, only a fraction of all reachable lo-
cations can be predicted by this setup. In theory, algorithm 1, used for the random walk, still
applies to GVG. However, cumulative heading errors within (3.25) can not be compensated, as
often only two directions, back and forth, are possible. Similarly, the walking distance might
not match with the distance between adjacent nodes of the GVG, which can be rather large. As
a workaround, the random walk could stop somewhere along an edge, to match the requested
dywax exactly by interpolation. The strong limitations on allowed movements can be considered
a benefit within narrow surroundings, such as hallways and stairwells. Getting stuck can be pre-
vented, and the binary direction choice can suppress issues with sensor uncertainties. The GVG
is also suited for navigation, supporting shortest path calculations, and adding constraints, like
in (3.32). Yet, only affecting intersections, navigation constraints might be completely over-
ruled by the heading. Furthermore, even after the adjustments from [Hil+14], the GVG suffers
from drawbacks within large open environments, yielding similar issues with discreteness, as

the navigation grid. For such regions, another spatial data structure is more suited.
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Figure 3.22: Three navigation mesh examples using triangles as primitives, including semantic informa-
tion on indoor, outdoor, stairs and doors, shown in different colors. The segmentation algorithm ensures
that primitives adjust to both, semantic boundaries and the surrounding architecture.

3.6.1 3D Navigation Meshes

Besides forming the dual of the Voronoi diagram, a Delaunay triangulation also represents a 2D
or 3D mesh of the building’s floorplan. It is created by triangulating the vertices interpolated
along obstacle edges (cf. figure 3.21c). When omitting all triangles that would fully reside
within obstacles, all remaining ones denote the walkable surface. While this irregular result is
not viable for random walks, it can be used in the same way as discussed in section 3.5.4. Shown
within the following, it can efficiently determine whether two locations within a building are
disconnected by an obstacle, and it allows reconstructing the z-coordinate when changing floors.
Compared to the navigation grid, this irregular representation perfectly models surrounding
architecture, as it closely adheres to obstacle borders. Simultaneously, it conserves memory, as
the triangles are significantly larger than aforementioned 20 cm by 20 cm grid cells [Fet+18].

When using a Delaunay triangulation, the average size of the triangles directly depends on
the distance between the to-be-connected vertices (see figure 3.21). As the triangulation only
considers vertices, it is unable to distinguish between walkable surface and obstacles. Using
large distances thus increases the risk of triangles partially belonging to obstacles, shown in
figure 3.21a. For the created mesh to be correct, the interpolated vertices are thus required to
be rather close, like shown in figure 3.21c. This aspect unnecessarily increases the number of
required triangles. Other algorithms besides Delaunay thus are more suited.

The general type of resulting data structure is referred to as navigation mesh, or meadow
map [Ark87]. It is e.g. used in computer games, to model the walkable areas, and to provide
navigation [CS11]. While these meshes can be created from various data sources, a 3D model
of the building, containing floors, stairs, and objects combined with semantic information, is
ideal [Fet+18]. Literature provides various algorithms, such as watershed segmentation [VS91;
RMOO0]. They generate primitives which accurately resemble the floorplan, including its se-

mantic information, while trying to combine large regions into a single primitive. In general,
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the result describes the walkable surface using polygons. The algorithm ensures that adjacent

polygons share one of their edges, which is a crucial requirement for modeling adjacency.

As the result is used to represent the walkable surface, the same requirements as discussed
for the navigation grid (cf. section 3.5.1) apply. Walking below stairs or escalators is unlikely,
and corresponding surfaces should be removed whenever the pedestrian has to crouch to fit be-
neath. Similarly, walking close to walls and other obstacles is unlikely, and should therefore be
prevented. This can be addressed by eroding the resulting mesh after its creation, thus shrinking
the walkable surface by a given constant. To correctly determine pedestrian walking speeds for
a certain surface of the floorplan, semantic information must be retained. The polygons thus
must be placed in a way that each one belongs to exactly one semantic group, like stairs, esca-
lators or doors. Potential results are presented in figure 3.22. The depicted navigation meshes
use triangles as primitives, and adjust to semantic and architectural borders. The walkable re-
gion was slightly eroded to ensure that regions directly adjacent to walls and other obstacles are
not considered walkable. Compared to the navigation grid, only a few primitives are needed to

accurately cover every nook and cranny of the floorplan.

The following focuses on movement predictions p(q, | g,_,) and p(q, | q,_,, 0;—1), when
the underlying spatial model is an irregular 3D navigation mesh of the walkable surface. While
also applying to polygons in general, the generated 3D mesh is assumed to contain only trian-
gles. This is due to the triangle primitive offering unique characteristics, yielding a speed-up
for many of the required calculations, which is important for use on smartphones. Using trian-
gles will slightly increase the required amount of memory, as more primitives and vertices are

needed. However, the result still consumes only a fraction of the navigation grid [Fet+18].

3.6.2 Movement Prediction

Similar to the navigation grid, the navigation mesh allows for several different approaches, to
predict potential movements. It can e.g. be used as a fast look-up, to determine whether two
locations are connected, and reachable within a certain distance, providing a speed-up for the
discussions from section 3.3. Like in (3.12) and (3.8), potential whereabouts p(q, | g,_) are
determined by simulation, using a starting location, a walking direction, and distance, to predict
new whereabouts. In contrast to earlier, equations are described from another point of view,
directly describing new whereabouts as the result from a random process. Again, the starting
point for each simulation is given by pos,, (Qt—1) , combined with the walking direction qf{,

and distance dy,. The latter can e.g. be set to the average of 1.4 m/s, or set to 0, to model the
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case where the pedestrian is resting

0 = ") + dcos(qf)) 4= v+ X

1
. (@), = ((z,y,2,0,...)), . (3.35)
¢ = g +dsin(@®)  Xa ~ N(0,02)

(3.35) predicts new potential whereabouts in x and y by moving a distance d from the starting
position, into a given direction. For now, the z-coordinate q§z) 1s omitted, and will be discussed
hereafter. Similar to (3.27), uncertainty in walking speed is given by a zero mean Gaussian
X waik, added to the requested distance. The heading is incorporated based on available prior

knowledge. Like earlier, the initial walking direction often is completely unknown
@@ ~u(0,27) . (3.36)

This heading is hereafter updated, depending on whether relative, absolute, or no heading ob-
servations are available

©
qu ) ~ phead (qt | qt—17 Ot—l)(313) . (3.37)

Again, due to the assumption of the pedestrian walking straight throughout a single simulation,
this setup is only suited for small timeframes and short walking distances d,,x. As within (3.14),
the result of (3.35) must only be accepted if pos,,, (q,) can be reached from POs,y, (C.It—1) . This
information, and the omitted z-coordinate, are both provided by the navigation mesh.

To determine whether two locations are reachable within a given distance, the triangles
and their adjacency are used. First, the triangle the starting position pos,, (Qt_1) belongs
to is determined, shown in figure 3.23a. This is achieved by using barycentric coordinates
[Vin17], describing the location of a point based on a triangle’s edges, hereby denoting whether
it resides within, or not. To prevent numerical issues, the z-component is allowed to vary, e.g.
by working with 2D triangles in the (x, y) plane, and ensuring the point’s z is somewhere within
the range of the original triangle’s z-coordinates. This is viable, as the created mesh ensures
that there is at least a pedestrian’s height between triangles stacked along the z-axis. Finding
this initial triangle is costly when creating many samples, due to O(n), having to check every
single triangle. This is addressed by caching, remembering the current triangle for every newly
sampled g,, made clear within the following.

Having found the initial triangle, its adjacent neighborhood is examined. A fraction from
the original navigation mesh is extracted, describing the reachable surface, when starting from
POs,,, (Qt_1)» and walking for a certain distance. This surface is created by recursively adding
adjacent triangles using breadth-first search [GD18]. That is, first adding all directly adjacent
triangles, hereafter adding their adjacencies, ignoring duplicates. The recursion is terminated

as soon as a certain distance threshold has been reached, which depends on the to-be-simulated
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Figure 3.23: Process for uniformly sampling a new location within the vicinity of a starting point (black
dot) when using navigation meshes as floorplan. First, the triangle the starting point belongs to is iden-
tified (a). Second, a reachable fraction of the navigation mesh is extracted, based on some user-defined
threshold. One triangle within this fraction is chosen randomly, with respect to its size (b). Finally, a
random point within this triangle is created (c,d), hereafter denoting the destination (e).

walking distance dy,. For short simulation distances dy, the extracted fraction of the navi-

gation mesh contains only a few triangles, visualized in figure 3.23b.

For pos,,, (g,) to be reachable from POs,,, (qt_l), it must belong to one of the triangles
within the extracted fraction. As g, was calculated by (3.35), only x and y are valid for now.
Whether the new (x,y) results in a change in z, depends on the floorplan. If start and end of
the walk both belong to triangles that are part of the ground floor, the z-component remains
unchanged. If either of them e.g. belongs to a stair, the z-component is expected to be differ-
ent. Thus, to determine whether pos,, (g;) is part of the extracted fraction of the navigation
mesh, only (z,y) is used, examining whether this 2D location lies within any of the extracted
triangles, omitting their z-coordinate as well. If one triangle contains this 2D location, the
omitted z-coordinate is re-calculated via barycentric interpolation [Vin17]. It reconstructs the
z-coordinate based on (z, y), ensuring the resulting 3D coordinate resides on the triangle’s sur-
face. Again, omitting z is valid, if the simulated walking distance d.y is small, and triangles are
ensured to have a reasonable distance along the z-axis, which is a given for the described navi-
gation mesh. To increase performance, the triangle that pos,,, (q,) belongs to is remembered,

preventing costly inclusion checks for subsequent simulations.

If the location determined by (3.35) does not belong to any of the extracted triangles, it
is unreachable from the starting position pos,,, (Qt_1)~ Similarly to previous discussions for
other movement predictions, there are various options for dealing with such cases. Either by
running the simulation again, yielding a slightly different location, due to the random noise for
heading and distance, or by omitting this single simulation completely. Yet, a different strategy
can be viable as well. Besides handling cases where the randomly determined location was
unreachable, it can serve as a complete walking prediction on its own, able to include arbitrary

probabilistic constraints, similar to the random walk from section 3.5.2.
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According to section 3.2, a movement prediction model without prior knowledge just scat-
ters potential new locations around the initial one. Not constraining the walking direction, and
limiting the walking distance within a broad, uniform range. The models in section 3.2 per-
formed this kind of prediction, but were unable to consider the floorplan, and were only suited
for 2D setups. Using the navigation mesh, aforementioned model can be constrained by the
floorplan, and supports 3D location predictions, by re-calculating the missing z-component.

A predicted pos,, (q;) is somewhere near its origin pos,,, (%-1)- It can thus be generated
by determining the origins triangle, extracting a fraction of the mesh describing the walkable
surface around it, and randomly picking a destination that belongs to this walkable area. This
yields a new location within the vicinity of pos,, (%-1) , constrained by the walkable surface,
including 3D location information. Here, p(q, | g,_,) is simulated by randomly picking a point
on the extracted fraction of the walkable surface. This is achieved by randomly choosing a
triangle that is part of the extracted surface, shown in figure 3.23b, hereafter selecting a random
point that resides within this triangle, visualized in figure 3.23c and 3.23d.

A random triangle is selected by drawing an uniformly distributed index, e.g. using a random
number generator. When performing an infinite number of simulations, this produces an equal
number of samples from every triangle. However, as the size of all triangles is irregular, this
yields a non-uniform distribution of points with respect to the walkable surface, as samples
will concentrate within smaller triangles. Thus, they must not be selected uniformly, but biased
based on their surface area, where larger triangles are chosen more often than smaller ones.

Each triangle’s probability is given by
p(triangle,) = n area(triangle;) , (3.38)

including a normalization constant 7. Details on implementing biased random processes are
omitted for now, and presented later in chapter 4. As shown within figure 3.23c, every point p

within a 2D or 3D triangle is then uniquely identified by a linear combination of two edges

p=p1+tulp—p1)+vipzs—p1), 0<(utwv) <1, (3.39)

A random point within the triangle can be sampled by creating two uniformly distributed ran-
dom numbers u,v ~ U (0,1). In case of (u + v) > 1, occurring for 50 % of the samples, the
resulting point is outside of the triangle. Simply omitting those cases, and drawing a new one,
can affect the output of poor (pseudo-)random number generators. The rejected result can be
used when projecting the point back into the triangle, by mirroring it along the edge between

p2 and ps, visualized in figure 3.23d. Analytically this is achieved by

p=p1+ {1 —u)(p2—p1)+ (1 —=0v)(ps—p1), 1< (ut+v)<2. (3.40)
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When using the described approach, potential new whereabouts are given as samples, uniformly
distributed throughout the extracted fraction of the navigation mesh, shown in figure 3.24a. This
yields a discrete drop to a probability of zero when leaving the fraction, not being realistic. It
can be mitigated by applying a KDE to the samples, yielding a continuous probability density

function, slowly fading near the boundaries, shown in figure 3.24b.

In section 2.7, the KDE used on top of discrete fingerprints also included a weight for each
of them, based on their probability. That is, the weight favored some fingerprints over others,
concentrating a larger part of the resulting density around fingerprints with higher weights. The
same idea can be applied to the movement prediction. By calculating a weight w(q,) for each
sample q,, and applying a KDE afterwards, the uniform behavior is modified. Including weights

allows for creating arbitrary, non-uniform distributions, based on additional metrics, such as

p(q; | g;,-1) transition probability without observations
wig)) = N . . (3:41)
p(q; | q,_1,0:—1) transition probability with observation ,

hereafter being as powerful as the random walks. The behavior of (3.35) can e.g. be approxi-
mated by uniformly sampling multiple locations g, that are reachable from q,_,, and weighting
each one according to whether it matches the heading qt((_ai, and walking distance d, including

an uncertainty

w(q,) =p(q, | q;1,00-1) =N (a | 07Ut211m) N (d — dyai ‘ Oagx?valk)

(3.42)
a = ZA (lxy (Qtfla qt) 7%5(—9%) ) d = diStxy (qtflv qt) ) <Q>t = <(flf,y, @7 s ))t .

An example of random sampling with and without weights is shown in figure 3.24. The first
two figures depict the unweighted uniform sampling from a fraction of the navigation mesh,
including a 3.5 m radius around the start g, ;. The corresponding KDE in figure 3.24b shows
the uniform probability, fading to zero towards the borders. When adding weights (3.42), all
samples with matching distance and heading are more important than others, visualized in fig-
ure 3.24c. The corresponding KDE in figure 3.24d denotes a density, shaped as fraction of a
circle, where both, the requested heading and distance, are correct. This solution matches with

(3.12) and (3.14), yet, including the building’s floorplan, and supporting three dimensions.

Apart from the example (3.42), this approach yields room for an infinite number of met-
rics. Almost all of the densities discussed in chapter 2 can be applied as well, to combine a
uniform floorplan-based movement prediction with sensor observations. By adjusting weights,

an overall density is derived, that combines all individual viewpoints.
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Figure 3.24: 1000 unweighted (a) and weighted (c) random samples from a fraction of the floorplan’s
navigation mesh, within a 3.5 m radius around the start q,_; (black dot). The corresponding KDEs are

shown as heat maps in (b) and (d). Weights used in (c) and (d) are based on (3.42), with dy,x = 2.8 m

and oym = 0.3, assuming the pedestrian’s heading to be qfi = 45°.

Besides being versatile, this approach is often impractical for use on smartphones. As shown
in figure 3.24, numerous random samples are required, to derive new whereabouts, when start-
ing from a single origin. In contrast, (3.42) requires just a few calculations to provide a move-
ment prediction. As discussed earlier, if the uncertainties for oy, and oy, are small, a single
prediction should be sufficient to approximate p(q, | g,_;).

However, this approach can e.g. be used for situations where the direct prediction (3.35)
is unable to provide a result due to obstacles. A result is then obtained by requesting one
uniform sample with additional weighting, denoting how well the uniformly sampled location
matches the initially requested heading and destination. Furthermore, the bottleneck solely
stems from the required uniform sampling, to ensure some samples with a decent weight are
present. The weighting process itself is efficient, and weights can e.g. be used to combine (3.35)

with navigation information, favoring results that approach the pedestrian’s destination.

3.6.3 Navigation

As briefly mentioned for the GVG, irregular spatial models are also suited for navigation pur-
poses. The internal data structure of a car navigation system is similar to the way the GVG
models walkable routes within the building. It describes streets and intersections by edges and
vertices, placed at arbitrary, irregular positions. As streets are rather narrow, they are well-
approximated by edges with a certain thickness. However, for large open spaces, often encoun-
tered indoors, a single edge does not provide a viable representation. It reduces the walkable
surfaces to a narrow channel, preventing the pedestrian from reaching any arbitrary location (cf.
figure 3.20). The previously presented navigation grid suffers from the same issue, but mitigated
it, by placing numerous vertices and edges throughout the whole walkable area. The irregular

navigation mesh models the same surface, but requires only a few triangles. However, shortest
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Figure 3.25: Synthetic (left) and real-world example for shortest paths on navigation meshes when using
a graph created by connecting edge-midpoints for Dijkstra’s algorithm. Resulting paths avoid obstacles
but often suffer from abrupt heading changes or zig-zag patterns. The heat map visualizes the walking
distance towards the destination for every location within the building, where warm colors (red) are near,
and cold colors (blue) are farther away. The heat map is created by searching for the nearest edge-
midpoint, and using its known distance towards the destination.

path algorithms, like Dijkstra or A*, rely on a graph-based data structure. Here, the navigation
mesh’s representation is disadvantageous. While adjacent triangles always share two vertices,
and thus also denote a graph-like structure, suited for Dijkstra or A*, it is too sparse to provide
viable results. Furthermore, this representation tends to favor exterior edges, as they provide
the shortest possible connection [Kall0Oa], yielding the same unnatural walking patterns as the
graph without an obstacle-avoiding metric (see figure 3.17 and section 3.5.3).

A slight improvement is given when deriving a graph by connecting the edge-midpoints of
each triangle, instead of the their corner vertices. This avoids movements along outer edges
[Kal05; Cha82]. The results for a synthetic and a real-world example are shown in figure 3.25.
Except for some minor issues with abrupt heading changes, the overall result for the synthetic
floorplan is viable. Within the real-world example, large open spaces clearly suffer from the dis-
cussed drawbacks, indicated by zig-zag connections. The quality of the routing graph strongly
depends on the size and placement of the triangles, which in turn depend on the segmentation
algorithm used for deriving the navigation mesh. A shortest path calculation based on this result
thus represents an approximation of the actually required walking distance.

A corresponding distance-to-destination heat map is shown in the right of figure 3.25. For
every location, it depicts the nearest edge-midpoint’s known distance towards the destination.
The lower left of this heat map indicates major changes in distance between adjacent trian-
gles. Their size and placement is unfavorable for the shortest path calculation. While there are
many variations of this strategy, like connecting triangle-centers instead of edge-midpoints, or
a combination of both, they all suffer from similar drawbacks [Kal05].

Results can be improved by subdividing large triangles, before deriving the temporal graph.
This is similar to the evenly-sized tessellation of the walkable surface, presented by [Hil+14].

Yet, this causes new issues, as it increases memory requirements, which were originally meant
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Figure 3.26: Synthetic (left) and real-world example for shortest paths on navigation meshes when using
the funnel algorithm. Resulting paths are straight and realistic, but stick to obstacles (bold lines). The
extended version of the algorithm adds additional clearance, avoiding obstacles, being more realistic (thin
lines). The heat map (center) visualizes the walking distance towards the destination for every location
within the building, is smooth, but computationally expensive. It can be approximated by barycentric
interpolation (right), and differs only slightly from the original.

to be decreased by using the navigation mesh. Similarly, the complexity of all required compu-
tations increases as well, while still yielding inferior results.

A robust solution is given by the (extended) funnel algorithm [Kall0b; HS94]. Instead of
strictly walking along edges, it also allows for straight movements through primitives. This
is achieved by first calculating the shortest path like earlier, hereafter refining the result, by
walking directly through primitives whenever possible. That is, the algorithm analyzes the
walkable surface itself, instead of only the approximation. Its output is often superior to the
one derived from the navigation mesh in section 3.5.3. Results for a synthetic and a real-world
example are shown in figure 3.26. Compared to the one from figure 3.25, the path resulting from
the funnel algorithm is smooth and straight. However, it sticks unnaturally close to obstacles.
This is addressed by an extensions to the algorithm, adding margins, to walk around obstacles.
Hereafter, resulting paths resemble actual pedestrian walking behavior. Both algorithms are also
shown for the real-world floorplan. As earlier, when obstacles are not avoided, the upper-left
stairs denote the shortest path towards the destination. When adding a safety margin to avoid
obstacles, the shortest path uses the stairs on the right, and looks more natural.

While the algorithm provides realistic walking paths, it requires complex calculations for
every single location in question. Compared to the graph-based solution from section 3.5.3,
pre-calculating and storing the shortest path from every single location towards the destination,
is impossible. However, as mentioned within the discussions on movement predictions, the ac-
tual path is irrelevant. The only information required is whether a new prediction pos,, (g,)
is nearer to the destination than the previous one pos,,, (qt_l). To perform this comparison,
every location within the navigation mesh must know its distance towards the chosen destina-
tion. When using triangles as primitives, this information can be approximated by barycentric

interpolation. After choosing a destination, the funnel algorithm is used to calculate the dis-
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tance towards the destination for every vertex of the mesh’s triangles, once. This hereafter
allows estimating the approximate distance towards the destination for every location within
the triangles, using the barycentric interpolation. While results will be slightly different than
performing an actual calculation of the funnel algorithm, they are close enough. The inter-
polation is computationally inexpensive, and additional memory requirements for storing the
distance information are negligible, thus well-suited for smartphone use. Figure 3.26 shows the
corresponding heat maps, denoting the distance towards the destination within the small room
on the second floor. The left uses exactly calculated distances from the funnel algorithm, the
right is based on barycentric interpolation. As can be seen, there is only a minor difference
between both. The result can be used in a similar way as earlier for the navigation grid (3.32),

weighting movements on whether they approach the destination pgey, or depart from it

W(Qt) = DPdest (Qt ’ qtfl) ) <Q>t = <($, Y, 25 ))t

Rdest diStj((yz (posxyz (qt) ’pdeSt> < diStiyz (posxyz (Qtfl) 7pd65t) (3.43)

(1 — Kgest) else.

3.7 Summary

Within this chapter, the likelihood for certain pedestrian movements and their probabilistic pre-
diction, based on a floorplan, was discussed. Similar to car navigation systems, this information
can be used to restrict certain movements, addressing sensor faults and uncertainties. Presented
models ranged from simple analytical 2D setups, to highly discontinuous 3D variants, consid-
ering the floorplan and sensor observations. The latter require spatial data structures, where two
representatives were introduced. Based on them, various new probabilistic movement predic-
tions were derived. Finally, the aspect of navigation was discussed, developing new algorithms
for realistic routing within buildings, and corresponding movement predictions.

For an initial impression, the first movement predictions were completely unconstrained,
analytical 2D variants. They visualized the drawbacks of not including the floorplan, and other
prior knowledge. Denoting large homogeneous shapes for new potential whereabouts, they are
viable for a few use cases only. As pointed out, especially the current walking direction is
crucial for the quality of the estimated predictions. However, including this information already
reached the limitations of analytical approaches. While possible in general, the result represents
only an approximation of actual likelihood.

Therefore, the concept of simulation was briefly introduced. Instead of analytical calcula-

tions, densities were represented by multiple samples. When applying a KDE on top of these
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samples, a continuous and calculable density is derived. These simulations also enable consid-
ering the building’s floorplan. Each sampled movement can be examined whether it is blocked
by an obstacle, e.g. by using intersection tests. However, all discussed approaches referred to
two dimensional setups only. To efficiently predict 3D pedestrian movements, spatial floorplan
models are required, describing the walkable surface.

The first examined data structure was a graph with vertices and edges. Its vertices were
placed regularly throughout the whole walkable area of a building, covering ground floor, stairs
and similar. When two adjacent vertices are physically reachable from one another, they got
connected by an edge. The result describes the building’s walkable surface, referred to as nav-
igation grid. Hereafter, an algorithm to estimate new potential whereabouts based on random
walks along this graph was developed. A potential destination is created by starting from a
given origin, and randomly following adjacent edges. For derived destinations to be meaning-
ful, edges are chosen based on probability metrics, denoting their likelihood, for example based
on a known heading. Thus, all resulting samples are distributed based on the likelihood of the
edges they followed. The navigation grid allows for an efficient 3D movement prediction, based
on available knowledge. With graphs well suited for shortest path estimations, this strategy also
enabled navigation. By introducing some adjustments, the calculated paths became realistic, de-
noting potential routes through the building, and avoiding nearby obstacles. Yet, the navigation
grid requires large amounts of memory, and shows a rather discrete behavior.

Therefore, the navigation mesh was discussed as an alternative, also providing a spatial rep-
resentation, yet, requiring less memory. It describes a building’s interior by triangles of varying
size and location. As adjacent triangles share one of their edges, they closely resemble the
walkable surface. This data structure does not allow for random walks, and new probabilis-
tic predictions had to be developed. One was similar to an initial analytic variant, calculating
potential destinations based on walking speed, direction and uncertainty, yet, accepting it only
if physically reachable. In contrast to earlier, the navigation mesh determines the reachability
efficiently, and allows for a 3D estimation of the destination, impossible for the analytic variant.
However, including additional probabilistic constraints besides distance and heading is limited.
Therefore, the concept of uniform sampling and weighting was briefly introduced, equipping
each sample with a weight, which denotes the sample’s likelihood. These weights also allowed
for including navigational knowledge, indicating whether a potential movement approaches the
destination. The required routing was calculated by the extended funnel algorithm. It derives
realistic walking paths, by avoiding obstacles. To prevent costly calculations, an efficient inter-
polation strategy was developed that only needs to be calculated once.

The presented approaches allow an efficient prediction of potential movements, usable to

constrain sensor uncertainties. Combining both aspects is the topic of the following chapter.



Chapter 4
Recursive Density Estimation

As discussed within the two previous chapters, just using sensor observations to perform loca-
tion estimations will yield results that are unstable, due to noise and uncertainty present within
the readings. If the unknown state is observed by a single sensor only, and estimated solely by
its noisy measurement, the resulting estimation directly depends on this measurement’s quality.
By using additional information on surroundings, like a road map or the building’s floorplan,
impossible movements indicated by some sensor can be addressed and compensated. However,
there remains a discrepancy, when sensor readings are erroneous, but the indicated movement is
possible based on the map, yielding unstable and jumping location estimations. As discussed in
chapter 2, averaging is able to compensate sensor noise, especially when it is of the zero mean
Gaussian type, by using more than one reading to perform the estimation. However, the pre-
sented types of low-pass filters resulted in increased delays of the output. While delays are not a
problem for static measurands, like a moored ship, or a resting pedestrian, they are cumbersome

for dynamic systems with moving objects, which represent the main topic of this work.

The effect of using the moving average of sensor data to perform an estimation, is analyzed
by an example. Assuming the one dimensional problem, to determine the position of a static
object. Its current 1D position is observed within o;, by a noisy location sensor. For now, its real

position ¢, is constant, at 10 m, and the location sensor’s uncertainty is a zero mean Gaussian:
3, =10m, o =g, +N(0,6%), o=3. 4.1)

To improve the location estimation, the incoming sensor data o; is filtered by a moving average
low-pass filter. It is implemented using a continuous equation, similar to simple IIR filters and
the complementary filter discussed in section 2.4.1 and 2.4.2:

G=ra+(1—ro, K£=09, g=0. 4.2)
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In (4.2) the incoming observations o slowly contribute to the new state variable ¢,, linearly
mixed with the previous one g,_;, representing the low-pass. Due to the mixing, the estimated
result will experience a delay, as new observations are slowly faded in, depending on the value
of (1 — k). This effect is depicted in figure 4.1a. After the sensor provides its first readings, it
takes some time for the estimation ¢, to move from ¢, = 0 towards the real location. As the

latter belongs to a non-moving object, the system is stable after the low-pass filter converges.

If the underlying measurand is dynamic, e.g. a to be localized moving object, aforemen-
tioned delays remain present at any instant in time. For a corresponding example of a dynamic
case, the state of an object’s position is assumed to start at ¢, = 10 m, and hereafter increase by

0.5 m/s. The behavior of the observation remains as for the static variant in (4.1):
3, =10m+t05m/s, o =g, +N(0,06%), o=3. 4.3)

The results are shown in figure 4.1b. While the output of (4.2) starts to approach the unknown
state of (4.3) based on the value chosen for k, the state has already changed to a new value.
Thus, the filter’s output constantly lacks behind the real value. However, when the behavior of
the dynamic entity, like a car, ship or pedestrian, is known, assumptions on potential changes
can be made. This is where the dynamic transition models from chapter 3 come in to play.
When e.g. the speed of a moving object is known, future locations can be predicted, depending
on the elapsed amount of time. The delay in (4.2) results from the old estimation xq,_; being
favored over new sensor readings, and ¢, is unable to catch up. This can be addressed when
the dynamic behavior is known. Instead of solely using xq,_; as starting value for the next
estimation ¢, the system’s behavior is included as well, predicting expected changes since q,_;.
If this prediction Ag, is added to the previous estimation ¢, ,, the delay induced by the filter is

compensated by the known behavior. The resulting filter is written as follows:
g =r (¢4 +Aq) + (1 — K)oy, 05<rk<1.0, g=0, (4.4)
where Ag, defines the system’s dynamic behavior from (4.3), in this case thus given by
AG, =G, — G, =t0.5m/s. (4.5)

(4.4) equals the complementary filter (2.43), except that its gyroscope sensor is replaced by a
prediction Ag, of the system’s behavior. Figure 4.1c shows the resulting estimation when using
(4.4) and (4.5) with k = 0.9, instead of (4.2). Due to the known system dynamics, the prediction
Aq, is able to compensate the introduced delay, and the filtered output converges similar to the

static version shown in figure 4.1a.
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Figure 4.1: Behavior of a state estimation for (4.1) and (4.3), using the filters (4.2) or (4.4)+(4.5) on
sensor observations. When the measurand is static (a), the estimation stabilizes after several seconds. For
dynamic measurands, the estimation is a delayed version of the real value (b). This can be compensated
when the system’s behavior is known and can be predicted (c).

Figure 4.2 depicts the results for another dynamic system, where the unknown state performs

a sinusoidal oscillation, observed by a sensor within an uncertainty of o = 1
g, = sin(0.125t)4m/s, o =g, + N(0,0%), o=1. (4.6)

The prediction Ag, used within (4.4) is adjusted accordingly:

AG, =G — Gy = 4m/s<sin(0.125t) — sin (0.125 ( — 1))>
4.7

~ Al ((sin (0.125 ( — O.5))4m/s> %) — At % cos (0.125 (t — 0.5)) .

As earlier, Ag, within (4.7) describes the system’s dynamic change within a timeframe. Instead
of using the difference between ¢, and ¢g,_,, this change can also be described by the derivative
of the underlying process, times the timeframe. While the latter is an approximation, it is
desirable for some situations, discussed later. As can be seen within figure 4.2a, when not using
a prediction, the filtered output quickly starts to deviate from the real underlying value. The
filter not only introduces a delay, the amplitude of the oscillation is changed as well. This is due
to its design, using (1 — k) to slowly introduce new observations. As soon as ¢, gets near the
oscillation’s maximum amplitude, actual sensor values already started to decrease, preventing
the estimation from reaching it. For lower frequencies in (4.6), or smaller values of , the effect
of the changed amplitude becomes less pronounced. A smaller x, however, increases the impact
of sensor noise, as it changes the low-pass filter’s cut-off frequency. When including the known
system behavior as prediction in figure 4.2b, filtered results become viable.

In the presented examples, x was an empiric, constant choice, which will not suit real-world
scenarios. While lower values of x introduce less delay, they pass more sensor noise, and
vice versa. x thus depends on the amount of noise present within the sensor readings, which
might be dynamic as well. If noise is minor, (1 — x) should be large, to favor the current

observation o;, and vice versa. Within previous examples, the system’s behavior was well-
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Figure 4.2: Behavior of a state estimation for (4.6) using the filters (4.2) or (4.4)+(4.7) on sensor ob-
servations. When no prediction is available (a) the estimation constantly lacks behind the real location.
With prediction (b), estimation and real value are almost identical.

known, and the prediction was expected to be exact without errors. For real-world use cases,
however, the prediction is uncertain as well. The dynamics often are not fully known, can not
directly be inferred for absolute points in time, and are as uncertain as the observed sensor data
[Jaz70; GSS93]. The movement behavior of a ship, for example, depends on the current speed
and rudder position, which are subject to changes, and can only be estimated based on sensor
readings. Furthermore, speed and current location are influenced by unknown external factors,
such as wind, waves and ocean current. Just as the unknown state, a prediction can be dependent
on sensor observations, and is subject to unknown external influences. This also leads to the

question of how trustworthy the prediction currently is.

While (4.4) already contains a concept for either favoring the prediction or the sensor, given
by k, it supports only a single sensor. More could be added as (1 — )o terms — one for every
sensor, each using a different x — but determining the correct value for each is cumbersome.
Furthermore, the presented example described the unknown state as a single scalar. For in-
door localization, however, the state contains the pedestrian’s 3D position and heading. Also,
not every sensor contributes to all four values (cf. chapter 2 and chapter 3). Additionally, the
presented prediction is unable to include prior information, e.g. given by a floorplan. Finally,
while (4.4)’s result was more realistic than the unfiltered observation, the quality of this result is
unknown. Also, it is unable to include known uncertainties in a probabilistic way, representing

a drawback, discussed in the two previous chapters.

This chapter thus focuses on methods and algorithms that can be used to combine multiple
sensor inputs, to optimally estimate an unknown state. Algorithms must be able to include un-
certainties present within both, sensor readings, and the dynamic prediction process. Referring
to indoor localization and navigation, the sensor readings from the smartphone, discussed in
chapter 2, are combined with potential movements of the pedestrian, discussed in chapter 3.
The unknown state, that is, the pedestrian’s whereabouts and heading, is determined based on a

probabilistic fusion of the evaluations and transitions, described within both previous chapters.
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Figure 4.3: Combining a prior estimation (left) with current sensor observations (right) to determine the
current posterior (center) via multiplication and normalization. Even though both probabilities (left/right)
seem near zero, normalization yields another Gaussian distribution.

4.1 Probabilistic Information Fusion

As discussed, to determine the unknown state of a dynamic system, such as a moving vehicle,
ship or pedestrian, information available by sensors and models should be combined in a prob-
abilistic manner. Doing so includes known uncertainties, and provides a result that is optimal
for the given values, including an accuracy indication for the output. Referring to the simple 1D
localization example from earlier, a probabilistic combination based on uncertainties is briefly
examined. Assuming the 1D location of the object to be known, including some uncertainty,
given by p(q) with ¢ = z, referred to as prior. At the current location of the object, a sensor
reading o = x is observed, yielding a hint on the current location, as seen from the sensor,
called measurement p(o | q). According to Bayes’ rule, the object’s most likely whereabouts ¢

given the sensor reading o and initial guess p(q), is called posterior p(q | 0) and defined as

posterior measurement prior p(o ’ q) ],)((D / discrete
plo]q) p(q) >y Po]d)p(d)
plglo)=—"—==nplo|q)plq) = (4.8)
p(o) plo| ¢)p(q) .
~—~ 5 p ; p continuous .
normalization f—oo p(O | q )p(q) d(]

Shown within (4.8), the posterior is given by the product of the initial expectations and current
sensor observations, including a normalization, to ensure the integral of the result yields 1, and
thus describes a PDF as well. For readability, the normalization is abbreviated as 7). Figure 4.3
depicts a corresponding example of the posterior resulting from prior and observation. Even
though both distributions barely overlap, and the result of their product is near zero, the normal-
ization 7 yields a new PDF. When both, prior and observation, are distributed normally, such as

within the figure, the normalized posterior denotes a normal distribution as well [Smil1]

T}N(w ‘ ,ul,af)./\/'(a; ‘ ,ug,ag) :./\f(ac | LLLQ,O'%,Q) ) 4.9)



160 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

The new 1 » and 0%72 of the resulting distribution are given by

103 + 1207 2 oio3
o= ——"2"L 0 52 = . (4.10)
) 2 2 ) 1,2 2 2
o] + 05 oy + 05

For the following discussions, a slightly different notation is used for p; » and 0%’2, where a
part of the equations is shared, and denotes how the two PDFs are combined. By adding the

substitution term +(o — o}), 01 2 can be rewritten as

2 2 2 2 4 4 2 2 4 4 4

9 003 0105 +0] —0] 0705+ 0] 0y 9 0y

O12 = 22 21 ;2 T 2+ o02 2+2_‘71_ 21 52° 4.1D)
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{12 is adjusted similarly, by adding +(u107) — (p107)

fis = 03+ peoi  (pof) + pios + peot — (1n0t) ot + oy | peoi — oy
1,2 — - -

ol + o3 ol + o3 ol + o3 ol + o3
2, 2 2 2
M1(01 + 03) 01(H2_M1) 07
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Tral T otvel Mt iogleTm)
4.12)

Finally, (4.10) can be condensed to

/’Ll,Q = /’1’1 + k(IJ‘Q - /“Ll) . O-% 2 2 o\ —1
W — ( )

2 2 2 o2 + g2
019 =01 —koj it03

(4.13)

According to (4.13), the new mean and variance are combined by a scalar value %, which solely
depends on the uncertainty of the to-be-combined distributions: the prior and the measurement.
Due to the fraction, 0 < k < 1 with k = Ofor oy = 0, and k = 1 for 02 = 0. The new mean 1, 5
depends on the prior’s mean plus & times the difference between the prior and measurement. In
other words, for £ = 0, the new mean equals the prior’s mean, for £ = 1 the new mean equals
the measurement’s mean. For 0 < k£ < 1 it is somewhere in between. k thus works exactly
as « within (4.2)/(4.4), deciding how to mix the prediction and the measurement. Yet, £ is not
empirically chosen, but depends on uncertainties. If the oy of the prior is smaller than the o
of the measurement, k£ < 0.5, and the posterior is nearer to the prior than to the measurement.
If 05 is the smaller one, £ > 0.5, and the posterior shifts towards the measurement. In other

words, k£ decides whether the prediction or the measurement is to be trusted more.

As (4.13) points out, the new uncertainty o, 5 is also affected by k. However, no mixing
between both uncertainties o7 and o9 is applied here. The new uncertainty equals the one of
the prior, minus a fraction of the same value. Thus, the uncertainty of the posterior is unable to
grow, but can only decrease. Put another way, the posterior will always be more accurate than

the prior, independent of the uncertainty of the measurement.
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The discussed concept also allows for adding observations from more than one sensor, that
occurred at the same instant in time. Assuming statistical independence of all sensors, the
combined probability of all currently available sensor readings o, given the current unknown

state ¢, is determined by the product of the individual probabilities

N
plolq)=]]ploilq), o=(or...,on). (4.14)

=1

Again, if all observations are distributed normally
ploi | q) =N (0; | i, o?) | (4.15)

the result of (4.14) is given by applying (4.13) N — 1 times, to combine all N sensor readings
into a single normal distribution. If some sensor was faulty and did not provide an observation,
it can simply be omitted. Due to (4.13), every additional sensor yields a decrease in uncertainty,
rendering the result more accurate. However, (4.15) only holds true for independent sensors,
providing their observations at the same instant in time. For subsequent observations, a different
approach is required, as it is still unclear how the time component, and e.g. older observations,
contribute to the overall result. Within the previously presented example of the IIR filter, new
sensor readings yielded a contribution as they occurred, stabilizing the location estimation of
an object over time, refining the previous estimation. Furthermore, a prediction was added, to
describe the system’s dynamic behavior and thus compensate delays introduced by the filtering

process. Both aforementioned aspects must be included within the probabilistic variant as well.

4.2 Bayes Filter

This leads to the question of how a probabilistic estimation can be improved when there are
subsequent observations from sensors at different points in time, that is, a history of observa-
tions, and when a system and its unknown state are dynamic. The answer to both is provided
by making the posterior p(q | o) from (4.8) dependent on the current time ¢, and conditioning
it not only on the current observation o, but on the complete history of observations o0;.; since
the beginning up until ¢, as defined in (2.3). The dynamic behavior is added by conditioning the

posterior on all internal and external influences u,.;, that affect the state

<’u>t =Ui:t = Uy, .-, U1, Uy with <u>t = (( . ))t : (4.16)
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For localization problems, u; might e.g. be given by a ship’s rudder angle, but is also affected
by environmental influences, such as wind and ocean current. In other words, influences that

somehow affect the whereabouts over time. The discussed adjustments result in

p(q | 0)(4,3) — p(q; | 01:4, u1:) = bel(q,) , 4.17)

which, in literature [TBFO0S5; Jaz70; Aru+01], is also referred to as belief, how the unknown state
q, might currently look like, based on the complete history of observations o;.;, and influences

u1.¢. The notation for the history of previous values is equivalent to

p(q; | 014, u14) = D(q | 04y -y 01 5 Uy ... U) . (4.18)

To rewrite the conditional probability (4.18) just like earlier in (4.8), a modified version of

Bayes’ rule, conditioned on more than one variable, can be used

ple|b,c,...)= % | reorder, p(«w,6) = p(6, )
p(6,a,c,...)
= | apply p(«,6) = p(a | 6)p(6)
p(6,c,...)

p6|a,c,..)ple,c,...)
— apply p(w,6) = p(w | 6) p(6
p(|<c,..)plc,...) | apply p(e,6) = p(a | 6)p(8) (4.19)

:pﬁ\@,c,...)p(@|c,...) ple|..)p(...)

Applying (4.19) to (4.18) then yields:

bel(q,) = p(q, | 01y, 01, upy ..., uq)
:7729(025 | qi5 Ot—1,-..,01, uta"'aul)p(Qt ’ Ot—1,---,01, uta"'aul) (420)

=1 p<0t ‘ qt, O1:t—1, ul:t) p(Qt | 01:t—1, ul:t) )
A ~~ > ~~ >y
measurement probability prior

which is still similar to (4.8), yet uses the discussed conditioning variables. However, (4.20)
can be simplified when introducing a new assumption: The overall problem formulation of es-
timating the current location of an object, based on sensor observations, influences, and prior
knowledge, can be described as a continuous (hidden) Markov model (HMM). Hidden refers to
observations that only provide implicit hints on the current state, as they denote only relative in-

formation, like speed and heading change, and/or are erroneous (cf. chapter 2) [BP66; TBF05].
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Such models satisfy the so called Markov property [Mar51]. Here, this property states that the
next state ¢, can be predicted solely by the previously estimated state ¢,_,, and the current ob-
servations o;, and influences u;, respectively. In other words, when the Markov property holds
true, past observations and influences provide no additional information. They are implicitly
contained within every state q. Thus, neither the history of estimated states, nor the observa-
tions and influences that lead to those estimations, are required. When the Markov property

holds true, the measurement probability from (4.20) can be simplified to

p(Ot | Qtyolzt—hul:t) = p(Ot | qt)- (4.21)

This is possible, because (4.21) is conditioned on g,, which fully contains all observations and
influences up to time ¢, when the Markov property holds true.

This simplification does not work for the prior given in (4.20), as it is not conditioned on
the state g. To also utilize the Markov property for the prior, the previous state has to be added
to the equation. This is achieved using the law of total probability [BC12]

p(a) = / pla | 6)p(6) d6

(4.22)
p(a,]...):/p(a,]ﬂ,...)p(ﬁ]...) d6..

By applying (4.22), the prior from (4.20) can be conditioned on some new arbitrary variable.
This allows for conditioning the prior on the state ¢, required for utilizing the Markov property.

In this case, ¢,_; is used as conditioning variable, for reasons yet to discuss

p(Qt | 01:t717u1:t> = /p(Qt | Qt_1701:t71,u1:t) p(Qt_l ’ 01:t717U1;t) dg,_; - (4.23)

As (4.23) is conditioned on ¢,_;, all information that lead to this state can be omitted. That
is, the history of observations 0;.;_1, and the influences wu4.;_1, except the most recent one ;.
Within the second parentheses, u; is removed, as this is future information regarding ¢,_;, and

can thus safely be omitted. The discussed changes result in

(g | 0101, u1) = / (e | @1 ue) P(qy_y | 01:0-1,u10-1) dgy_y (4.24)

Examining (4.17), the second parentheses within (4.24) clearly denotes the previous believe, at
time ¢ — 1. The resulting equation uses this previous believe, and combines u; with a transition
probability ¢,_; — ¢,, to convert it into a new believe. For the localization problem this reads:
“Assuming the last believe was correct, given the current influences and some transition proba-

bility, where might the dynamic object have moved to?”. In literature, this equation is therefore
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often referred to as predicted believe or prediction [GSS93; KB61; TBFO05], written as

@(Qt) = p(q; | 01:0-1,u14) = /p(Qt | q;1,u) bel(q,_y) dg; . (4.25)
—_———— ——

prediction previous believe

The predicted believe bel(g,) is given by the previous believe bel(q, ;) and a transition proba-
bility, modeling the object’s dynamics. As can be seen in (4.25), the prediction describes how a
single state g,_, is converted into some new state, which is due to utilizing the law of total prob-
ability. As the old state represents a distribution as well, every potential value has to undergo
the prediction of what it might be hereafter, denoted by the integral. This can be interpreted as a
convolution between the prior and the prediction model. Applying the presented simplifications
from (4.21) and (4.24) to the initial equation (4.20), the posterior can be written as

bel(g;) = p(q; | 01, u1)
=n plo | qp014-1,u1) p(q; | 01:4-1,u1)
=n plo|q,) bel(g,) (4.26)
=n plo|q) / p(q; | @1, ue) bel(q,1) dg,_q,
N—_—— N—— e N— —
measurement prediction recursion

representing the final equation. It infers the posterior, that is, the believe, or probability distri-
bution, of the unknown state ¢, at some point in time ¢, based on the current sensor observations
oy, the g, predicted from the influences w,, and the previous state ¢, ;. For clarification, it distin-
guishes between the predicted state g,, and the posterior ¢,. Due to the dependency on ¢,_,, the
equation represents a recursive process, which is often referred to as recursive state estimation,
recursive Bayesian estimation, Bayesian filtering, or, in short, Bayes filter [Séar13; TBF0S5]. For
it to work, the distribution of the first state g, at time ¢ = 0 must be provided. However, just
distributing it uniformly over the whole state space is a valid decision.

The behavior of the presented filter is depicted using a simple one-dimensional example,
similar to (4.3), yet utilizing probability distributions instead of scalar values. The unknown
state g, solely contains the object’s 1D location. Again, the object’s actual dynamic movement

is assumed with 0.5 m/s, however, now also including a zero mean Gaussian uncertainty
7 =10m+¢t(0.5m/s+ X)), X ~N(,...). (4.27)

The initial believe bel(g,) at time ¢ = 0 is the object’s initial location, if known, with some

degree of uncertainty. Here, it is expressed by the following distribution

bel(q,) = N(10,0.2%). (4.28)
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The prediction also addresses the movement uncertainty X from (4.27), by using another normal

distribution to introduce a similar uncertainty when predicting the object’s movement
bel(q,) = ¢,y + N'(u,0%), o=01, u=05. (4.29)

Shown in (4.29), the new state g, depends on the previous state g,_;, plus the expected move-
ment of 0.5m/s, including an uncertainty o. As (4.29) resulted from the law of total proba-
bilities, it denotes the transition from one explicit starting state ¢, ;. It thus has to be applied
to every potential prior state ¢, (cf. integral (4.26)), which is somewhat similar to a convolu-
tion between the prior believe bel(g,_,), and each transition probability (4.29). The predicted
believe bel(g,) will thus become more uncertain. This effect is depicted in the left half of

figure 4.4, where the prediction is shifted by 0.5 to the right, and is slightly wider than the prior.

The increased uncertainty after the prediction is addressed by sensor observations. Within
this example, a sensor measures the object’s absolute position with a small uncertainty o = 0.5.
This uncertainty is included by assigning a probability to the difference between the observa-

tions and the prediction bel(q, ), that exactly resembles the expected sensor noise o = 0.5

(o | G;) :./\/(ot | qt,a2) :N(A | 0,02) , 0=05, A=o0-7, . (4.30)
————

Asensor<>prediction

Results after two prediction and measurement update iterations are depicted in figure 4.4. The
predictions, shown in the left half, clearly denote an increase in uncertainty whenever the ob-
ject’s dynamics are predicted. The resulting distribution is moved by 0.5 to the right, and gets
slightly wider. This is intuitive behavior, as estimating a moving object’s location, e.g. a car
passing a tunnel, will become increasingly inaccurate over time. Hereafter, the following mea-
surement update compares the current sensor observations o; against the prediction g, including
the known sensor noise. This step refines the prediction, and results in the posterior, which is
more accurate (figure 4.4, right half). If sensor observations are currently unavailable, the poste-
rior is equal to the predicted believe. The prediction ensures that the unknown state is adjusted,
even without observations, yielding an increasing uncertainty over time. Again, this is similar
to a car, passing a tunnel, and being tracked solely based on driving speed. This estimation
becomes increasingly uncertain. As soon as it exits the tunnel, observations are available, and
the cumulated uncertainty is decreased by the observations. Following previous discussions on

(4.13), observations decrease uncertainty, while the newly introduced prediction increases it.
The presented equations for prediction and measurement update clearly resemble the prob-
abilistic sensor and transition models discussed in chapter 2 and 3. Yet, it is unclear how to

actually calculate the densities for the prediction bel(g,) and posterior bel(g,). While some of
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prediction measurement update

9 10 11 12
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Figure 4.4: Two prediction/update steps using the Bayes filter (4.26) on the presented example (4.27).
The left half denotes the prediction of the object’s dynamics (4.29). Due to uncertainties, the predicted
believe becomes wider than the prior. The right half shows the measurement update (4.30), where the
prediction is refined by the current sensor observations, yielding a slightly more certain posterior.

the models from the previous chapters are given as simple normal distributions, just like the
presented 1D example, others required multivariate normal distributions, or represent mixture
distributions. Dependent on the to-be-solved problem formulation, analytical versions for cal-
culating those densities exist. However, they often come at certain limitations. The same holds
true for more complex algorithms, with support for arbitrary distributions. While often being
more flexible, they suffer from other to-be-discussed drawbacks. The following sections will
focus on real-world implementations for applying the presented Bayes filter to actual problem:s,

and address potential advantages and disadvantages of specific implementations.

4.3 Kalman Filter

The Bayes filter is not limited to specific density functions, and supports arbitrary distributions
for believe, prediction and sensor noise. The way actual results are calculated within (4.26)
depend on the chosen models, and thus the used density functions. For both, simplicity and
correctness, analytical solutions to (4.26) are preferred. However, the analytical product and
summation of two densities is only available for a few representatives. The same holds true
for the prediction step, affecting the believe density, where analytical solutions are often only
available for simple, linear models [TBF05], also shown in chapter 3.

This section focuses on analytical solutions for the Bayes filter. It covers problems that can
solely be modeled using normal distributions for the believe, prediction and the measurement
update step, and where both, prediction and update, denote a linear system, Axz = b. Whenever
those constraints can be satisfied, the Kalman filter [Kal60; KB61] can be used as analytical
implementation of the Bayes filter. Even though normal distributions limit the applicability to

unimodal problems, and the requirement for linear systems restricts potential predictions and
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measurement updates, it is still applicable to many real-world scenarios. Applications range
from general object tracking [CHP79], over inertial navigation [Meh70], and satellite localiza-
tion [Fit71], towards medical applications, such as tracking retinal blood vessels [CZK98].
The Kalman filter is based on the principles discussed in section 4.1 and 4.2. First, the prior
density is adjusted by a prediction step, hereafter being refined by a measurement update, re-
sulting in the posterior. Here, both steps solely refer to the adjustment of normal distributions.
Section 4.1 has already shown that the second step, of deriving the posterior, can be solved ana-
lytically, as the product of two normal distributions denotes another normal distribution. (4.13)
calculated the new p and o for the one dimensional case. However, it is yet unclear how to
handle the convolution required by the prediction within section 4.2, when using normal distri-
butions. Furthermore, for arbitrary problems, a single dimension is insufficient, and multiple
dimensions are required. 3D localization, for example, requires at least 3 dimension’s for the
whereabouts (x, y, z). The Kalman filter thus uses multivariate normal distributions, to describe

believe, prediction and sensor noise:

1 1 T -1
plo) = s e (<o~ W ) @31

The distribution’s mean is given by the vector p, and its uncertainty by the covariance matrix
3.. The latter not only models the variance for every component, e.g. a position in x, y and z,
but also influences between the components, if any. For example, while the three position coor-
dinates might be statistically independent, yielding zeros beside the diagonal of the matrix, an
object’s speed or direction influence its position, creating a dependency and thus a covariance.
Likewise, the distribution’s center is given by the vector u, holding the mean value for every
single component. Within the Kalman filter, the distribution’s p represents the mean value of
the believe. The most likely estimation of the unknown state is thus directly given by this vector.
While the typical notation in literature uses x for the state, and either y or z for the observations
[TBFOS5; GAO1; Kal60], to consent with the previous sections, within the following the state’s
mean is referred to as g, the observation as o, and the influences as u.

Following (4.26), the dynamics of the underlying model are defined within the prediction
step, where the prediction @, incorporates a set of known update rules based on the prior q,_;,
known internal influences w;, and unknown external influences, which represents a convolu-
tion of two distributions. Regarding normal distributions, a convolution of two yields another
one, which is due to the following facts: A convolution in sample space equals a multiplication
in frequency space [Smi99, p. 180], the Fourier transform of a Gaussian equals another Gaus-
sian [Smi99, p. 216], and the product of two Gaussians yields another Gaussian, as previously

shown in section 4.1. As a consequence, the convolution of the prediction step yields a new
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normal distribution with different mean and covariance. For the Kalman filter, this adjustment
is described by a linear transformation. As will be shown shortly, a linear system applied to a
Gaussian will yield another Gaussian as well. The transformation is split into two steps, one for

the distribution’s mean and one for the covariance. The first is given by
g, = Aq,_,+ Bu;, (+X), X ~N(0,X). (4.32)

(4.32) derives the new predicted state g, based on the previous state g,_,, adjusted by a matrix
A. Additionally, known influences u;, adjusted by a matrix B, and unknown external influ-
ences X, are included as well. The matrix A describes the change in state, when no additional
influences are given. The matrix B denotes the mapping from the influences u onto the state
q. This mapping is necessary, as the influences might be expressed using different units, do not
affect every component of the state, or affect more than one component. The zero mean Gaus-
sian noise X has no impact on the calculation of @,, but is assumed to be present. It describes
expected uncertainties and systematic errors, increasing the uncertainty of the predicted state

q,, which is subject to an additional equation.

The essence of (4.32) can be explained using an example, often found in literature [Jaz70],
where an object’s location x and velocity & represent the unknown state, which is affected by a

known acceleration # and unknown influences, such as wind, ocean current or similar

previous position previous speed known acceleration
Ty = Ti—1 + .i'tflAt + 05$t(At)2 (433)

.ft't - jﬂ't,1 -+ .TtAt
~~~ ~—~—

previous speed known acceleration

To use (4.33) with the Kalman filter, it is rewritten according to (4.32)

1 At Ti—1 O5(At)2
= + (i) (+x

(@), = {(@,2)"),, (u), = ((2)),-

Within (4.34), the matrix A derives the new predicted location and speed g, based on the prior
q,_,. Likewise, B incorporates the current influences u,, containing the known acceleration,
mapping the influences onto the state. As the state represents a normal distribution, this step

adjusts its mean, which can be thought of the average of a random variable X

N
E(X) = % > . (4.35)
=1
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As can be seen, this value is linearly affected by multiplication and addition. The result of (4.32)
thus shifts the distribution’s mean, yielding the new center of the predicted state. Furthermore,
adding a zero mean random variable X does not affect the mean itself, but only its covariance,
referred to as P,. This value is also affected by the multiplication of A, yet, in a different way.

In general, the covariance of a multidimensional random variable X is defined as
Cov(X) = ]E((x _E(X)) (X — IE(X))T) . (4.36)

According to (4.32), the covariance P;_; belonging to q,_, is affected by Aq,_;, and +X". The
term +Bwu, has no impact, as adding a constant value does not affect the covariance, but only
the mean. According to (4.36), the zero mean Gaussian noise X from (4.32) is incorporated by
simply adding it to P;_;. The impact of the product Aq, ; on P,_; is given by

Cov(AX) = E((AX ~ E(AX)) (AX ~ E(AX))")

E((AX — AE(X)) (AX — AE(X))T) =E <A(X ~E(X)) (A(X N E(X))>T> (4.37)

—E <A(X ~E(X)) (X — IE(X))TAT) — AE ((x ~E(X)) (X - IE(X))T) AT
= ACov(X) AT .

Combining all aspects yields the Kalman filter’s equation for the predicted covariance P,
P,=AP,_ A" +Q, (4.38)

that belongs to g, from (4.32). It is based on AP, A", to match the product Aq, ,, and
the matrix @ includes the impact of the previously excluded random variable X’. Similar to
figure 4.3, (4.32) and (4.38) adjust the center, size, and orientation of a normal distribution.

Their combination thus resembles the Bayes filter’s convolution step.

After predicting the next state based on known behavior, sensor observations are used to
refine the believe, denoting the posterior. The combination of the prediction with the current
measurements is performed in the same way as discussed in (4.13). If the prediction’s covari-
ance P, is more certain than the measurement’s covariance R;, it is preferred, and vice versa.

The linear mixing of both covariances is given by the Kalman gain K, describing the ratio
K=P, (P, +R) . (4.39)

K is hereafter used to infer the new mean, by interpolating between prediction and measure-

ment, and its covariance, by reducing the uncertainty based on the amount of mixing

thGﬂrK(ot—ﬁt), Pt:?t_Kﬁt- (4.40)
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For now, (4.39) and (4.40) strictly used the same calculations as the one dimensional case (4.13).
However, just like the influences u,, the observations o; might use different units than the state,
refer only to some parts of it, or more than one part of it. Therefore, a translation between both
is required. This adjustment is provided by another matrix, in literature often named C or H,

translating the predicted state g, into potential observations:
0,=Cq, (+X), X ~N(0,Xs). (4.41)

Again, the relationship denoted by (4.41) reads as “assuming the object’s current state is q,,
what should the sensors observe?”. It is given by the mapping C, converting from the state to
the observations, including a known zero mean Gaussian sensor noise X. Again, the latter is
only given to denote the presence of noise, but is not included within the calculation. Actual
uncertainties of the current observation are denoted by the matrix R, from (4.39). (4.39) and
(4.40) thus are only correct for the special case of C' = I, where the observations can be directly
mapped onto the state, without adjustments. For a general solution, g, must be converted to
measurement space using Cq,, before it can be compared against the observations. The same
holds true for their covariances. According to (4.37), the covariance P, from the state space is

converted to the measurement space using C P,C”. The Kalman gain (4.39) hereafter reads as

K'=CP,C" (CP,CT+R) ' . (4.42)

Due to the impact of C, the result of (4.42) uses the coordinate system of the measurements, and
thus the measurement space. As the Kalman gain is used to adjust the state, and its covariance,

the result must be mapped from the measurement space back to the state space using C '

state space state > space
¢=q,+C'K'(o,-Cq,), Pi=P, ~ C’l(K’(CﬁtCT) >C*1T
M — (4.43)
measurement space measurement space

- Ft - CilKICﬁt .

However, when C' is not a square matrix, e.g. when only some of the attributes are observed
by sensors, C " is undefined. While this can be addressed e.g. by using the Moore-Penrose
inverse [Pen55] instead, this introduces unnecessary roundoff errors. Therefore, the problem
is addressed by moving C~" into the calculation of the Kalman gain K’ from (4.42), which
cancels with the first C' . This step finally yields the well-known Kalman filter equations for the

measurement update step, where the Kalman gain is given by

K—C 'K =C (CPC" (CP.C"+R) ') =P,C" (CP.C"+R)", (444
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and is used to derive the posterior’s mean and covariance
¢,=q,+K(o,—Cq,), P,=P,—K(CP,)=(I-KC)P,. (4.45)

Just like for the 1D case, the posterior’s mean ranges somewhere in between the prediction
and the measurement, depending on the ratio K of the uncertainties. Similarly, the overall

uncertainty is reduced based on this ratio, refining the posterior over time.

Reverting to the example (4.34) of estimating an object’s 1D location and velocity, the
Kalman filter requires the initial believe bel(q,) as a starting point. In case it is unknown, it is
assumed to be distributed uniformly throughout the whole state space, which is approximated
by N (0, 00), or, in practice, some large numbers. Assuming that the initial location = of the

example object is approximately known, but its velocity & is not

0 1 0
= Py = 4.46
q <O> ) 0 (O 100) ’ ( )

and there are no known or unknown influences. That is, the prediction only depends on the

estimated state itself, and is assumed to be exact:

= (0) . Q= (8 8) . (4.47)

The first prediction after At = 1s will not affect the mean, as the currently estimated velocity

2 is still 0, causing no change in position. The state’s covariance, however, is updated:

— 1 At (1 0 1 0 00 101 100
P, = APAT +Q = + = . (4.48)
0 1 0 100/ \At 1 0 0 100 100

As can be seen in (4.48), the uncertainty in velocity directly creates an uncertainty in location,
as the location depends on the current velocity, and thus its variance. Now, the object is actually
moving at 5m/s, and a single sensor observes the current location z, at a variance of 2m. The
first observation takes place after At = 1s, where the object resides at x = 5m, and is related

to the predicted state g, via C

o= (5), R=(2), c=(10). (4.49)

The Kalman gain K denotes the ratio between predicted covariance and measurement noise

_ _ (098
K,=P,C" (CP,C"+R) ' ~ (o 97> , (4.50)
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that is, the ratio between 101 and 101 + 2 for the location x, but in state space, including the

covariance between location and velocity. Using K to estimate the posterior then yields

4.90 _ (196 1.94
—d + K (o —Ca.) ~ . P, -P,- KCP, ~ 451
0=+ Ko - Cq) <4.85> L= ! (1.94 2.91) @D

(4.51) depicts two important aspects of the Kalman filter. Even though the initial velocity z
was unknown, assumed 0, and not observed by any sensor, the filter was able to estimate the
current velocity based on the covariance between location and velocity. Furthermore, even
though the initial variance estimation for the velocity was 100, it dropped to 2.91 after a single
measurement update, which did not measure the velocity itself.

While the Kalman filter provides a robust estimation of the unknown state after only a few
measurement updates, it only supports for linear predictions and measurement updates. When
angles and trigonometric functions come into play, the Kalman filter can not be used as is, due
to their nonlinear behavior. Regarding the localization context, this relates to predictions where
an angular heading is involved, or measurement updates that contain angular information, such
as radar and LIDAR [SCI13; TBFO0S5]. For those cases, adjustments are required.

4.4 Extended Kalman Filter

As discussed within the previous section, linear transformations of a normal distribution gener-
ate another normal distribution, which is scaled and shifted by constants. However, not all pre-
dictions and measurement updates can be described using linear systems. As soon as functions
like sine and cosine are involved, the system becomes nonlinear. For most navigation purposes,
however, those functions are mandatory, e.g. to adjust an object’s current whereabouts based on

the estimated heading and speed, as mentioned within chapter 3

Ty =Ty—1 + U1 C(‘)S(Gt_l) (452)
Yt = Y1 + v_18in(Oy_q).

When such nonlinear predictions are applied to a Gaussian prior, the resulting predicted believe
will rarely be distributed normally around the mean value [TBF05]. This behavior is depicted
in figure 4.5, where the Gaussian prior from the upper left is adjusted by three different trans-

formation functions for comparison

x lr] <1 3
fa(x) =224+ 2 fo(z) = fe(x) =2+ —cos(z). (4.53)
4r — 3sgn(z) else 4
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Figure 4.5: Linear and nonlinear modification of a Gaussian prior (upper left). If the density is modified
by a linear transformation (a), the resulting distribution is another Gaussian. The nonlinear transforma-
tions of (b) and (c) yield a non Gaussian result. Here, a Gaussian can be approximated (dashed curves)
by linearizing the transformation (dashed lines). Adapted from [TBFO0S, p. 57] figure 3.4.

When the linear transformation f,(z), shown in figure 4.5a, is applied to the Gaussian prior, it
is shifted and stretched by a factor of 2, and the result represents another Gaussian. The trans-
formation f,(z) from figure 4.5b uses a conditional combination of two linear transformations,
thus being discontinuous. While each of the two just stretches the prior, the overall result is non
Gaussian. The same holds true for f.(z), shown in figure 4.5c. The impact of cos(x) moves the
density’s mass towards one direction, producing a non Gaussian result. Transformations such
as fp(z) and f.(z) thus can not be used within the Kalman filter.

This drawback is addressed by the extended Kalman filter (EKF) [SSM62; Jaz70]. Com-
pared to the regular Kalman filter, it allows for arbitrary prediction and measurement update
functions, but still relies on Gaussian distributions. Switching from linear to arbitrary func-
tions within the prediction and measurement update step is achieved by replacing the matrix

multiplications with two functions, often referred to as g() and h():

linear nonlinear

4 =Aq, , +Bu, (+X) = q=g9(q_,w) (+X) (4.54)
o, =Cq, (+X) = o,=h(q,) (+X).

The new mean @, is the result of a prediction function g(), and is directly mapped onto the
observations using a translation h(). By replacing the linear matrix equations with functions, a
general solution for arbitrary models becomes available. However, with the underlying distribu-
tion still being a multivariate normal distribution, the previous calculations of P, (4.38) and K
(4.44) are no longer valid. With the linear matrices A and C' replaced by nonlinear adjustments,
the uncertainty becomes distorted, and is no longer a Gaussian (cf. figure 4.5).

The main idea behind the EKF is to approximate the two matrices A and C, based on the
functions g() and h(), at the drawback of accuracy [Do+09; SSM62]. Both matrices denote
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how a covariance is changed, when an underlying random variable is transformed by them. So
do the two newly introduced functions g() and k(). Except that their change is not necessarily
linear (cf. figure 4.5). However, by assuming them to behave linearly throughout the whole
range, that is, enforcing linearization, A and C' can be approximated. As the covariance is
unaffected by addition of constants, the approximation is given by the partial derivative of g()
and h(), with respect to each output, that is, their Jacobian matrix [BC12]

oh(@ | 4 oh(@)

o0z Ox;
J= : ;

ofi(x) ofi(x)
o0z +.. Ox;

flxy,...,x;+ A, ) — f(x)

(4.55)

Like A and C, their Jacobian describes each dimension’s change in output depending on a
change in input. Similar to a linear tangent around a center point, known from the Taylor
series [Tay15]. Regarding the prediction and measurement update of the EKF, the smaller the
adjustments made by g(gq,_,,u;) and h(q,), the more accurate the assumption of the linear
behavior is. The same holds true for the size of the covariances, det(P;) and det(R), yielding
more accurate approximations for smaller values. As can be seen in (4.55), even if the partial

derivative can not be determined analytically, it can be approximated numerically [TBF05].

For the EKF, the two matrices A and C from the Kalman filter are thus replaced by

091(qi—1, ue) o 091(qi—1, ue) 0hi(q,) L Ohi(q,)
Iq dq; g, aqj
A= : : , C= : - : , (4.56)
99i(q,_1, ut) o 99i(qy_1, ut) ohi(q,) o ohi(q,)
oq 8‘];’ 861 aqj

which are then often referred to as F' and H, respectively [GAO1; Sir13]. For linear models g()
and h(), such as the presented example from (4.33) and (4.34), the content of the two Jacobians

is identical to the Kalman filter’s original matrices:

Oz, Oz Oy 0%y 1 At
=1, - = At, =0, - =1 = A= ) 4.57
O0x_4 0t O0xy_q Ot (O 1 ) ( )

The extended Kalman filter allows for combining multiple sensors and prediction models with
nonlinear behavior, while still maintaining the benefits of fast, analytical calculations. This puts
the filter to a broad use, from electronic battery impedance observing [Do+09], to multicopter
location estimation [Gar+16]. Especially for the latter, the EKF presents an ideal candidate, as

potential movements oudoors are unlimited by surroundings. Here, the assumption of unimodal
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normal distributions provides an efficient analytical solution, to combine multiple sensors with
predictable behavior. Indoors, however, potential movements are constrained by architecture,
often yielding multimodalities and discontinuities, discussed in chapter 3. Furthermore, com-
pared to controlled vehicles, the movement of pedestrians is much more uncertain, requiring the
prediction to predict all potential variants. For such use cases, Kalman filters are too restricted

in terms of predictions and density modeling, requiring for different approaches.

4.5 Particle Filter

Working based on a single, multivariate normal distribution is the (extended) Kalman filter’s
key for fast, analytical calculations. Yet, this also represents its strongest drawback. For many
real-world scenarios, the state space is constrained, requiring multimodal, arbitrarily shaped
distributions. Referring to the models discussed in chapter 2 and 3, it becomes clear that the
combination of a building’s architecture, and human walking behavior, often can not be repre-
sented by such simple distributions. The predicted density must not propagate through impass-
able objects, such as walls, and must be able to divide itself, when e.g. more than one walking
direction is likely. The Kalman filter and its variants thus can not be used for most of the proba-
bilistic prediction and measurement update models discussed in chapter 2 and chapter 3, as they
rely on more complex density functions than a single normal distribution.

Besides the Kalman filter as analytical implementation of the Bayes filter, there are other,
sometimes non-analytical, representatives, allowing for arbitrary density functions. One pool of
approaches is given by the so called Monte Carlo algorithms, named and described by Stanislaw
Ulam, John von Neumann and Nicholas Metropolis [Met87] in the mid 1940s. The method was
developed during World War II, to solve problems related to thermonuclear reactions, where
many calculations either could not be formulated in an analytical manner, or were too cum-
bersome to calculate. Due to the advent of the first electronic computers, such as the ENIAC,
simulations of physical circumstances, such as the behavior of particles, like neutrons, became
possible. The results of the simulations were used to gather details on processes that could
not be described in an analytical way. Here, a particle was a single entity with some state and
behavior, stored on a punched card [MU49]. The simulation used multiple particles, stored on
several punched cards, representing a sort of initial state. The cards were fed into the compu-
tation unit, applying known physical models based on the parameters stored for each particle,
to derive a new set of particles. To estimate the result after a certain amount of time, this step
was repeated. Seeming slow at first glance, as described by Metropolis and Ulam, this type of
simulation can be highly parallelized. Every particle can be simulated on its own, whenever the

problem formulation assumes independence. This, however, is not always a given [Del98].
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Figure 4.6: Approximation of a Gaussian (dashed line) using 50 discrete samples (dots). Samples can be
placed according to the underlying probabilities, yielding a concentration based on the distribution (a).
Alternatively, samples can be distributed uniformly throughout the whole state space, and are hereafter
weighted (dot size) based on the underlying probability, shown in (b) and (c). A continuous representa-
tion (solid line) is provided by applying a kernel density estimation.

Before simulating complex physical behavior, Ulam used the Monte Carlo method for a
statistical analysis on the probability of winning the Canfiled solitaire card game. While think-
ing about a com