Institute of

N\JILQQ

<
%]

% Universitit
< Braunschweig

g‘%}i %% Technische SpGCQ Sys’rems
F

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet iiber http://dnb.d-nb.de abrufbar.

(©Copyright Logos Verlag Berlin GmbH 2015
Alle Rechte vorbehalten.

ISBN 978-3-8325-4165-1

Logos Verlag Berlin GmbH
Comeniushof, Gubener Str. 47,

10243 Berlin

Tel.: +49 (0)30 42 85 10 90

Fax: +49 (0)30 42 85 10 92

INTERNET: http://www.logos-verlag.de

High Performance Propagation of Large Object Populations in Earth Orbits

Von der Fakultit fiir Maschinenbau

der Technischen Universitit Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Wiirde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: Marek Mockel
aus: Oldenburg (Oldb.)
eingereicht am: 15.09.2.015

miindliche Priifung am: 29.10.2015

Gutachter: Prof. Dr.-Ing. Enrico Stoll
Prof. Kefei Zhang, PhD

2015

II

I love humans. Always seeing patterns in things that aren’t there.

The Doctor

Contents

List of Abbreviations

List of Symbols

Abstract

Zusammenfassung [German Abstract]

1.

3.

Introduction

11. SpaceDebris. e

12. ScopeofWork
1.2.1. Computational Models for Orbital Propagation
122, UseCaseso i it i e e

13. Outline. e

State of the Art

2.1. Orbital Physics and Propagation
2.11. PerturbationForces

22. GPUComputing i e
2.21. A Short History of Graphics Processors
2.2.2. General Purpose GPU Computing
223. CUDA . . . e
2.2.4. Alternative Parallel Programming APIs
2.2.5. GPU Computingin Space Research

2.3. Software Architecture and Development
2.31. Object-Oriented Programming Techniques
23.2. DesignPatterns oo

A Software Framework for Orbital Propagators

3.1. Properties of Orbital Propagators
311 Complexity oo e
312. Modularity e
3.1.3. Eligibility for Parallelization

3.2. Orbital PropagationInterface
321 OVETVIEW ittt e e
322, Concept . . . L
323, DataTypesot vt e
324. HostInterface
325. PluginInterface L .
3.2.6. PropagatorProperties o
327 CUDASupport oot e
3.2.8. Multi-Language Support oo

xiii

XVii

Xix

Xxi

10
18
18
24
25
32
32
33
33
35

Iv

CONTENTS

3.29. Collision Detectionttt 54

3.3. Propagator Implementation Guidelines 55
High-Performance Analytical Propagation 61
41. FLORA . . . e 61
410, OVEIVIEW . . . v vt it ittt et e e e e 61
4.1.2. AtmosphericModel 62
4.1.3. Third Body Perturbations 62
414. Solar Radiation Pressure, . 63
41.5. Zonal Harmomics v i ittt e e e 63
41.6. FLORAasanOPIPlugin 63

4.2. Tkebana - A Parallel CUDA Propagator 64
421, OVEIVIEW . . v vttt i e et e e e e e e e e e e e e e e e 64
42.2. Tkebana:lkebana 65
42.3. TkebanazPMMeanMotion v v v i v vt it e 67
424. Tkebana:PMZonalHarmonicst vuuenen... 69
42.5. TkebanazPMLuniSolar., 71
42.6. Ikebana:PMSolarRadiation. 72

4.2.7. TIkebana:AtmosphericData 74
4.2.8. Ikebana:PMAtmosphere 75
Performance Analysis 77
5.1. Reference Population 77
52, ACCUTACY o v it e e 78
5.2.1. Floating Point Considerations 78
52.2. Accuracy Derterminationo o oL 8o
5.23. Individual Model Accuracy 81
524. Total AccuracyResults 96
52.5. TLEDataComparison, 107

53. Speed 109
53.1. Runtime Evaluation 109
532. Benchmarking 110
5.33. Performance Evaluation Setup, . 111
534. PerformanceResults. 113
53.5. CUDARuntimeAnalysis 114

54. Double Precision CompariSon v v v v vt i vt 118
55. Summary e 126
Use Case Study: Space Debris Visualization 127
G L. OVETVIEW . . . v v v i e 127
6.2. Classes vt e 128
6.21. DOCTOR:DOCTOR ittt i i 128
6.2.2. DOCTOR:SpaceObject 129
6.23. DOCTOR:Debris 130
6.24. DOCTOR:TimeMachine 130
6.2.5. DOCTOR:GUIWTIappero v ittt it it 130
6.2.6. DOCTOR:ScriptEngine. 130

6.2.7. Auxiliary Classes ottt 132

6.3. Propagation e 132

CONTENTS

6.31. GPGPUApproach
6.32. OPIApproach
6.4. Performance i e

Conclusions and Further Research
71, OPI . . e e e e e e e e e
72, Tkebana o o e e e e e e e

. Outlook

81. GPUComputingt
8.2. Numerical Propagation

. CUDA Profiler Report for the Atmospherical Model

Al. GeForce GTX 860m i ittt it e e e e e
A2, GeForce GTX 900 v v v v i it e e e e e e e e e e e e e e e
A3, TeslaK20C . . . o ot e e e e e e e

. Individual Error Rate Plots

. lkebana Class Headers

Cl. Ikebana:zTkebana i i i i i e
C.2. Tkebana:PMMeanMotion v v v v i i e e e e e e e e e e
C.3. Ikebana:PMZonalHarmomnics v v v v v o e e e e e e e e e e e
C4. Tkebana:zPMLuniSolar o 0 i e
C.5. Ikebana:PMSolarRadiation o v i i ittt
C.6. Tkebana:AtmosphericData.,
C.7. IkebanaiPMAtmosphere.

v

VI

CONTENTS

List of Tables

11.

3.1

3.2.
3.3.
34.

4.1.

5.1
5.2.
5.3.
54.
5.5.
5.6.
5.7
58.
5.9.
5.10.
5.11.
5.12.

5.13.

6.1.

Summary of the different propagator use cases and requirements. 8

Excerpt from [Reglitz, 2012], table 3.18, showing the names of the input param-
eters that the three orbital propagators FLORA, FOCUS1 and ZUNIEM have

INCOMIMOTN. . . v v vt e 40
Description of the elements in OPI::ObjectProperties. 45
Constraints for orbital data provided by thehost 56
Constraints for object properties provided by thehost 57
Input values for which NRLMSISE data is provided in FLORA. 62
Results of the algorithm from listingg.1. 79
Classification of theresults. 96
Mean decay rates of FLORA and Ikebana over different propagation times. . . 111
GPU specifications 112
CPU specifications o o vt ittt it et e e e e e 113
Performance of FLORA on Intel(R) Core(TM) i7-3820 CPU [MP/s] 113
Performance of FLORA on Intel(R) Core(TM) i7-4710HQ CPU [MP/s] 115
Performance of Tkebana on NVIDIA Tesla K2oc [MP/s] 115
Performance of Tkebana on NVIDIA GeForce GTX 86oM [MP/s] 116
Performance of Tkebana on NVIDIA GeForce GTX 960 [MP/s] 116
Performance of Tkebana (Double Precision) on NVIDIA Tesla K2oc [MP/s] . . . 119
Performance of Tkebana (Double Precision) on NVIDIA GeForce GTX 860M

[MP/S] . . o e e 119

Performance of Tkebana (Double Precision) on NVIDIA GeForce GTX 960 [MP/s]120

Speed of DOCTOR with Ikebana, simple CUDA and shader propagation (in
framespersecond) o 136

VIII LisT oF TABLES

List of Figures

0.1.

1.1.
1.2.

1.3.

14.

2.1
2.2.

2.3.
24.

2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

Screenshot of DOCTOR showing the wonderful people who made this possi-

ble. Thankyousomuch! xxii
Mlustration of the >1cm object population in Earth orbit as of 2009. 2
Simulation of a collision between two satellites (a) minutes after the event and

(b) six months later, showing the distribution of the generated fragments. .. 4

A spatial density plot from MASTER 2009 showing various sources of space
debris. The region around the 8oo kilometre altitude band shows the highest

number of objects. L L 4
Mlustration of the practical difference between analytical and numerical mod-

els. e 6
Parameters of an orbital ellipse (based on [Wiedemann, 2014]). 9
Parameters describing the position of the orbit and the satellite (based on

[Wiedemann, 2014]). o oo i 11
Hlustration of the eccentric anomaly (based on [Wiedemann, 2014]). 12
Mlustration of Kepler’s second law based on [Vallado, 2007]. The grey areas

havethesamesize. 12
Zonal, sectoral and tesseral harmonics 13
Visualization of the RAAN change caused by zonal harmonics perturbations. . 14
Visualization of the apogee decrease caused by atmosphericdrag. 15

Simulation of third body effects causing an inclination buildup in GEO orbits. 16
Mlustration of the simplified shadow model. The Earth’s shadow is approxi-
mated as a cylinder; True and eccentric anomalies are calculated for the points

at which it is intersected by theorbit. 17
Screenshot from the 1979 video game ”Asteroids”: A specially designed vector
graphics processor was used for drawing the on-screen objects. 18
The 1993 video game ”Starfox” used a graphics coprocessor called the “Super
FX” chip to accelerate the rendering of 3D polygons such as the space ship. . 19

“Quake” was one of the first PC games to support modern 3D graphics hard-
ware. The overlay on the left side shows the polygons used to construct the

SCEIIE. + v v v e e e e e e e e e e e e e e 20
Mlustration of the fixed-form GPU pipeline (based on [Kirk and Hwu, 2010,
figure 2.1). 21
Architectural differences between CPU and GPU hardware based on [NVIDIA
Corporation, 2015, figures3. L 22
Screenshot from “The Witcher 3” showing realistic movement of hair and fo-
liage which can be calculatedona GPU. 23

Screenshot from the upcoming space flight game ”Star Citizen” showing aster-
oids and space debris: Realistic visualization of clouds, lighting and material
surface properties rendered in real-time on amodern GPU. 24

2.17.

2.18.
2.19.

2.20.

3.1

3.2
3.3.
34.
3.5.
3.6.

3.7
3.8.

3.9.
3.10.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
5.1

5.2.

5.3.

5.4.

5.5.

5.6.

List oF FIGURES

Example of CUDA’s thread organization with two-dimensional blocks and
grids based on [Kirk and Hwu, 2010], figure3.13. 26
Mlustration of thread and array layout for the above kernel. 27
Overview of the different types of memory CUDA offers. Based on [Kirk and
Hwu, 2010], figure 3.9. oo o e e 31
UML diagram of the Satellite class and the two child classes derived from it. . 34
Performance of the shader and CUDA code versus the CPU ([Méckel et al.,
2011]). Results are combined from two experiments with different population
sizes which is why the CUDA curve has more data points than the others. .. 38
Plugin Context as shown in [Marquardt,1999]. 41
The modified plugin design pattern upon which OPIisbuilt. 42
UML diagram of the OPI interface connecting a host application (DOCTOR)
and a propagator (Ikebana). For reasons of clarity, not all classes are shown. . 43
Simplified UML diagram of OPI::Population and the associated data types OPI::Orbit,
OPI::ObjectProperties and OPIL:Vector3.o v v i v i i i oo 44
Simplified UML depiction of OPI::Host, the class that specifies the host inter-
face. . .. e e e 45
Design pattern for an analytical propagator. 46
Simplified UML diagram of OPI::Propagator and OPI::PerturbationModule, both
derived from the OPI:Moduleclass. 47
Simplified UML diagram of the OPI::CudaSupport class. 53
Visualization of the real-time spatial partitioning and collision risk assess-
mentin DOCTOR. e e e it 55
UML diagram of Tkebana. 65
Flowchart of the runPropagation function in Ikebana’s main class. 66
Flowchart of Tkebana’s luni-solar PerturbationModule. 72
Flowchart of Tkebana’s solar radiation pressure PerturbationModule. 73
Handling of atmosphericdatain FLORA. 74
Handling of atmospheric datain Ikebana. 75
Flowchart of Tkebana’s Atmospheric PerturbationModule (including functions
from AtmosphericData). 76
The reference population used for propagator validation and analysis, visual-

ized with DOCTOR. it e e e e e e e e 77
Comparison between Ikebana and FLORA with and without OPI. Very small
differences between the two FLORA versions are caused by slightly different

rounding of the outputdata. o L. 82
Comparison of the zonal harmonics module of Tkebana and FLORA on a LEO
orbit. Object number: 13464 L L 83
Comparison of the zonal harmonics module of Tkebana and FLORA on a GEO
orbit. Object number: 28472 Lo L oL 83
Comparison of the third body perturbations module of Tkebana and FLORA
on a LEO orbit. Object number: 13464 84

Comparison of the third body perturbations module of Tkebana and FLORA
on a GEO orbit. Object number: 28472 85

5.7

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.
5.16.

5.17.

5.18.
5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.
5.29.

5.30.
5.31.

LisT oF FIGURES X1

Third body perturbations: Slight deviations in eccentricity caused by the code
shown in listing 5.2. Object number: 22963 86
Solar Radiation Pressure: This LEO orbit comparison shows several of the
observed effects such as an oscillating semi major axis and small deviations

in inclination and RAAN. Object number: 37452 88
Solar Radiation Pressure: Small deviations occur in all orbital elements. Ob-
jectnumber: 34242 L 89
Solar Radiation Pressure: Error handling for negative eccentricities can lead
to unpredictable results. Object number:38098 90
Atmosphere: Slight deviations in eccentricity, inclination, and RAAN. Object
nuUmMber: 28075 i e e e e e e e e e e 02
Atmosphere: The semi major axis declines slightly faster in Ikebana. Object
number:33504 03
Atmosphere: Decline of the semi major axis in high-eccentricity GTO orbits
Objectnumber: 25850 94
Atmosphere: Decline of the semi major axis in high-eccentricity GTO orbits
Objectnumber:36833 05

Total Results: Histogram showing the error rates between FLORA and Ikebana. 97
Total Results: Histogram showing the error introduced into FLORA’s output

when the Fio.7 values for solar activity are overestimated by 2%. 98
Total Results: Histogram showing the error introduced into FLORA’s output
when the atmospheric density values are overestimated by3%. 08
Total Results: Error rates of 1000 random objects. 99
Total Results: Typical LEO object with slightly faster decline of the semi major
axis and no major changes in the other elements. Object number: 28075 100

Total Results: The faster decline of the semi major axis in the atmospherical
model causes an overall slightly increased decay rate. Object number: 39769 . 101
Total Results: LEO objects with imminent decay show relatively large devia-
tions of semi major axis and eccentricity at the final data point. Object num-

ber: 3757 . . . e e e e e e e 102
Total Results: Some highly eccentric orbits with low perigees show relatively
large deviations of semi major axis and eccentricity. Object number: 22670 . . 103
Total Results: Without the atmospherical model, the inaccuracies visible in
figure 5.22 have largely vanished. Object number: 22670 104
Total Results: Propagation of GEO orbits is generally free of deviations. Object
NUMDET: 22003 . . . v v o e e e e e e e e e e e e e e e e e 105

Total Results: The deviations introduced by the solar radiation pressure mod-
ule (compare figure 5.9) are small enough to get cancelled out. Object number:
34242 ¢ o e 106
Vanguard-1.. L 107
Vanguard-1 propagated with FLORA and Ikebana. The dashed line shows the
changes caused by setting the drag coefficient to 2.4 which is realistic accord-

ing to [Bowman, 2002]). e 107
Vanguard-1 TLE data plotted against FLORA and Ikebana results.. 108
Performance in megapropagations per second of FLORA and Ikebana on var-

ious platforms. L 114

Relative speedup of Tkebana on various platforms compared to FLORA (i7-3820). 114
Percentage of the total run time of each perturbation module. 118

XII

5.32.

5.33.
5.34.

5.35.
5.36.
5.37.
6.1.
6.2.
6.3.

6.4.

6.5.

6.6.

71
7.2.

B.1.
B.2.
B.3.
B.A4.
B.S.

List oF FIGURES

Performance of FLORA and Ikebana with double precision: All platforms but

the Tesla suffer significant performance losses. 119
Relative speedup of Tkebana with double precision compared to FLORA. . .. 120
Ikebana with double precision: Most objects show no significant deviation
from the single precision version (LEO). Object number: 37452 122
Ikebana with double precision: Most objects show no significant deviation
from the single precision version (GEO). Object number: 22963 123
Ikebana with double precision: In other cases, the results from FLORA are
reproduced more closely. Object number: 12952 124
Ikebana with double precision: The low eccentricity problem of Tkebana can
be addressed by using double precision (GTO). Object number: 37847 125
Ground track projectionin DOCTOR. 127
Simplified UML diagram of DOCTOR. 128
Flowchart illustrating DOCTOR's initialization and main loop. 129
The GUT’s scripting console allows direct input of Lua functions for control-
ling animation and setting PropagatorProperties for OPI plugins. 131

Hlustration of the GPGPU propagation from [Mockel et al., 2011]: The orbital
data and parameters were provided as textures and used by a vertex shader to

calculate the trueanomaly. L L L. 133
Ikebana propagating 150,000 objects in DOCTOR at almost 40 frames per sec-

ONd. . . . e e e e e e e e 136
UML diagram of the proposed OPI::PopulationModifier plugin type. 138
Example of an OPI::PopulationModifier used to add launch traffic to a popula-

oM. . . . e e e e e e e e e e 138
Error rates of the zonal harmonicsmodule.. 171
Error rates of the lunisolarmodule. 172
Error rates of the solar radiation pressure module. 173
Error rates of the atmospherical module. 174

Combined error rates of zonal harmonics, lunisolar and solar radiation pres-
suremodules. L. e 175

X1V

List of Abbreviations

A2M
AES
ALU
API
BOL
CPU
CUDA
DOCTOR
DRAM
ECC
EOL
EUV
FLORA
FPS
FPU
GCC
GEO
GLSL
GNU
GPGPU
GPU
GUI

JD
LMRO
MASTER
HAMR
MJD
MLI
MP/s

Area-to-Mass Ratio

Advanced Encryption Standard
Arithmetic Logic Unit

Application Programming Interface
Beginning of Life

Central Processing Unit

Compute Unified Device Architecture
Display of Objects Circulating in Terrestrial Orbits
Dynamic Random Access Memory
Error Correcting Code

End of Life

Extreme Ultraviolet

Fast Long-term Orbit Analysis
Frames per Second

Floating Point Unit

GNU Compiler Collection
Geostationary Earth Orbit

(Open)GL Shading Language

GNU'’s Not Unix

General Purpose GPU Computing
Graphics Processing Unit

Graphical User Interface

Julian Date

Launch- and Mission-Related Objects
Meteoroid And Space Debris Terrestrial Environment Reference
High Area to Mass Ratio

Modified Julian Date

Multi-Layer Insulation

Megapropagations per second

NaK

NaN

NASA

NORAD
NRLMSISE-oo0

OpenACC
OpenCL
OpenGL
OpenMP
OPI

PPU
RAAN
RAM
SDK
SDL
SIMD
SPACE
SRP

SSA

SSR

TDP
TLE
UML
ZUNIEM

LIST OF ABBREVIATIONS XV

Natrium-Potassium

Not a Number

National Aeronautics and Space Administration
North American Aerospace Defence Command
Naval Research Laboratory Mass Spectrometer
and Incoherent Scatter Exosphere 2000

Open Accelerators

Open Compute Library

Open Graphics Library

Open Multi-Processing

Orbital Propagation Interface

Physics Processing Unit

Right Ascension of the Ascending Node
Random Access Memory

Software Development Kit

Simple DirectMedia Layer

Single Instruction, Multiple Data

Scientific Parallel Animation and Computation Environment
Solar Radiation Pressure

Space Situational Awareness

Satellite Situation Report

Thermal Design Power

Two-Line Elements

Unified Modeling Language

Zuschlag Numerical Integration of the Equations of Motion

XVI

List of Symbols

Orbital Elements

a Semi major axis m

e Eccentricity -

i Inclination rad

() Right ascension of the ascending node rad

w Argument of perigee rad

M Mean anomaly rad

E Eccentric anomaly rad

v True anomaly rad

p Semilatus Rectum (“orbital parameter”) m
Benchmarking

M Propagator Benchmark Index

Np Number of propagation operations

Nproc ~ Number of parallel processors/threads

Nop; Number of population objects

Nt Number of propagation time steps

Ppar Parallelizable section of an algorithm

S Speedup factor

AT Propagation step size

Tp Propagation time frame

tst Propagation time per object per time step

trotal Total propagation time

XVIII

Orbital Physics

A

Cross-sectional area

Daily planetary amplitude
Aerodynamic acceleration
Planetary amplitude

Solar radiation acceleration
Ballistic coefficient

Drag coefficient

Reflectivity coefficient

Radio intensity at 10.7cm wavelength
Gravitational acceleration

Scale height

Satellite’s mass

Atmospheric pressure

Solar radiation pressure

Molar mass

Gas constant

Mean radius of Earth

Radius vector between satellite and Sun
Shadow function

Temperature

Satellite’s orbital velocity
Longitude

Gravitational parameter of Earth
Atmospheric density

Latitude

® |3

S

=
oQ

3z 3

32
=3

I~

3 3
S,
=~

&

Abstract

Orbital debris is becoming an increasing problem for space flight missions. New satellite
launches, explosions, collisions and other events cause a steady rise in the number of objects
orbiting the Earth. It is therefore important to determine the future development of the
object population, as well as the effectiveness of debris mitigation measures, in long-term
simulations. Orbital propagation, the calculation of an object’s movement in its orbit, poses
a challenge for this research due to the high computation times of the complex perturbation
models involved. Sophisticated analytical methods exist that are able to propagate an ob-
ject in mere milliseconds per time step, including perturbations from atmospheric drag, the
Earth’s uneven gravitational field, third bodies and solar radiation pressure. However, due
to the high population sizes of hundreds of thousands of objects as well as simulation time
frames of up to 200 years, these calculations can still take up hours of computation time. To
speed up this process, the analytical propagator Ikebana is introduced in this thesis. It was
programmed to run on graphics processing units (GPUs), hardware designed for massively
parallel execution of up to thousands of concurrent threads. This reduces the overall run
time for large object populations from hours to minutes. Porting software from a conven-
tional CPU is not a trivial task and involves a number of potential pitfalls and optimization
opportunities which are detailed in this work. The propagator is integrated into other ap-
plications via a generic, multi-platform interface specifically designed for this task. It allows
to develop the propagator separately and integrate it into other tools as a plugin at run time.
The interface’s architecture serves as a design template for analytical propagation software.
It also features automated mechanisms that facilitate the development of GPU-based prop-
agators which compute the motion of large object numbers in parallel. As an exemplary
application that uses Ikebana as a plugin, the space debris visualization tool DOCTOR is in-
troduced. Its real-time propagation requirements and use of the graphics processor were the
sparks that started this research. With the parallelized propagator integrated via the generic
interface, the software is able to fluently animate populations of hundreds of thousands of
objects while taking into account all relevant perturbations.

The title image shows satellites and space debris objects larger than one centimetre, visual-
ized with DOCTOR and propagated one month into the future with Ikebana. One object is
highlighted to show its current orbit and position (yellow) and its original orbit (white).

The project on which this thesis is based has been funded by the German Federal Ministry
for Economic Affairs and Energy under the grant number 50 RA 1306. The responsibility for
the contents of this work lies with the author.

XX

Zusammenfassung [German Abstract]

Weltraumschrott wird fiir die Raumfahrt ein zunehmendes Problem. Da sich die Anzahl der
Objekte im Weltall durch neu gestartete Satelliten, Kollisionen und Explosionen kontinuier-
lich erhoht, ist es wichtig, mittels Langzeitsimulationen die zukiinftige Entwicklung der
Objektpopulation und die Wirksamkeit von Miillvermeidungsmaf$nahmen abzuschitzen.
Die Bahnpropagation, d.h. die Berechnung der Bewegung der Objekte auf ihren Umlauf-
bahnen, verursacht dabei erheblichen Rechenaufwand. Mit analytischen Verfahren kann
die Bahnbewegung eines Zeitschritts inklusive Stéreinfliisse durch Atmosphire, Erdgravi-
tation, Drittkérper und solaren Strahlungsdruck in Sekundenbruchteilen berechnet wer-
den; bei der Betrachtung ganzer Populationen von mehreren Hunderttausend Objekten iiber
Zeitriume von bis zu 200 Jahren fallen dennoch Rechenzeiten von mehreren Stunden an. Um
diesem Problem Herr zu werden, wird in dieser Arbeit der analytische Bahnpropagator Ike-
bana vorgestellt, der fiir die Ausfithrung auf Grafikprozessoren (GPUs) konzipiert wurde. Bei
diesen Prozessoren handelt es sich um hochparallele Recheneinheiten, die in der Lage sind,
viele Hundert Objekte gleichzeitig zu berechnen und somit die Gesamtrechenzeit fiir grofSe
Populationen erheblich zu reduzieren. Bei der Portierung der Software von einer gewdhn-
lichen CPU sind einige hardwarespezifische Hiirden zu beachten, die ebenfalls detailliert
beschrieben werden. Der Propagator wird iiber eine eigens dafiir entwickelte, generische
Schnittstelle in Anwendungsprogramme eingebunden. Diese erlaubt es, den Propagator ge-
trennt zu entwickeln und als Plugin bereitzustellen, das zur Laufzeit in beliebige Simulation-
stools integriert werden kann. Die Architektur der Schnittstelle dient dabei als Designvor-
lage fiir analytische Propagationssoftware; ebenso verfiigt sie iiber Automatismen, die die
Entwicklung GPU-basierter Propagatoren erleichtert. Als beispielhaftes Anwendungspro-
gramm wird das Visualisierungstool DOCTOR vorgestellt, das die Weltraummdillpopulation
darstellt. Sein Anspruch an den Propagator, grofie Populationen in Echtzeit zu berechnen
sowie die Verwendung von Grafikhardware bilden den Ursprung dieser Arbeit. Durch die
Einbindung des parallelisierten Propagators iiber die generische Schnittstelle wird das Pro-
gramm in die Lage versetzt, Populationen von mehreren Hunderttausend Objekten unter
Beriicksichtigung aller relevanten Storeinfliisse fliissig zu animieren.

Das Titelbild zeigt Satelliten und Weltraumschrott der Zentimeterpopulation, visualisiert
mit DOCTOR unter Verwendung von Ikebana als Propagator. Die Population wurde einen
Monat in die Zukunft propagiert; ein Objekt ist hervorgehoben, dessen aktuelle und ur-
spriingliche Umlaufbahn in gelb, bzw. weifd dargestellt sind.

Das dieser Arbeit zu Grunde liegende Forschungsvorhaben wurde mit Mitteln des Bun-
desministeriums fiir Bildung und Forschung unter dem Férderkennzeichen 50 RA 1306
gefordert. Die Verantwortung fiir den Inhalt dieser Veréffentlichung liegt beim Autor.

foi

ene

Screenshot of DOCTOR showing the wonderful people who made this possible. Thank you so much!

1 Introduction

People write research papers about, "Here’s a really tricky algorithm to do that”, but it doesn’t
work in all cases. People who are synthesists and think of those complex algorithms, they
really pooh-pooh that. They don't like to hear that because they want it to fall to cleverness
rather than raw power; but the way things have consistently, undeniably fallen over the years
is to raw power.

John D. Carmack

John Carmack became known to the space community when he founded Armadillo Aerospace
in 2000. His fame, however, stems from a different profession: He is recognized as one of’
the world’s leading innovators in the field of real-time 3D graphics engines for video games
(IMIT Technology Review, 2002]). The statement above was made in 2004 when he was in-
terviewed about the “Doom III” graphics engine and his plans for following projects ([Kent,
2004]). It comments on the fact that complex computational problems can often only be
solved by more powerful hardware. While some can be addressed efficiently with sophis-
ticated algorithms, these often make simplifying assumptions that will only work under a
narrowly defined set of conditions; a proper solution can only be realized once the technol-
ogy becomes powerful enough to process the additional amount of data. However, he goes on
to recognize that “cleverness” is still required to harness this power in the most effective way
so the amount of simultaneously processable problems can be increased. This is especially
true in the field of digital entertainment where tough competition forces developers to get
the most out of existing hardware in order to deliver the best product.

Obviously, this does not just apply to entertainment applications. Video games use com-
puters to create a simulation of the real world; even though the content is usually fictional,
people expect things to look and feel in a certain way based on their real-life experience,
such as gravity, physical conditions of depicted objects, shadows and reflections. The more
detailed the model, the higher the immersive effect. Scientific applications work in a very
similar way: A real-world entity is described by a mathematical model and simulated with a
computer in order to study it. The more accurate the simulation, the better the results can be
applied to real world problems. However, increased detail in the model almost always comes
at the cost of higher computational effort. For this reason, most scientific disciplines have
greatly profited from the advances that computer science has made over the last decades.
With the ever-increasing computational power of modern PCs, simulations can be executed
at higher speed and with more detail, data from measurement campaigns can be processed
faster and more information can be stored and organized.

In many cases however, simply relying on faster computers to improve the speed of an exist-
ing algorithm is not sufficient. This has become especially apparent early in this millenium
when a paradigm shift took place in the way that computer hardware was designed. During
the 1980’s and 1990’s, hardware manufacturers focused mainly on increasing the clock speed
of their processors to improve their power. Recently, a physical limit has been reached where
it is no longer feasible to further improve the clock rate due to the excessive heat generation

2 1.1. SPACE DEBRIS

that it involves ([Kirk and Hwu, 2010]). Instead, the main area of optimization now lies in
increasing parallelism (i.e. adding more “cores” to a processor). This forces software devel-
opers to adapt their algorithms to this new paradigm: Most applications that existed up to
then performed their operations in a strictly sequential order. In order to benefit from addi-
tional cores, such applications must be redesigned to execute some of their instructions in
parallel.

3D graphics applications are particularly suitable for parallelization since the vertices and
pixels from which a scene is drawn can be processed independently from each other. For this
reason, graphics processors are optimized for massively parallel execution. With the advent
of general purpose programming interfaces for these devices, they can be used to simulate
physical models not just for entertainment but also for science. In space research specifically,
orbital propagation of large object populations can greatly benefit from this. The physical
models used in those algorithms are similar in nature to the three-dimensional graphics
applications: Both make extensive use of trigonometric functions and vector operations in
3D space. In addition, since the individual objects of the population do not usually interact
with each other, propagation can easily be executed in parallel.

1.1. Space Debris

Figure 1.1.: llustration of the >1cm object population in Earth orbit as of 2009.

Almost all space flight missions produce debris. At the end of their operational lifetime,
most satellites in higher orbits remain in space because the energy required to return them
to Earth would be much too high. As of 2009, only about 25 per cent of the approximately
3200 catalogued satellites were operational. Depending on the orbit characteristics, some
would take hundreds or even thousands of years to slow down and burn up in the atmo-
sphere; others, specifically objects in the Geostationary Earth Orbit (GEO), have virtually no

1. INTRODUCTION 3

chance of returning. Those objects are usually moved into higher, so-called graveyard orbits
at the end of their lifetime to make room for new operational spacecraft. But spent satellites
are not the only source of debris. Some of the upper stages of the rockets that were used to
place them into orbit do not return to Earth and remain in space. Earlier spacecraft often
used explosive charges for operations like removing lens caps from telescopes. While this
practice has largely been ceased for reasons of debris mitigation, some of the debris gen-
erated by it can still be observed today. Apart from these launch- and mission-related objects
(LMRO), secondary sources of mostly smaller debris particles include flakes of paint caused
by surface degradation, pieces of multi-layer insulation (MLI) foil delaminating from satel-
lites and rocket bodies, droplets of leaked sodium-potassium (NaK) used as a coolant, and
dust and slag from solid rocket motor firings. While larger objects can be observed by radars
and telescopes, most of them are too small to be detected. ESA’'s MASTER (Meteoroid and
Space Debris Terrestrial Environment Reference) application uses physical models that simulate
the sources of these undetectable particles in combination with observation data to generate
its object database. The data is statistical in nature so it cannot be used to assess actual object
positions. It is however possible to calculate collision probabilities and possible long-term
developments based on it. Overall, the documentation ([Flegel et al., 2011]) lists over 220,000
representative! objects in the size regime of one millimetre as well as approximately 150,000
larger than 5 mm, ca. 116,000 objects larger than 1 cm (figure 1.1), ca. 28,000 objects larger
than 10 cm and over 5,000 objects larger than one metre. Numbers for object sizes down to
1pm are in the millions. All objects are potentially hazardous and may pose a risk to oper-
ational spacecraft. Clouds of small particles can damage solar panels and cause the satellite
to malfunction; but especially the larger ones can be extremely dangerous. Due to the high
velocities at which they are traveling an impact with a piece of debris as small as 1cm in diam-
eter can potentially fragment the satellite causing more debris. Figure 1.2 shows a simulation
of a collision between spacecraft: In the event, more than 5,000 fragments were generated. At
first they are distributed along the satellites’ original orbits; perturbation forces cause them
to spread over time and cover wider areas, potentially crossing into other spacecraft’s orbits.

In most orbital regions, collision probabilities are still low. But new launches, explosions and
collisions continuously increase the population. In 1978, [Kessler and Cour-Palais, 1978] de-
scribed a cascading effect that would occur in orbital regions with a high population density:
If a critical number of objects was reached, collisions among them would cause the popula-
tion to increase even though no further objects were added by space flight missions. This
is commonly known as the Kessler Syndrome; the data from MASTER 2009 (figure 1.3) shows
that the altitudes around 8oo kilometre are at the highest risk.

Space debris has become a global problem that all major space agencies worldwide aim to
solve in collaboration. Recent studies conducted at the Institute of Space Systems ([Mdckel
et al., 2013], [Mockel et al., 2015]) show that countermeasures such as post-mission disposal
and active removal of high-risk objects can help to reduce the impact of debris on the near-
Earth environment. This thesis aims to make a small contribution by introducing an orbital
propagator that is capable of handling the huge object numbers involved in this research.

L Representative refers to the practice of subsituting several small objects with similar properties for a single one.

4 1.1. SPACE DEBRIS

Figure 1.2.: Simulation of a collision between two satellites (a) minutes after the event and (b) six months
later, showing the distribution of the generated fragments.

ESA MASTER-2009 Model
2D spatial density distribution vs. S.D. Altitude
Global Average: 0.5240E-06 [1/km"3]

4.5e-005 — —

4e-005

3.5e-005 |

3e-005

2.5e-005 |-

2e-005

1.5e-005 -

Spatial Density [1/km*3]

1e-005 -

5e-006

0
100

10000 100000
Altitude [km]
—— Explosions NaK Droplets -------- Paint Flakes — Total

Collisions SRM Slag -~ Ejecta
———————— LMRO SRM Dust - MLI

Figure 1.3.: A spatial density plot from MASTER 2009 showing various sources of space debris. The region
around the 8oo kilometre altitude band shows the highest number of objects.

1. INTRODUCTION 5

1.2. Scope of Work
1.2.1. Computational Models for Orbital Propagation

Orbital propagation is a mathematical process by which a satellite’s orbit around a celestial
body and its position on that orbit are determined for a given time. Like all computational
models, no approach is capable of accurately describing reality in every detail. Increasing the
complexity of the model always results in higher computation time. For any given problem,
a trade-off must be found that is both sufficiently accurate and sufficiently fast. In computer
graphics, for example, a circle can be approximated by a polygon with evenly distributed
edges; the more edges, the closer the resemblance. Drawing a perfect circle would require an
infinite number of edges and, subsequently, infinite computational time. However, from a
certain point onwards, the polygon and the perfect circle will be visually indistinguishable;
any additional time spent on drawing more edges will be wasted.

For orbital propagation, as with many other applications, several computational models ex-
ist which can be broadly divided into three distinctive categories: Numerical, analytical and
semi-analytical. [CCSDS, 2010] provides a good overview of these three categories: Numeri-
cal propagation is performed by direct numerical integration of the differential equations of
motion describing the forces that influence the object’s position and velocity. While gener-
ally very accurate, numerical propagation is also the most computationally complex method.
The underlying equations describe the change in position and velocity for a given time step
based on the previous output; obtaining a solution for a specific time requires both an initial
position and velocity as well as a continuous iterative process. Just like in the above exam-
ple, the solution can be further approximated by adding more steps, i.e. more computational
effort, until the desired accuracy is reached. As illustrated in figure 1.4, the maximum achiev-
able accuracy is limited by the scope of the underlying model.

Analytical propagation is based on mathematical formulas that describe an object’s position
as a function of'its orbit and the desired time. They are often derived from real-world ob-
servations, for example, by performing a regression analysis on large sets of measurement
data. In contrast to numerical propagation, a solution can be obtained directly for any given
point in time. However, analytical models describe the underlying physical effects in a much
simpler manner. Therefore, in general, analytical propagation is computationally faster but
less accurate. Since no approximation process takes place, accuracy improvements can only
be achieved by revising the model itself.

Semi-analytical propagation is a combination of the two methods that can be used if accurate
orbit determination over long time periods is required. Only the long-term perturbation
effects are taken into account which are described analytically, but with more accurate models
as in the case of full analytical propagation. These are then integrated numerically. This
allows for relatively accurate estimation of the object’s orbit but also makes it possible to use
larger time steps.

1.2.2. Use Cases

Orbital propagation forms the basis of many different topics in space research. Long-term
predictions of the space debris environment are done by propagating a catalogue of objects
into the future while analyzing possible events such as breakups, collisions, new launches and
decays. But even to build such an object catalogue, object propagation is required: During

6 1.2. ScoPE oF WORK

Numerical
Model

Approximate
Solution

Exact
Solution

Analytical
Model

Figure 1.4.: Illustration of the practical difference between analytical and numerical models.

tracking campaigns with radars or telescopes, a spotted object’s trajectory has to be calculated
in order to predict the location where it will be visible next.

The methods of orbital propagation, as described previously, differ in two key properties:
Speed and accuracy. Depending on the requirements given by the propagator’s use case, a
numerical or analytical method is chosen. This section presents four exemplary use cases
and their demands in the properties mentioned above. This work covers analytical propaga-
tion which mainly applies to use cases 3 and 4. These two are used as examples throughout
the following chapters; the intent of the propagator introduced in chapter 4 is to meet the
requirements of both.

Use Case 1: Reentry A spacecraft is about to reenter into the atmosphere. To determine
potential locations of debris hitting the Earth’s surface, the object is constantly monitored.
Predictions are made so that in case of a potential breakup over a populated area a warning
can be issued to the public. Many parameters necessary for these predictions, such as the
object’s tumbling rate and the atmospheric density at its current location are burdened with
high uncertainties. However, given the object’s high speed and altitude, small variations in
the predicted impact location can make a huge difference regarding the object’s criticality.
To introduce as little error as possible into the calculation, the propagator’s accuracy require-
ment should be regarded as high. Since usually only one object has to be accounted for and
location updates are made available only a few times per day, run times of a few minutes or
even hours are acceptable. Speed requirements are therefore low. A highly accurate numeri-
cal propagator is best suited for this task.

Use Case 2: Tracking and Cataloguing During a tracking campaign, objects in space are fol-
lowed using an appropriate tracking device such as a radar, telescope or laser. The size of the
window in which an object is visible largely depends on the technique used but in any case,
only a fraction of the orbit can be captured. To uniquely identify and catalogue an object,
multiple detections have to be made and linked to the same object. Usually, this process in-
volves estimating the full orbit from the visible fraction and searching a preexisting catalogue
for possible candidates immediately after a detection is made. The tracking device can then
be adjusted to scan the position where the object is thought to be visible next. The computa-
tional demand for the propagator in this use case is high both in terms of speed and accuracy.

1. INTRODUCTION 7

Propagation has to be fast enough to allow the identification of a possible candidate before
the object passes over the tracking site again; depending on the technique used, additional
time is required to adjust the tracking device accordingly. During this time, large portions
of the catalogue may have to be considered if the number of possible candidates is high. The
level of accuracy required depends on the size of the detection window but can generally be
considered to be high, albeit over much shorter time periods than in a long-term population
analysis. In addition to computational power, object tracking is extremely demanding with
regard to the bandwidth of networks, memory and storage devices as large amounts of data
have to be streamed to the algorithms in near real-time.

Use Case 3: Long-term Analysis For long-term evaluation of the space debris environment,
an entire object population is propagated over large time periods of up to 200 years. De-
pending on the scenario requirements, population sizes of 50,000 to 200,000 objects are
considered. Once each time step, typically ranging between one day and three months, satel-
lite launches, collisions and debris removal measures are simulated to estimate the increase
in object numbers over time. A Monte-Carlo approach is used to account for uncertainties in
the input data. This quickly results in billions of propagation steps that have to be carried out,
often occupying computers for hours or even days. It is obvious that this use case requires a
propagator that can process large object populations at high speeds which only an analytical
method can provide. Since long-term scenarios evaluate the space debris population statisti-
cally, the knowledge of the objects’ exact position is not required, contrary to the reentry use
case. More important are the properties and positions of the orbits themselves from which
information such as the number of objects that travel through certain orbit regimes can be
deviated. This subsequently enables further analyses such as collision risk assessment. The
accuracy of the propagator has to be high enough to correctly reflect the overall development
of the population including orbit changes and decay rates of objects. Long-term analyses like
this have been carried out in several projects such as [Flegel et al., 2010], [Mdckel et al., 2013]
and [Mockel et al., 2015].

Use Case 4: Visualization For demonstration purposes, real-time 3D visualization programs
can be used to show the movement of single objects or large object populations around the
Earth. In order to provide a smooth animation, the desired number of objects has to be prop-
agated at least 30 times per second. While this is easily performed on a regular CPU for one
or even a few thousand objects with an analytical propagator, animating a population of hun-
dreds of thousands of objects requires extremely high propagation speeds that are currently
available only on massively parallel hardware architectures such as graphics processors. Us-
ing analytical equations for this task also has the advantage that they do not depend on values
calculated for previous time steps. Arbitrary jumps in time are possible so users can watch
the population at different points in time. In that case, the propagator must still be accurate
enough to realistically reflect changes in the population such as decays that occur during the
skipped time frame without taking longer than a few seconds. Since the objects’ positions are
merely calculated to show their position on the screen, the visualization case has a low de-
mand for the propagator’s accuracy. Especially among large populations small inaccuracies
that occur in the position of each object will be undetectable by the user and will not change
the overall visual impression. A software tool suitable for this use case will be introduced in
chapter 6 of this thesis.

Others A sophisticated software tool that covers two or more of the above use cases might re-
quire different approaches to orbital propagation running at the same time, or some method
to arbitrarily switch between algorithms. For example, if a tool is created with the purpose

8 1.3. OUTLINE

of following a specific object’s course over time while taking into account possible collision
threats from space debris it might be necessary to simultaneously propagate a single object
with high accuracy and a large population of other objects with lower accuracy.

Secondly, although not a use case in itself, another important issue should be considered.
When a propagator or a component such as a physical model is revised it is necessary to
update and validate the implementation. Validation is usually carried out by comparing
propagation results against actual orbital data or, if no such information is available, an-
other propagator that has already been validated. This process can be extremely tedious and
error-prone, especially if the reference uses a completely different data format.

Requirement
| Speed | Accuracy

Reentry campaigns low high
Tracking campaigns | high high
Long-term analysis high medium
Visualization high low

Table 1.1.: Summary of the different propagator use cases and requirements.

1.3. Outline

In chapter 2, the basics of orbital physics are presented as well as the physical models behind
the different perturbation forces that act on objects in Earth orbits. The basics of graphics
hardware as well as the programming models and techniques specific to these devices are
outlined. Chapter 3 describes a software architecture that can be used for analytical propa-
gators with special emphasis on parallel computing. It presents an implementation of this
architecture as the software framework OPI that can be used for the creation of orbital prop-
agators and applications that require their output to function. A practical example is docu-
mented in chapter 4: This tool, called Ikebana, is an analytical propagator based on existing
software that was redesigned to make use of the software framework as well as parallel com-
puting techniques. Chapter 5 gives a comparison of the enhanced software and its original
form and analyzes the differences in terms of execution speed and accuracy. Finally, chap-
ter 6 describes the visualization software DOCTOR which animates objects in Earth orbits.
Since it relies on fast orbital propagation of large object populations it serves as a reference
use case for both OPI and Ikebana.

2 State of the Art

2.1. Orbital Physics and Propagation

As described by Johannes Kepler in the early 17" century, the movement of a satellite orbiting
around a central body assumes the form of an ellipse with the central body in one ofits focal
points (figure 2.1). The point on the ellipse that is closest to the central body is called periapsis,
the point that is farthest away is called apoapsis. For Earth-centric orbits these points are
often called perigee and apogee, derived from the Greek word for Earth, gaia. The size and
shape of the ellipse is defined by two parameters. The first is the semi major axis (a) which is
defined as the length between the center and either periapsis or apoapsis. The second is the
eccentricity (€) which describes the ratio of the distances “center to focal point” and “periapsis
to focal point”. It defines the “flatness” of the ellipse: An eccentricity of zero means that the
focal point lies exactly in the center and the ellipse is circular. The eccentricity increases the
further the focal point moves towards the perimeter; the ellipse becomes a parabola at an
eccentricity of one and a hyperbola for larger values. In reality, all closed orbits are elliptical
and perfect circular orbits do not exist. Most analytical equations assume that

0<exl1 (2.1)

and are undefined for eccentricities of zero. The distance from the focal point to the perime-
ter perpendicular to the semi major axis is called the semilatus rectum or simply the orbital
parameter, p:

p=a(l—e?) (2.2)

apégee peﬁgee

Figure 2.1.: Parameters of an orbital ellipse (based on [Wiedemann, 2014]).

To describe the position of the orbit in space, three additional parameters are defined that
are shown in figure 2.2: The inclination (i) is the angle between the Earth’s equatorial plane

10 2.1. ORBITAL PHYSICS AND PROPAGATION

and the orbital plane. The right ascension of the ascending node ((}, also abbreviated RAAN) s the
angle between the vernal point and the point at which the orbit crosses the equatorial plane
in ascending direction. The vernal point is defined at the vector from the Earth’s center to
the Sun’s center at the time of spring equinox at which the Sun crosses the equatorial plane.
This occurs at different times around March 20" each year. Finally, the argument of perigee (w)
describes the angle between the intersection of the orbit’s ascending node with the equatorial
plane and the orbit’s perigee. An additional parameter called the true anomaly (v) defines the
position of the satellite on the orbit as the angle from its perigee. Instead of the true anomaly,
sometimes the eccentric anomaly (E) or the mean anomaly (M) are used. The eccentric anomaly
is illustrated in figure 2.3; it is defined as the angle to the satellite’s equivalent position on an
auxiliary circle around the ellipse. The mean anomaly can be derived from Kepler’s second
law which states that a satellite passes over equal areas of the orbital plane in equal time
(figure 2.4). On an elliptical orbit this means that the speed is highest at the perigee and
lowest at the apogee. The mean anomaly describes the angle to the position that the satellite
would assume on a circular orbit with an equal semi major axis after an equal amount of
time; the closer the eccentricity of an orbit gets near zero, the smaller the difference between
M and v. While the true and eccentric anomalies can only be calculated iteratively, the mean
anomaly can be expressed as

K
= — -t 2.
o (23)
where y is the Earth’s gravitational parameter and ¢ is the time in seconds since the last
crossing of the perigee.

2.1.1. Perturbation Forces

In an ideal environment, a once established orbit would not change without explicit action
taken by the spacecraft. In reality, however, several external forces act on the satellite which
cause its orbit to deviate from its original form and position. They stem from various sources
and affect different orbital parameters with different intensities. The key element in orbital
propagation is to simulate these forces as accurately as possible. Many different models and
approaches exist that offer a tradeoff between precision and speed if run time is an issue.
Perturbation forces can be divided into periodic and secular perturbations. Short periodic ef-
fects cause orbital elements to “jitter” around their mean values; for example, the varying
gravitational pull from the Earth has such an effect on the eccentricity with frequencies in
the hour range. Other effects are long periodic - for example, the gravitation from Sun and
Moon causes the inclination of GEO objects to oscillate over a period of around 53 years.
Secular perturbations are those that invoke a continuous deviation on the orbit, such as the
atmospheric drag decreasing the semi major axis of the satellite.

The following sections describe the most influencial perturbation forces and how they can
be dertermined analytically.

2.1.1.1. Zonal Harmonics

For Keplerian orbits it is assumed that the central planetary body is a perfect sphere with
an equally distributed gravitational potential. In reality, the Earth is slightly flattened at the
poles, i.e. the equator is slightly elliptical and a little longer than the longitudinal diameter.
Likewise, the Earth’s mass is not uniformly distributed resulting, for example, in a higher
gravitational potential in the presence of large mountain ranges. The real gravitational po-
tential affecting the satellite must therefore be expressed as a function of'its position. In his

2. STATE OF THE ART 11

line of nodes

vernal point

Figure 2.2.: Parameters describing the position of the orbit and the satellite (based on [Wiedemann, 2014]).

compendium, [Vallado, 2007] gives the equation for the gravitational potential, called U, as a
function of the satellite’s latitude (¢), longitude (A) and radius from the Earth’s center (r):

o |
U=Ep+ Y Y (S5) Pusin() - (Cucos (mA) + Sysin (mA))] (2.4

P, ,, are Legendre polynomials into which the satellite’s position factors. S;,, and C;,, are
coefficients that describe the Earth’s deviation from a perfect spherical form. For m = 0
they define zonal harmonics, i.e. bands of latitude (figure 2.5 left); I = m applies to sectoral
harmonics (bands of longitude, figure 2.5 middle) and I # m to tesseral harmonics (“checker-
board”, figure 2.5 right). C; is often used as a negative and substituted:

—Cio=1 (2.5)

J» includes the Earth’s equatorial bulge which has the strongest influence by far. More J;-
terms can be added to account for further deviations and subsequently improve the model’s
accuracy. Satellite-based measurement campaigns conducted to evaluate the Earth’s gravita-
tional potential allow to derive constant values for these terms. [Vallado, 2007] cites analytic
equations for the affected orbital elements that rely solely on these constants as well as the
satellite’s current orbit. Zonal harmonics exert long-periodic perturbations on semi major
axis and eccentricity, secular perturbations on RAAN and argument of perigee (figure 2.6) as
well as short-periodic perturbations on all orbital elements.

12 2.1. ORBITAL PHYSICS AND PROPAGATION

Figure 2.3.: llustration of the eccentric anomaly (based on [Wiedemann, 2014)).

Figure 2.4.: Illustration of Kepler’s second law based on [Vallado, 2007]. The grey areas have the same size.

2.1.1.2. Atmospheric Drag

A satellite moving through the Earth’s atmosphere experiences a drag force exerted by parti-
cles hitting its front-facing area. This causes the semi major axis and eccentricity to decrease
lowering the orbit’s apogee continuously (figure 2.7). Near-circular orbits also experience
periodic perturbations in inclination, RAAN and argument of perigee.

The aerodynamic drag affecting a satellite can be expressed as an acceleration vector ([Vallado,
2007]):

= 1 pvgﬂt
i=—5"7 (2.6)

vsqt is the satellite’s velocity and can be derived from its orbital parameters. Since the value
is relative to the atmosphere which moves with the Earth, the absolute velocity can be ap-
proximated by subtracting the Earth’s mean motion. B is called the ballistic coefficient and is
defined as the satellite’s mass mg,; divided by the product of its drag coefficient Cp and the
cross-sectional area facing in the direction of the satellite’s velocity A:

Mgt
B = CDA (2‘7)

2. STATE OF THE ART 13

Figure 2.5.: Zonal, sectoral and tesseral harmonics

Since the exact orientation of a satellite is usually difficult to determine, A is often approxi-
mated as the mean area of the object in a randomly tumbling state. For high-precision orbital
propagation, information from the satellite’s sensors can be used if available. Similar to the
area, the drag coefficient depends on the satellite’s shape and configuration. In many cases,
an approximate value of 2.2 can be used. B is usually regarded as a constant when a randomly
tumbling state is assumed and loss of mass due to spent fuel is neglected.

p is the atmospheric density at the satellite’s position and is usually the parameter that is
most difficult to be determined. It is closely linked to the atmosphere’s temperature (T) and
pressure (p 4) at a given position; the respective equations are given by [King-Hele, 1987]:

RT
pf;4 — M (2..8)

with R being the gas constant (8.31JK~'mol~!) and M being the molar mass of the gas. The
pressure decreases with increasing height which is expressed by the hydrostatic equation:
dpa
dy

with ¢ being the gravitational acceleration. Eliminating p between these equations yields

= —pg (2.9)

dpa _ _Mg,

v~ RT (2.10)
RT /Mg is called the scale height:
h =]1\242 (2.11)

It can be assumed as constant and used to approximate the amount of pressure loss within
discrete height ranges.

The atmospheric density is primarily influenced by variations in the Earth’s magnetic field
as well as the Sun’s extreme ultraviolet (EUV) radiation. EUV rays heat the upper layers of the

14 2.1. ORBITAL PHYSICS AND PROPAGATION

Figure 2.6.: Visualization of the RAAN change caused by zonal harmonics perturbations.

atmosphere and therefore increase the density and, in turn, cause satellites to experience a
stronger drag. Although the EUV radiation itself'is difficult to determine, it correlates with
the solar emission’s radio intensity at a wavelength of 10.7 cm (Fyo7) which can be measured
and used as an indicator for solar activity. In a similar manner, particles from the Earth’s
magnetic field cause heat by ionization effects in the upper atmosphere which affects the
density ([Vallado, 2007]). Geomagnetic activity is measured around the world and recorded
every three hours as the planetary amplitude, a,; the daily average over the eight values is called
the daily planetary amplitude, A,. While measurements are possible for magnetic field and the
solar activity, predictions for future dates are very difficult.

For analytical propagation, several models have been developed that approximate atmo-
spheric density based on these measurements as well as other necessary parameters such as
current time and the satellite’s position. A popular example is the Naval Research Laboratory
Mass Spectrometer and Incoherent Scatter Exosphere 2000 (NRLMSISE-o00) model described in [Pi-
cone et al,, 2002]. It is based on the earlier MSIS-86 model which was extended to include the
exosphere (MSISE) and augmented with data from satellite missions of the US Naval Research
Laboratory. It is an empirical model based on an extensive database of information gathered
from measurements of several spacecraft and radar campaigns. Analytical equations were
derived from analyzing this data and published with an accompanying open-source Fortran
application. It takes as input a date and time, a position expressed as geodetic latitude, lon-
gitude and altitude, current and averaged Fyo 7 solar flux as well as the A, index. From these,
the model calculates the atmospheric density at those coordinates. It also outputs individual
masses of the various elements that make up the atmosphere as well as the temperature; this
information can be inserted into equation 2.11 as M and T, respectively, to calculate the scale

height.

2. STATE OF THE ART 15

Figure 2.7.: Visualization of the apogee decrease caused by atmospheric drag.

With approximate values for scale height and atmospheric density, the analytic equations
given by [King-Hele, 1987] can be used to calculate the changes in orbital parameters. Dif-
ferent models are given based on the orbit’s eccentricity. For near-circular orbits with an
eccentricity lower than o.2 all orbital parameters are affected by the atmosphere. For highly-
eccentric orbits only semi major axis and eccentricity need to be taken into account.

2.1.1.3. Third Body Perturbations

Kepler’s equations describe a two-body problem, i.e. all objects other than the central body
and the satellite are disregarded. In reality, other massive bodies in the vicinity extent a grav-
itational pull on the satellite drawing it out of its orbit. For objects around the Earth, the
most influencial third bodies are the Sun due to its enormous mass, and the Moon due to
its relatively short distance. Perturbations from Sun and Moon cause long-periodic changes
in eccentricity, inclination, RAAN and argument of perigee, as well as secular changes to the
last two and the mean anomaly. The semi major axis remains largely unaftected. A notable
example of such an effect is the long-periodic disturbance of the GEO orbit mentioned be-
fore: Due to the way the ground tracks of the third bodies are inclined relative to Earth, their
gravitational pull causes the inclination of GEO objects to oscillate by approximately +15
degrees over a period of 53 years (figure 2.8); this forces operators of telecommunications
satellites to regularly adjust their positions.

[Vallado, 2007] presents analytical equations that give the rate of change in degrees per day
for all affected orbital elements as a function of the third body’s position. The position is
given as a vector (A, B, C) depending on four parameters of the third body: The equatorial
inclination i3 and right ascension of the ascending node ()3 relative to Earth, its argument of
mean longitude u3 and its distance from the Earth’s center 3. Equations for these parameters
for both Sun and Moon are given by [Flegel, 2007] as a function of the Julian date. As a

16 2.1. ORBITAL PHYSICS AND PROPAGATION

fifth parameter, the equations require the gravitational parameter of the disturbing body p3
which, together with the distance, influences the strength of the gravitational pull.

Figure 2.8.: Simulation of third body effects causing an inclination buildup in GEO orbits.

2.1.1.4. Solar Radiation Pressure

Every satellite exposed to sunlight experiences perturbations which are caused by impacting
particles from solar rays. The pressure which they exert is assumed constant and is given by
[Vallado, 2007]:

psg = 4.57 - 10622 (2.12)
The actual acceleration force which this pressure applies on the satellite largely depends on
its properties. The surface area that is exposed to the Sun influences the amount of rays that
hit the satellite, its mass determines the impact: The larger the exposed area and the smaller
the mass, the bigger the perturbation. Like for the atmospheric perturbations, the exact area
is difficult to be determined so a mean value is used; loss of mass over time is neglected. Since
these two values depend on each other in both cases, a combined value called the area-to-mass
(A2M) ratio, given in square metres per kilogram, or its inverse is often used for a spacecraft. A
high area-to-mass ratio causes a larger impact of solar radiation pressure. Another important
property is the reflectivity coefficient, Cgr, which acts as a multiplier to the force based on the
amount of rays that are reflected or absorbed. Values range from zere to two: A value of zero
means that no force is transmitted (i.e. the satellite is translucent). 1.0 implies that all rays
are absorbed and the force is fully transmitted (i.e. a black surface). If all rays are reflected
by the surface twice the force is applied which is expressed by a Cg value of 2.0. Since the
actual coefficient is very difficult to determine a mean value of 1.3 is often used. With these
variables, [Vallado, 2007] gives the acceleration as

A ?sat
= (2.13)
| Poat |

dsr = —psrCr
sat

Tsar is the radius vector from the Sun which is also the direction in which the force is ap-
plied. The source also contains formulas based on a work by [Cook, 1962] expressing the

2. STATE OF THE ART 17

perturbation caused by the force in RSW (radial, transverse, normal) components which can
be used to determine the changes in the orbital elements. Solar radiation pressure affects all
orbital elements although the effects are very small for most objects and are therefore often
concealed by larger perturbations such as atmospheric drag. A notable exception is MLI foil
which has a very high area-to-mass ratio (see [Flegel, 2013]).

These equations apply when the satellite is exposed to full sunlight. However, during its
travel on its orbit, most satellites cross the Earth’s shadow at some point. A different set of’
equations can be used for this case which require the true and eccentric anomalies of the
shadow entry and exit, respectively, as additional inputs. Determining these requires knowl-
edge of the satellite’s orbit and current position, as well as the position and geometry of’
the Earth’s shadow. [Escobal, 1965] gives a simplified model for this which assumes a cylin-
drical shadow; umbra and penumbra effects are neglected as well as the Earth’s oblateness
and movement in its orbit (figure 2.9). With these simplifications, a shadow function can be
employed:

Figure 2.9.: Illustration of the simplified shadow model. The Earth’s shadow is approximated as a cylinder;
True and eccentric anomalies are calculated for the points at which it is intersected by the orbit.

S = Re?(1+ecosv)? + p?(Bcosv + Esinv)? — p? (2.14)

with § and ¢ being the dot products of the Sun’s position with the unit vectors pointing
to the current argument of perifocus and true anomaly, respectively. This equation can be
transformed to become

S* = Agcos* v+ Ay cos® v+ Apcos? v+ Azcosv+ Ay (2.15)

18 2.2. GPU COMPUTING

with coefficients depending on Rp, p, B and ¢. The roots of this function can be found using
a quartic equation solver and checked against equation 2.14 for validity: If' S is evaluated to
zero and Bcosv + ¢sinv < 0, v gives the true anomaly of a shadow entry or exit. Which of’
these applies can be determined through comparison with surrounding values.

2.2. GPU Computing

2.2.1. A Short History of Graphics Processors

Figure 2.10.: Screenshot from the 1979 video game "Asteroids”: A specially designed vector graphics pro-
cessor was used for drawing the on-screen objects.

In the field of computer graphics, one of the significant driving factors behind the technical
advances of the last three decades has been the video game industry (for which space travel,
as for virtually all branches of fiction and entertainment, has always been a popular topic).
Early video games such as Atari’s “Asteroids” (figure 2.10), although quite simple in nature, al-
ready used sophisticated hardware to produce images on the screen. The game was released
as an arcade machine in 1979 and used a digital vector generator that was designed by Atari
specifically for a small number of games. It was built from basic circuitry such as digital-
analog-converters, latches and clock generators and can translate a binary representation of’
a 2-dimensional vector into screen coordinates; [Margolin, 2001] describes the hardware in
great detail.

2. STATE OF THE ART 19

Since the late 1970’s, video games have constantly increased in popularity and have largely
moved from arcade machines with dedicated hardware tailored specifically to a certain game
to multi-purpose home computers and game consoles. Over the years, video games became
more and more demanding from the hardware in order to improve the quality of graphics
and simulation as well as the quantity of content. The willingness of people to upgrade their
devices every few years to be able to play the latest games opened up a mass market for com-
puter manufacturers and stimulated research on graphics hardware. Games that were dis-
tributed on hardware cartridges sometimes featured dedicated graphics coprocessors such
as the “Super FX” chip used by Nintendo in the early 1990’s to complement the console’s
builtin hardware. Compared to the early vector processor from the “Asteroids” game, it was
able to draw vector images in three dimensions allowing for more realistic objects. It also
moved from simple mesh representations to polygons with colored faces (figure 2.11).

Figure 2.11.: The 1993 video game ”"Starfox” used a graphics coprocessor called the “Super FX” chip to
accelerate the rendering of'3D polygons such as the space ship.

20 2.2. GPU COMPUTING

The mid-1990’s saw the rise of 3D computer graphics not just in video games but also in other
forms of entertainment. In the PC sector, dedicated 3D graphics processing units (GPUs)
that were previously only found in large workstations used to create pre-rendered graphics
for movies and television shows could be made affordable and used on PC video cards with
real-time capability. In 1996, the PC game “Quake” (figure 2.12) was released; its graphics
engine developed by John Carmack is believed to have played a major role in triggering this
development: Contrary to similar applications released at the time the game’s graphics were
generated solely from fully textured, three-dimensional polygons that were rendered in real
time. The initial version relied on the CPU to perform the necessary computations. In later
versions support for 3D graphics hardware was added that relieved the CPU of the complex
vector operations and allowed for higher framerates and smooth interpolated textures. On
the software side, application programming interfaces (APIs) such as the Open Graphics Library
(OpenGL) and Microsoft’s Direct3D were created that provided an abstraction layer from the
hardware and enabled software developers to write applications that would run on all sup-
ported GPUs.

Figure 2.12.: “Quake” was one ofthe first PC games to support modern 3D graphics hardware. The overlay
on the left side shows the polygons used to construct the scene.

The programming model for these early GPUs was based on a pipeline structure that pro-
cessed incoming commands in a fixed order. This is described in [Kirk and Hwu, 2010] and

2. STATE OF THE ART 21

shown in figure 2.13. The CPU delivers geometry information that is broken down into trian-
gles and submitted as a list of vertices that form the corners of those triangles. Image data that
is used for texturing is uploaded to the GPU’s texture memory. The pipeline can be separated
into two main stages. The “vertex stage” first transforms the geometry data into a hardware-
native format (vertex control). It then assigns values such as colors, normals and texture co-
ordinates to each vertex (shading, transform and lighting) and prepares them for rasterization
(triangle setup). The “pixel stage” performs the task of translating the three-dimensional ge-
ometry information into a two-dimensional screen projection. It first calculates which pixel
of the resulting image is influenced by which triangle (raster). Each of these pixels is assigned
a color based on the per-vertex information as well as relevant texture images and lighting
configuration (shader). The raster operation stage performs final calculations for effects such
as antialiasing and transparency before the final image is written to the frame buffer and
displayed on the screen.

The vertex stage and the pixel stage are responsible for two aspects that greatly influence
the quality of the resulting image. The more vertices the hardware can process, the finer the
geometry that can be constructed. In a similar manner, a higher pixel density improves the
visual quality of the final image. Since both the per-vertex and the rasterization operations
can be performed for each vertex/pixel individually, the GPUs were optimized for massively
parallel execution of those calculations. In both stages, the algorithm working on each vertex
or pixel is the same, just with different input data. This is called the Single Instruction, Multiple
Data (SIMD) principle!.

Vertex Stage
Geometry and texture Vertex shading .
: Triang|
/ information Vertex control B transform & lighting] riangle setup
Pixel Stage

Raster —> Shader —»| Raster Operation ﬁ/ Image /

Figure 2.13.: Hllustration of the fixed-form GPU pipeline (based on [Kirk and Hwu, 2010], figure 2.1).

With the newly opened mass market for 3D graphics processors and still increasing customer
demand for better graphics quality the performance and capabilities of these devices were
improved continuously. Apart from increasing clock speed, parallelism, bandwidth and tex-
ture memory, a major new development took place in the early 2000’s when the fixed-form
pipeline which offered little flexibility was made programmable. Since then, APIs such as
OpenGL allow software developers to directly influence the pipeline stages with small pro-
grams called shaders that are executed directly on the GPU. In OpenGL, the C-like OpenGL
Shading Language (GLSL) is defined for this purpose. Shader programs consist of two com-

LAlso referred to as SIMT (Single Instruction, Multiple Thread) in the context of actual hardware implementations

22 2.2. GPU COMPUTING

ponents: Vertex shaders interfere with the transform and lighting stage; they are run on each
vertex of the scene and can be used to modify each vertex’ position, texture coordinates, nor-
mals, per-vertex color and more. Fragment shaders’> are run on each pixel of the resulting
image; information from the vertex stage is available and can be used to influence the color.
Shader programs offer a large amount of flexibility and can be used to create advanced graph-
ical effects such as reflections on water surfaces ([Truelsen, 2007]), sub-surface scattering for
realistic depiction of human tissue ([d’Eon et al., 2007]) and ambient occlusion for realistic
shadows ([Szirmay-Kalos et al., 2010]). Shader programs are usually loaded from files at run-
time and compiled and uploaded to the GPU by the graphics APL

Because of the distinctive hardware, programming a GPU requires an alternative approach
compared to a CPU. Figure 2.14 illustrates the architectural differences between the two. Both
designs consist of the same components: The dynamic random access memory (DRAM) from
which data and program code are fetched; the cache memory which is located directly on the
processor and used to store data which is required immediately for fast access; the control
section responsible for instruction management and scheduling, and a number of arith-
metic logic units (ALUs) which execute the actual instructions. The main difference lies in
the arrangement of these components. Since the CPU is targeted at providing a wide range
of functions its instruction set and flow control mechanisms are much more complex than
that of the GPU which is tailored towards a very specific application. The CPU’s cache and
control section are therefore much larger. The GPU is optimized at performing a large num-
ber of relatively simple instructions in a short time which means that many more transistors
are devoted to performing arithmetic operations. The ALUs are organized in clusters with
their own memory and control sections which allows for more efficient management of large
streams of input data. Usually, they are arranged into cores and paired with dedicated float-
ing point units (FPUs) to allow fast, parallel processing of floating point numbers ((NVIDIA
Corporation, 2009)).

CPU GPU

ALU ALU Control ALU ALU ALU ALU ALU ALU

Control

ALU ALU ALU ALU ALU ALU

ALU ALU

Control ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

Control ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

Figure 2.14.: Architectural differences between CPU and GPU hardware based on [NVIDIA Corporation,
2015, figure 3.

2 Also called pixel shaders in the Direct3D equivalent of the GLSL.

2. STATE OF THE ART 23

Other than providing high-quality graphics, many video games also rely on a realistic depic-
tion of the environment. Basic features such as collision detection and movement, as well
as advanced techniques such as force models, fluid dynamics and other particle effects such
as smoke, fire and explosions rely on the computation of physical models. While such cal-
culations do not have to be highly accurate they have to be executed at very high speeds - in
addition to the rendering - to provide a smooth frame rate. In the early 2000’s companies
started developing physics processing units (PPUs), such as the Ageia Physx, to relieve the
CPU of such calculations. While no actual hardware specifications were published, [Blach-
ford, 20006] approximates the design based on a US patent that was filed for this purpose.
He found that the hardware architecture was very similar to that of graphics processors; this
makes sense because especially particle effects rely heavily on SIMD vector processing, just
like 3D graphics. With the advent of programmable graphics pipeline on GPUs, these pro-
cessors became able to calculate physical effects implemented as shader programs; existing
physics APIs were modified to use the GPU instead of; or in addition to, dedicated PPUs. For
example, the game “The Witcher 3” can use the GPU for fast calculation of particle effects to
simulate realistic movement of foliage and strands of hair in the wind (figure 2.15).

Figure 2.15.: Screenshot from “The Witcher 3” showing realistic movement of hair and foliage which can
be calculated on a GPU.

Today, most personal computers are equipped with dedicated, programmable graphics pro-
cessing units that compute sophisticated visual and physical effects in real-time, producing
high-resolution images created from millions of triangles and spanning millions of pixels
at speeds of 30 to 6o frames per second; dedicated physics processors have largely vanished
from the market. Over the last 35 years the visualization of space in video games has changed
from simple vectorized objects on a black background to highly realistic depictions of space
objects, clouds, planetary surfaces, lights and shadows (figure 2.16).

24 2.2. GPU COMPUTING

Figure 2.16.: Screenshot from the upcoming space flight game ”Star Citizen” showing asteroids and space
debris: Realistic visualization of clouds, lighting and material surface properties rendered in
real-time on a modern GPU.

2.2.2. General Purpose GPU Computing

In the mid 2000’s the new programmable architecture of the modern GPUs caught the atten-
tion of scientists who sought after more efficient ways to solve their complex mathematical
problems. For calculations that fit into the SIMD principle, GPUs were much better suited
than regular CPUs. More precisely, [Owens et al., 2008] state that applications are suitable to
be run on a GPU if:

1. “The computational requirements are large”, i.e. the algorithm has to be run on thou-
sands or even millions of samples,

2. “Parallelism is substantial”, i.e. there are no direct dependencies between the samples,
and

3. “Throughputis more important than latency”, i.e. the order in which individual results
are output does not matter.

However, as the GPU was designed to produce images from three-dimensional geometry,
the APIs did not provide a way to upload or download arbitrary data into the GPU’s memory.
Uploads were limited to mainly vertex arrays and texture images. Downloads were only possi-
ble for texture images or screen sections that were generated on the GPU; since those images
stayed in GPU memory for the majority of applications, the associated API functions were rel-
atively slow. For programmers, this meant that they had to arrange their algorithms in a way
that they could be represented as graphical problems and solved using vertex and fragment
shaders. For this approach, the term GPGPU (General Purpose GPU) computing was coined. As

2. STATE OF THE ART 25

an example, [Harrison and Waldron, 2007] describe a method of using the GPU as a coproces-
sor for the AES encryption algorithm. The plaintext is arranged as a two-dimensional texture
on which a shader program performs the encryption. The resulting ciphertext is again stored
in texture memory. Implementations like these, while practically useful, require a lot of extra
effort and produce code that is difficult to read. To solve this problem, graphics processor
manufacturers developed APIs targeted at running massively parallel general purpose appli-
cations on GPUs, such as the Open Compute Library (OpenCL) and the Compute Unified Device
Architecture (CUDA). The latter has been used in the context of this work and is described in
the following section. Chapter 6 gives a practical example of the differences between CUDA
and GPGPU techniques which are used in the visualization as a fallback option.

2.2.3. CUDA

2.2.3.1. Overview

CUDA is an application programming interface developed by NVIDIA Corporation specif-
ically for their line of graphics processors. It was designed to provide programmers with a
method of using the GPU for general purpose computing without the hassle of having to
transform their algorithms into graphics problems first. CUDA provides a programming
language that is similar to that used for vertex and fragment shaders but it is not limited to
graphics applications. It allows direct memory transfers of arbitrary data types between the
CPU and the GPU memory in both directions. Just as the underlying hardware, CUDA is opti-
mized for massively parallel SIMD applications. Conceptually, the programming model that
CUDA provides is very closely linked to this design; contrary to regular modern program-
ming languages which are largely abstracted from the underlying hardware, optimization of’
CUDA programs requires a profound understanding of the processor’s architecture. It also
means that currently existing applications cannot simply be executed on a parallel hardware
but parts of the software need to be redesigned. While this is true for other parallel proces-
sors such as multicore CPUs, as [Sutter and Larus, 2005] point out, this becomes even more
apparent on GPUs because of the larger architectural differences.

2.2.3.2. Build Process

To develop CUDA programs the CUDA Software Development Kit (SDK) is required. It in-
cludes the libraries and hardware drivers necessary to execute applications on the supported
hardware, the CUDA compiler nvcc, debugging tools such as the Visual Profiler as well as code
samples and documentation. CUDA applications cannot work on the GPU alone; they rely on
a portion of the code that is run on the CPU to manage the execution of the GPU part. In this
context, the CPU along with the system memory and periphery is called the host, the graphics
card containing the GPU and its dedicated memory is called the device. CUDA functions are
embedded into an ordinary programming language, usually C or C++. For compiling, nvcc
parses the source and separates it into host and device code. The latter is compiled directly
into a device-executable CUDA binary (cubin), the former is forwarded to a standard compiler
such as gcc. The resulting object files are linked into a binary for the respective operating sys-
tem with the device code embedded into it.

2.2.3.3. Kernels and Threads

When developing a CUDA application, everything that can be run in parallel is implemented
into the embedded CUDA functions. These functions, called kernels, are designed to work ac-
cording to the SIMD principle: On the device, multiple instances of a kernel (called threads)

26 2.2. GPU COMPUTING

‘‘‘‘‘‘‘‘‘ Block (1.0)
Device .
Grid1 = | ...| Thread (o,0) Thread (1,0) Thread (2,0)
Block (0,0) Block (1,0)
Thread (o,1) Thread (1,1) Thread (2,1)
Block (0,1) Block (1.1)-.
Thread (o0,2) Thread (3,2) Thread (2,2)

Figure 2.17.: Example of CUDA’s thread organization with two-dimensional blocks and grids based on
[Kirk and Hwu, 2010], figure 3.13.

are run in parallel with each thread working on one set of input data. The data is initialized on
the host, typically in the form of one-, two-, or three-dimensional arrays. The support for up
to three dimensions stems from the hardware optimization for graphics programming which
mainly operates on multidimensional data such as 2D texture images and 3D Cartesian coor-
dinates. In the same manner, threads need to be arranged into a one- to three-dimensional
layout; this is illustrated in figure 2.17 and explained in [Kirk and Hwu, 2010]: When a kernel
is executed, all threads that are generated from it are grouped in a grid. Each grid consists of
multiple blocks which contain the threads. The number and layout of threads in each block
and blocks in each grid is configured upon kernel execution. The maximum block and grid
sizes are limited by hardware capabilities®. Both grid and block layouts can be one-, two-,
or three-dimensional; in the above example, two-dimensional layouts are shown for both
although individual configuration is possible. CUDA provides several predefined variables
which tell each thread its position inside the layout: gridDim and blockDim contain the respec-
tive sizes of grids and blocks in each dimension; blockIdx and threadIdx contain the threads’
block and thread indices. In the above example, gridDim would be (2,2,1), blockDim would be
(3,3,1); indices of the blocks and threads are shown in the figure with the z-dimension omitted.

The grid and block layouts are chosen based on two main factors. The first is the nature of’
the problem and the format of the input data. In the most simple case, the kernels work on a
one-dimensional array. If the threads are organized in a single block with a one-dimensional
thread layout, each thread can use its own index as a pointer into the input array. The sec-
ond factor is memory and run time considerations which will be discussed in more detail in
the following section. Listing 2.1 shows a very simple example of a CUDA kernel. It takes as
input two one-dimensional integer arrays a and b, adds them and stores the result in array

3For the hardware used in the context of this work, the exact numbers can be found in appendix A.

2. STATE OF THE ART 27

a. For this example to work, the threads need to be laid out by the executing host code in the
fashion stated above; each thread then reads its individual index on the x-dimension from
the variable threadIdx.x and use it as an index into the input arrays. Unless constrained by
hardware limits or execution configuration, all elements of the arrays are added in parallel,
as illustrated in figure 2.18.

Kernel functions are identified by one of three keywords __global__, __host__ or __device__.
Global functions run on the device but can only be executed by the host. They serve as entry
points for the parallel part of the program. Device functions run on the device and can only
be executed by a global function or another device function. These are used as subroutines
for more complex kernels which are usually split into one global and several device func-
tions. Host functions are called from and executed on the host; they are used to provide
compatibility for machines that have no CUDA hardware available. In this case, the CUDA
driver emulates a device on the CPU and executes the host function in this manner. The
__host__ and __device__ identifiers can be combined; in this case, the compiler creates two
versions of the function: One that is run on the device and one that is run in emulation mode
automatically in case no suitable hardware is found.

Listing 2.1: A simple CUDA kernel that adds two integer arrays in parallel.

// A simple CUDA kernel that adds the values of the two integer arrays a and b
// and stores the result in array a. Every thread of this kernel works on one
// element of each array corresponding to its own index.

__global__ void add(int =xa, int xD)

a[threadIdx.x] += b[threadIdx.x];

}
a[o] a[1] a[2] al...] a[n]
4 b ¢ 0 ¢
Thread|o] Thread[1] Thread|2] Thread|...] Thread[n]
1 1 1))
b[o] b[1] b[2] b[...] b[n]

Figure 2.18.: Illustration of thread and array layout for the above kernel.

2.2.3.4. Hosts and Memory Management

Since the GPU has its own memory data needs to be copied between host and device prior to
the kernel execution and afterwards to download the results of the computation. The CUDA
library provides several host functions for this. The most basic are cudaMalloc and cudaMem-
cpy; similar to their C counterparts malloc and memcpy they can be used to allocate memory

28 2.2. GPU COMPUTING

on the device and copy data to and from the allocated memory regions. This is shown in
listing 2.2 which contains the host code required to run the above kernel: Two integer arrays
a and b are created and filled with data. Two additional variables are created that serve as
pointers to these arrays on the device. Using cudaMalloc, device memory is allocated and the
device pointers are initialized; in the two following cudaMemcpy calls they are used to copy
the arrays to those locations. Next, the grid and block sizes are configured using the dim3
data type provided by CUDA for this purpose. Since the data is a one-dimensional array with
32 elements, a single grid with a one-dimensional block of32 threads is chosen. As explained
above, this makes it possible to directly use each thread’s x-coordinate as an index into the
arrays a and b. In the next step, the kernel is called; the grid and block sizes are passed to
global kernel functions enclosed in the <<< and >>> identifiers. The kernel is now executed
on the device with all 32 instances running in parallel. To pause the host program until all
threads have finished their calculations, the function cudaDeviceSynchronize can be called. Fi-
nally, the results that the kernel stored in array a are copied back to the host and printed to
the screen.

2. STATE OF THE ART

Listing 2.2: A simple host program that executes the kernel from the above example.

29

#include <stdio.h>
#include "cuda.h"

// Main function written in C
int main(int argc, charxx argv)

{

// Set length of input array and its size in bytes
const int length = 32;
const int bytesize = lengthxsizeof(int);

// Initialize input arrays and fill them with data
int a[length];
int b[length];

i=0; i<length; i++) {

// Create device memory pointers for the input data
intx dev_ptr_a;
intx dev_ptr_b;

// Allocate device memory for arrays a and b
cudaMalloc ((void*x)&dev_ptr_a, bytesize);
cudaMalloc ((void*x)&dev_ptr_b, bytesize);

// Copy arrays a and b to the device memory
cudaMemcpy(dev_ptr_a, a, bytesize, cudaMemcpyHostToDevice);
cudaMemcpy(dev_ptr_b, b, bytesize, cudaMemcpyHostToDevice);

// Set block size and grid size for one—dimensional kernel execution:
// One grid holds one block, each block contains a number of threads
// corresponding to the size of the input array.

dim3 dimBlock(length, 1);

dim3 dimGrid(1, 1);

// Call the kernel with the given block/grid sizes and input
add<<<dimGrid, dimBlock>>>(dev_ptr_a, dev_ptr_b);

// Wait until all threads have finished
cudaDeviceSynchronize ();

// Results are stored in array a — copy it back to the host
cudaMemcpy(a, dev_ptr_a, bytesize, cudaMemcpyDeviceToHost);

// Free memory on the device
cudaFree(dev_ptr_a);
cudaFree(dev_ptr_b);

// Print the results and return.
for (int i=o; i<length; i++) printf("%d.", a[i]); printf("\n");
return o;

As of version 6, CUDA supports a concept called Unified Memory which obviates the need for
manual data transfers. Listing 2.3 shows the same host code as the previous example but
with the use of unified memory. Instead of using cudaMalloc to allocate device memory, the
function cudaMallocManaged is called to allocate memory on both the host and the device.
The same pointers can now be used to fill the arrays with data on the host, add them on the

30 2.2. GPU COMPUTING

device and print them after a successful kernel execution. CUDA automatically handles the
required memory transfers in the background whenever access to this data is requested on
either host or device.

Listing 2.3: The same host program using the managed memory available in CUDA 6.

#include <stdio.h>
#include "cuda.h"

// Main function written in C
int main(int argc, charsx argv)
{

// Create input arrays

int xa;

int xb;

// Set length of input array and its size in bytes
const int length = 32;
const int bytesize = lengthxsizeof(int);

// Allocate managed memory for arrays a and b
cudaMallocManaged ((void «*)&a, bytesize);
cudaMallocManaged ((void «)&b, bytesize);

// Fill the arrays with data on the CPU
for (int i=o; i<length; i++) {

ali] i;

b[i] i;
}

// Set block size and grid size for one—dimensional kernel execution:
// One grid holds one block, each block contains a number of threads
// corresponding to the size of the input array.

dim3 dimBlock(length, 1);

dim3 dimGrid(1, 1);

// Call the kernel with the given block/grid sizes and input
add<<<dimGrid, dimBlock>>>(a, b);

// Wait until all threads have finished
cudaDeviceSynchronize ();

// Print the results on the CPU

for (int i=o; i<length; i++) printf("%d.", a[i]); printf("\n");
// Free memory and return

cudaFree(&a);

cudaFree(&b);

return o;

CUDA hardware offers different types of memory which differ in size, access speed and scope
([Kirk and Hwu, 2010]). This is illustrated in figure 2.19. Memory transfers from the host go
to the global memory by default which consists of the graphics card’s DRAM. It is by far the
largest, but also the slowest memory; typical sizes range from one to four gigabytes on cur-
rent hardware*. All threads have read and write access to it, so large arrays of input and
output data are usually stored there. The host also has access to constant memory which can
be used to store values that do not change over the application’s life time. All threads have

#The exact sizes of the different memory regions for the hardware used in this work can be found in appendix A.

2. STATE OF THE ART 31

Block (0,0) Block (1,0)

TRl

Thread (o,0) Thread (1,0) Thread (o,0) Thread (1,0)

Host

Figure 2.19.: Overview of the different types of memory CUDA offers. Based on [Kirk and Hwu, 2010,
figure 3.9.

fast read-only access to it but its size is limited to typically 64 kilobytes on current hardware.
It is still useful to store fixed data such as small lookup tables. Adding the __constant__ iden-
tifier to the variable declaration will cause the data to be stored in constant memory. The
other types of memory are used internally by the kernels with no direct access from the host.
Shared memory is scoped on a block level, i.e. all threads of a block share the same instance
of a shared variable. It is typically limited to under 100 kilobytes but very fast and highly
optimized for parallel access. It can be used to allow communication between the individ-
ual threads of a block. Variables can be placed in shared memory by declaring it with the
__shared__ identifier. Registers are the fastest type of memory; local thread variables are usu-
ally assigned to it automatically by the compiler’s optimization process. Registers are limited
to 65536 per block on current hardware. This can be a limiting factor to the achievable level
of parallelism: Kernels that require a lot of local variables can exceed this limit which means
that the compiler either has to reduce the number of concurrent threads or place some of’
the local variables into slower memory regions. Regardless of grid and block configurations,
current CUDA-capable processors always execute threads in clusters of 32 which are called
warps. In theory, this means that the optimum occupancy rate can only be reached if the
block size is a multiple of'32; however, due to the memory contraints, the highest possible
performance does not necessarily conform to 100 per cent occupancy. Experimenting with
block and grid sizes is a typical process of optimizing a CUDA application.

32 2.2. GPU COMPUTING

2.2.4. Alternative Parallel Programming APIs

The major drawback of CUDA is its limitation to the hardware of one specific vendor, NVIDIA.
Especially in scientific applications open standards should generally be preferred over pro-
prietary solutions. A GPU computing API that meets these requirements is the Open Compute
Library (OpenCL). It was specified by the Khronos Group, a consortium of hardware manufac-
turers also responsible for the de-facto standard library for hardware-accelerated graphics ap-
plications, OpenGL. The compute library is described in [Khronos OpenCL Working Group,
2015]: The concept of hosts and devices, execution model and memory model are very similar
to that of CUDA. Threads, blocks and grids exist and work in the same way but are referred
to as work-items, work-groups and NDRanges, respectively. The different memory regions of’
CUDA exist in OpenCL as well. Contrary to CUDA, OpenCL works on a wide range of differ-
ent hardware platforms including GPUs of competing manufacturers as well as multi-core
desktop and mobile CPUs. Despite this advantage CUDA was chosen for the purpose of the
applications described herein; the reasons for this were better stability, availability of ad-
vanced debugging tools, higher performance and generally higher technological readiness
at the time of commencement of this work. However, the software was designed in a way so
that migration to a different API at a future time would be facilitated.

Another notable API for parallel programming is OpenMP (Open Multi-Processing). Similar to
OpenCL it is specified by a consortium of hardware and software manufacturers, the OpenMP
Architecture Review Board ((OpenMP Architecture Review Board, 2013)). It works by extending
C, C++ and Fortran compilers with special compiler directives that can be used in the source
code in order to parallelize portions of the algorithm. For example, prepending a for loop
with #pragma omp parallel in C causes each execution of the loop to be run in parallel on the
available CPU cores. Other statements exist to specify which variables are shared and which
are exclusive to each thread. Barrier directives are used to control thread synchronization.
OpenMP was designed for use with multicore CPUs and high performance clusters; support
for dedicated hardware such as GPUs was added only recently. OpenMP is very easy to use be-
cause parallelization can be achieved with only minor additions to the code; most C, C++ and
Fortran compilers have built-in support for it so additional tools are not required. However,
it does not possess the flexibility and optimization potential that dedicated GPU comput-
ing APIs offer. Another standard called OpenACC (Open Accelerators) aims to fill this gap by
combining the ease of use of OpenMP with the versatility of OpenCL and CUDA ([OpenACC
Group, 2013)).

2.2.5. GPU Computing in Space Research

Due to its widespread use and availability in source code form, the SGP4 algorithm described
in [Vallado et al., 2006] has been a popular choice for experimenting with parallelized prop-
agators. [Ahn, 2012] and [Fraire et al., 2013] describe implementations of the propagator in
CUDA and OpenCL, respectively. Prior to that the SGP4 algorithm was ported to OpenCL in
[Kebschull, 2011] as part of a parallelized numerical propagator. All sources show significant
performance improvements over the original algorithm. The CUDA version for which the
source code is available at [Ahn, 2012] has been adapted into a DOCTOR plugin and found
to be real-time capable for larger populations ([Mdckel et al., 2012]). Since the position error
of SGP4 increases with propagation time ([Vallado et al., 2006] states an average error of 1 to
3 km per day) the algorithm is not suitable for long-term analysis. [Fraire et al., 2013] also
discovered an additional position error introduced by using single precision floating point
variables rather than double precision used in the original - about 12 km after 20 years. While

2. STATE OF THE ART 33

insignificant within the error rate of SGP4, it shows that possible loss of precision is a prob-
lem that must be taken into account. This is especially true for GPU implementations where
double precision operations are still significantly slower. As an example for an alternative
application, [Hobson and Clarkson, 2012] present a method of using GPU computing for ob-
servation scheduling in the field of Space Situational Awareness (SSA). These publications
hint to the fact that several people experiment with GPU computing in space research. How-
ever, apart from the SGP4 ports, no fully parallelized orbital propagator or comprehensive
design guidelines for creating such an application have yet been published.

2.3. Software Architecture and Development

The following sections describe basic techniques of software development that are used in
the context of this work. Concepts are presented using a C++ syntax where applicable but
work similarly for other object-oriented programming languages.

2.3.1. Object-Oriented Programming Techniques

In software development, object-oriented programming has become the leading paradigm
for medium-sized to large applications. The concept is an enhancement of the procedural
programming paradigm which allows grouping sections of code into procedures, also called
subroutines or functions. Each function is defined by a unique designator, a list of input pa-
rameters (which can be of length zero) and an optional return value. These items, collectively
called the function’s signature, can be used by other functions to execute and process the in-
cluded code section. Fortran is a popular example of'a procedural programming language.

Object-oriented programming languages expand on this concept by introducing structures
called classes that are meant to represent real-world or abstract objects. Classes are sets of’
variables and functions (also called attributes and methods in this context) which form a logi-
cal unit. For example, a class representing a satellite could have the attributes orbit and mass
which describe the object’s properties, and a method called propagate which can be used to
determine its current position. Classes can be derived from other classes which allows pro-
grammers to create more specialized versions of an object. Methods and attributes are then
inherited from the parent class, i.e. they are available in the child class and do not have to be
implemented again. It is however possible to reimplement an inherited method in a derived
class; this process is called overloading. Child classes can be enhanced by adding further at-
tributes and methods. In the above example a satellite could be natural, such as the Moon,
or artificial. The Satellite class would be able to represent both so the classes Moon and Arti-
ficialSatellite could both be derived from it. For the Moon, additional constants such as the
escape velocity can be added as attributes while the artificial satellite might require an addi-
tional method to simulate the transmission of data which it collects. Since the lunar orbit
is subjected to different physical influences than an artificial satellite, the propagate methods
will likely have to be overloaded to account for those. In the design phase of object-oriented
software, classes and their affiliation are commonly described in the Unified Modelling Lan-
guage - 2 UML diagram for the above example is shown in figure 2.20.

Methods and attributes (as well as whole classes) can be classified using a variety of designa-
tors that define their scope, i.e. the range in which they are accessible to other functions. To
prevent programming errors and unexpected behaviour the scope should be kept small, i.e.
items should be accessible by as little other items as possible. The following shows a list of
common designators and their effects.

34

2.3. SOFTWARE ARCHITECTURE AND DEVELOPMENT
Satellite
-orbit: tOrbit
-mass: float
+propagate(time:double): tOrbit
Moon ArtificialSatellite
-orbit: tOrbit -orbit: tOrbit
-mass: float = 7.349e22 -mass: float
-escapeVelocity: float = 2380 -operator: string
+propagate(time:double): tOrbit +propagate(time:double): tOrbit
+getLunarPhase(time:double): enum +receiveData(): string

Figure 2.20.: UML diagram of the Satellite class and the two child classes derived from it.

m publicitems can be accessed by other functions outside of the object. All classes usually

have anumber of public functions that define their interface to the outside. In the UML

“won

diagram, these are marked with a “+” sign in front of their signature.

m private items can only be accessed by other functions inside of an object. All methods

that are not meant specifically to be accessed by “outside” code should be made private.
Usually, class attributes are also made private and public “setter” and “getter” functions
are created to provide access to them. The reason for this is that such functions can
check the given values for consistency before reading or writing to an attribute and can
return an appropriate error message in case an invalid value was detected. In UML,
private items are marked with a prefixed “-” sign.

m protected items are in an intermediate state between public and private ones. They

can be accessed by the class that defines them as well as classes that inherit from it.

m static items are kept in a consistent state across all instances of an object; no matter

how many instances exist of an object, if a static attribute is written in one of them,
all others share this value. Static attributes can be used to store global information for
which only one valid value exists such as the current system time.

m abstract or virtual functions are used to define empty methods that are meant to be

overloaded by any class that inherits from the one containing the virtual. They are used
to create classes that define interfaces but do not provide an actual implementation.

Grouping several classes into logical units can be done using namespaces, freely definable des-
ignators that are prepended to class names using a double-colon separator. For example, if'a
class called Image is defined within the namespace Video other classes which are outside that
namespace must use the full name Video::Image to access it. Libraries often use namespaces
to prevent naming conflicts with the applications that use them. In a similar manner, the
software descriptions in the following chapters use a namespace notation to clarify which
application the respective classes belong to.

2. STATE OF THE ART 35

2.3.2. Design Patterns

In software engineering, design patterns can be used during the architectural design phase.
According to [Buschmann et al., 1996], the idea stems from the fact that certain problems oc-
cur frequently in many different software applications; a simple example would be “reading
data from a file”. For such problems, templates can be defined that describe the problem
and provide an abstract solution; these templates are called design patterns. A popular exam-
ple is the Model-View-Presenter pattern that is often used during the design of graphical user
interfaces (GUISs). It separates an application’s components into models, i.e. the data that is
to be presented, views, i.e. the visual design of the GUI, and presenters that update the view
according to changes in the model. Patterns are meant to provide an idea of how a specific
problem can be solved; they do not provide functional software architectures. While simple
patterns can sometimes be translated directly into an object-oriented class structure, doing
so for complex ones often results in overly complicated architecture designs that are not
tailored to the specific requirements of the software.

36

2.3. SOFTWARE ARCHITECTURE AND DEVELOPMENT

3 A Software Framework for Orbital Propagators

3.1. Properties of Orbital Propagators

After discussing the use cases (section 1.2.2) and mathematical properties (section 2.1) of ana-
Iytical propagators, this section outlines the most apparent properties that such an applica-
tion has from a software developer’s point of view.

3.1.1. Complexity

Orbital propagators can have a wide range of complexity. In the most simple of all forms, a
single line of code that calculates an object’s mean motion from its orbital parameters can
be regarded as a propagator. On the other side of the spectrum, a propagator can consist
of a large variety of physical models simulating in great detail the different forces acting on
the object. In any case, they are rarely meant to stand by themselves as single applications;
instead, they are usually an integral part of other software tools designed to solve specific
problems such as those detailed in section 1.2.2. The complexity of such superordinate ap-
plications can itself range from one-liners to huge software suites. With different knowledge
and expertise required for the two components orbital propagators can and should always
be developed independently from the application that makes use of them.

3.1.2. Modularity

Not only can the propagator be separated from its host application: As mentioned in the ex-
ample above, an analytical propagator consists of several physical models describing various
perturbation forces such as those listed in section 2.1.1. These models are developed by in-
dividual teams of researchers with different areas of expertise, collected and put together by
other researchers who rely on orbital propagation for their work. [Vallado, 2007] states that
modelling the atmospheric drag on a satellite alone requires expertise in the fields of molec-
ular chemistry, thermodynamics, aerodynamics, meteorology and others. In many cases an
algorithm is published in book or paper form and implemented individually by the people
who use it. Over the years the models often get revised or corrected forcing all users to up-
date their implementations. Sometimes an implementation in source code form is provided,;
however, directly integrating these into other applications is often impossible because it has
been written in a different programming language or uses a different data format. In the
commercial sector companies and individuals are usually hesitant to release applications in
source code form because of copyright issues or fear of disclosing trade secrets.

3.1.3. Eligibility for Parallelization

Orbital propagation is often one of the most time-consuming components of an application.
In the visualization use-case where propagated objects are merely displayed on a screen, the
animation frame rate almost exclusively depends on how fast the objects’ positions can be
calculated. In long-term simulation, propagation is one of two critical components, the other
one being conjunction analysis; therefore, optimization of only one of them has limited ef-

38 3.2. ORBITAL PROPAGATION INTERFACE

fects on the overall run time. As will be detailed in the following chapters, orbital propa-
gation can be sped up to great lengths using GPU computing. This requires programming
tools such as different compilers, libraries and knowledge of special programming languages
and interfaces. Since the application using the propagator will likely be implemented with-
out such techniques it should not have to rely on them in any way; the user of a propagator
should only have to maintain the hard- and software required to run it, but not any tools or
libraries that are necessary to build it.

3.2. Orbital Propagation Interface

3.2.1. Overview

The Orbital Propagation Interface (OPI) described in this chapter is the result of several years
of research in the field of designing orbital propagators and involves several publications
and students’ theses. The basic idea first arose during the development of DOCTOR, the
visualization software outlined in chapter 6. To create a fluent animation of space debris
objects, a propagation algorithm was required that could calculate the positions of millions
of objects within milliseconds. The first solution to this problem was to move the algorithm
to the graphics processor in the form of a vertex shader. This is explained in more detail
in [Mockel et al., 2011]. The major drawback of this method was that the resulting data was
only available in the GPU’s memory and could not easily be transferred back to the CPU;
therefore, the improved algorithm could only be used for visualization but not for long-term
simulations. This problem was solved by using CUDA instead of shader programs, with even
better performance as shown in figure 3.1. These results demonstrated the opportunity of
obtaining the same speedup for long-term simulation tools. Also in [Mdckel et al., 2011], the
first draft of an application framework, then called the SPACE (Scientific Parallel Animation and
Computation Environment) Framework, was introduced. In their theses, [Rodermund, 2010] and
[Lorefice, 2010] created the first proof-of-concept in the form of a visualization software and
a simple CUDA propagator plugin, respectively, communicating over a common interface as
shown in listing 3.1.

1000
. CPU e
.............. cpu
‘ CUDA
100

10:: /

N
/

0.1

Time [ms]

0 100 200 300 400 500 600
Objects [1000]

Figure 3.1.: Performance of the shader and CUDA code versus the CPU ([Mockel et al., 2011]). Results are
combined from two experiments with different population sizes which is why the CUDA curve
has more data points than the others.

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 39

Listing 3.1: First version of a propagator plugin interface ([Lorefice, 2010]).

#include "SimulationPlugin.h"

int main ()

{
//create simulator
Propagator propagator;
//initialize struct for orbit data on host
SimulationData host(dtHost);
//load 1000 orbit data sets from x.sim file
Loader loader(std::string("data.sim"), host, 1000);
//upload data
simulator.upload (host);
while (true)

double timeStep=10;
//propagate
propagator.run(timeStep, true);
//download orbit data
propagator.download(host);
//visualization

visualize (host);

//release data
freeMem (host);

The interface was further refined in [Reglitz, 2012] based on a review of the three orbital
propagators and their common parameters: FLORA ([Flegel, 2007]) which served as the basis
for the parallel propagator described in chapter 4, FOCUS1 which is used in the MASTER
Model ([Klinkrad, 2006]) and ZUNIEM, a numerical propagator that was originally created as
part of a student’s thesis ([Zuschlag, 1985]) and continuously enhanced over time. The work
also provides an outline of a suitable software architecture taking into account a number
of requirements such as modularity, support for parallelization and a flexible input/output
component. Based on this research, the propagation interface and data structures were ex-
panded further and published in [Méckel et al., 2012].

With the exception of combining area and mass into a single variable, the chosen values
for orbital elements and object properties represent a minimal set from the recommended
standard for orbital data messages proposed by [CCSDS, 2009] and can easily be extracted
from data sets using that format. Finally, the original implementation of the Orbital Prop-
agation Interface was carried out by [Thomsen, 2013]; some of the implementation-specific
details have already been described in his work!. Since then, the software has been under
constant development. The source code has been released under the GNU Lesser General
Public License and is available online [Thomsen and Méckel, 2013).

3.2.2. Concept

To summarize the architectural requirements derived from the properties shown in sec-
tion 3.1, an orbital propagator should be implemented in a way that

m keeps it separated from the application that uses it,

» allows different research groups to contribute individual parts, ideally in different pro-
gramming languages,

IThe software was originally called Object Propagation Interface but has since been renamed to clarify its purpose.

40 3.2. ORBITAL PROPAGATION INTERFACE

| Parameter | FLORA | FOCUS1 | ZUNIEM
Name of Computation name - TEXT
Start Epoch jd ITo(1:5) IT1..5TIS
Semimajor Axis el(1) EL(1) A
Eccentricity el(2) EL(2) EPS
Inclination el(3) EL(3) RIN
RAAN el(4) EL(4) GOM
Argument of Perigee el(s) EL(5) OM
Mean Anomaly el(0) EL(0) PHI
Area to Mass Ratio Am PAR(2) RKGPM2
Atmospheric Drag Coefficient | CD PAR(1) CD
Reflectivity Coefficient CR PAR(3) RK
Propagation Time time IT(1:5) ITAG, ISTUND, IMIN, SEK
Step Size dt DT H

Table 3.1.: Excerpt from [Reglitz, 2012], table 3.18, showing the names of the input parameters that the three
orbital propagators FLORA, FOCUS1 and ZUNIEM have in common.

m allows shipping and updating one part without affecting other parts of the system,

m allows one component to make use of advanced techniques such as GPU computing
without causing dependencies for others,

m facilitates interchanging whole propagators, as well as individual physical models, at
run time.

These requirements make orbital propagators an ideal candidate for a plugin-based imple-
mentation. [Marquardt, 1999] describes software patterns for plugins and plugin-based sys-
tems that are well suited for the problem at hand. According to the document, a plugin is
defined as a piece of software designed to provide a specific functionality over a well-defined
interface. An application that uses plugins to extend its functionality is called a host>. The
plugin cannot be executed without a host but it can be developed, compiled and shipped
independently. Typically, a plugin is implemented in the form of a dynamic library that is
loaded by the host at run time. Depending on their function, host programs may rely on a
plugin to be available or treat them as optional parts; for example, a plugin implementing
a specific filter in a photo editing software is not crucial to the function of the application
as a whole and therefore optional. On the other hand, most OPI hosts will likely rely on the
availability of at least one propagator. Different plugin types can be supported; plugins are
said to be of the same type when they share the same interface.

The basic concept of a software architecture using the plugin pattern is shown in figure 3.2.
A host application capable of using plugins provides two components in addition to its core
implementation. The first is the definition of the plugin’s interface. In object-oriented pro-
gramming, it is usually provided as a header file defining an abstract class with functions that
the plugin needs to implement. A software component is only recognized as a plugin if all

2This is not to be confused with CUDA terminology in which the term host refers to the CPU-based platform, as opposed
to the device, i.e. the GPU-based extension card.

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 41

necessary functions are provided so the host can expect them to be available. The second is
the framework interface; it defines a set of functions in the host application that the plugin
has access to, usually to gather required information or trigger specific actions. Together
these two components define the ways in which the host and the plugin can communicate
with one another.

Plugin
Definition

Figure 3.2.: Plugin Context as shown in [Marquardt, 1999).

OPI builds upon this basic concept but it does not suffice to achieve the goals outlined above:
Not only are there many different propagators but also many potential host applications. Im-
plementing a plugin interface into a single application will enable it to use any number of’
propagators that follow that specification. However, if another host was to gain access to this
kind of flexibility, it would have to implement the interface on its own leading to undesired
code duplication and possible inconsistencies. To resolve this issue, OPI was designed as a
dynamic library that can be utilized by both host and plugin. It defines specific interfaces
for both, thus acting as a framework between the two components. The basic structure is
outlined in figure 3.3: Plugin definition and framework interface have been outsourced into
the library; any host can use it to get access to the plugin interface.

The ability to provide compatibility with a multitude of host applications created for very
different purposes poses the problem of designing an interface that is flexible enough to
satisfy all their requirements. In the case of'a single host application plugins simply abide
by the standards specified by that software. On the other hand, a generic interface must be
simple enough to be easily implemented into any host software and still be powerful enough
to provide additional benefit. OPI only provides basic data types that are necessary to run an
analytical propagator. If host or plugin require more information internally, these types can
be used as a starting point to build elaborate structures around them. An example for this is
given in chapter 6: In the visualization which serves as an OPI host, the population objects
are represented by a class called DOCTOR::SpaceObject which contains orbital parameters in
OPT’s native format as well as additional data such as the objects’ colors, names and coun-

42 3.2. ORBITAL PROPAGATION INTERFACE

Host Application

Application

/ Implementation \

-/ \
—7 T N

Plugin Framework Data Types &
Definition Interface Management

7]
l

Plugin Special API

/ Support

Figure 3.3.: The modified plugin design pattern upon which OPI is built.

tries of origin. Only the OPI-native data types are aggregated and sent to the propagator.
OPI manages these data types automatically and provides a layer of abstraction that facili-
tates their use for the authors of both plugin and host. For further information that might
have to be exchanged between host and plugin, OPI provides a mechanism called Propaga-
torProperties which is explained in section 3.2.6.

OPI was designed to support the use of GPU computing for propagators. As outlined in sec-
tion 2.2.3, CUDA and other GPU computing APIs require complex memory management and
manual copying of data between CPU and GPU memory. All functionality regarding CUDA is
implemented into a separate component called “Special API Support” in the pattern that can
be loaded at run time. This ensures that CUDA remains optional, both at compile time and
at run time. If OPI is built with CUDA support, the library automatically checks for capable
hardware on initialization. Plugins use a flag that indicates whether they rely on CUDA,; if
they do, they are only loaded if CUDA-capable hardware is found. The special API support
component can be exchanged, for example, to provide the same automated mechanisms for
OpenCL instead of CUDA.

Figure 3.4 shows the architecture derived from the pattern. OPI is designed as an object-
oriented application and implemented in C++ (but can be used with other languages as de-
scribed in section 3.2.8). OPI provides the classes OPI::Host and OPI::Propagator that serve as
interfaces to the respective components. On the plugin side, OPI has additional classes such
as OPI:PropagatorModule that can aid plugin authors in modularizing their code. Data man-

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 43

agement is handled via the OPI::Population class which can use the OPI::CudaSupport module
to automatically handle memory transfers between the CPU and the GPU. The following
sections describe OPI's components in detail.

libOPI é

Host
+loadPropagator()
iooa(0)
Y
PropagatorModule Population
+setTimeStep() +getOrbit() B — - — — — .
|#runCalculation() +getObjectProperties() v
4 CudaSupport

1

1 Hopagaton +hasCudaSupport()

: +runPropagation() +set((:|)1daDevice()

e

1

-)
1
1
1
1
1
1

_____ 1

Figure 3.4.: UML diagram of the OPI interface connecting a host application (DOCTOR) and a propagator
(Ikebana). For reasons of clarity, not all classes are shown.

3.2.3. Data Types

At the heart of OPI is the class OPI::Population which represents a population of objects or-
biting around Earth. It serves as the main hub for data exchange between the host and the
plugin. With parallel propagation in mind, this class is designed to manage an arbitrary
number of objects. For the same reason, the data types representing the objects use single

44 3.2. ORBITAL PROPAGATION INTERFACE

OPI::Population
<>t-orbits: OPI::Orbit*
—< > -properties: OPI::ObjectProperties*
—~<_>}-positions: OPI::Vector3*
—<>t-velocities: OPI::Vector3*

+getOrbit(): OPI::Orbit*

0..n +getObjectProperties(): OPI::ObjectProperties*
+getCartesianPosition(): OPI::Vector3*
<<dataType>> +getVelocity(): OPI::Vector3*
OPI::Orbit +getSize(): int

+update(type:enum): OPI::ErrorCode

+semi major axis: float
major +sanityCheck(): std::string

+eccentricity: float
+inclination: float 0

+raan: float --n
+arg_of perigee: float 0..n <<dataType>>
+mean_anomaly: float OPI::ObjectProperties <<dataType>>
+bol: float —— OPI::Vector3
+eol: float +id: int -
+mass: float +x: float
+diameter: float +y: float
+area_to mass: float +z: float
+drag_coefficient: float
+reflectivity: float

Figure 3.5.: Simplified UML diagram of OPI:Population and the associated data types OPI:Orbit,
OPI:ObjectProperties and OPIL:Vectors.

precision floating point variables only; as explained in section 5.4, current GPUs suffer from
significant performance drops when double precision variables are used. The data types are
OPI:Orbit which consists of the Keplerian elements as well as beginning oflife (BOL) and end
of life (EOL) dates, and OPI::ObjectProperties which includes additional information such as
masses and reflectivity and drag coefficients (see table 3.2 for a detailed description). Another
central data type is OPI::Vector3 which is simply a three-dimensional vector that can be used
for various information such as position and velocity in Cartesian coordinates. Figure 3.5
shows an UML diagram depicting the association between the OPI::Population class and the
data types.

When an instance of OPIL:Population is initialized, it starts with a population size of zero.
Alternatively, the initial size can be specified as a parameter to its constructor, or set at a
later point using the resize method. The constructor also requires a pointer to the host ob-
ject as an additional argument. The class then generates vectors of the given size for orbits,
object properties and Cartesian coordinates. One object of the population is represented by
the elements of each of those vectors that share the same index. Cartesian coordinates must
be generated by the propagator and are only available if the plugin provides support for them.

To fill the population instance with data, the methods getOrbit and getObjectProperties are used
to provide pointers to the respective vectors (see listing 3.2 below). In case CUDA is used, the
target device can be specified with an optional argument to these methods (either OPI_HOST
for the CPU or OPI_DEVICE for the GPU). After changing the data, the update method needs
to be called to notify OPI that new data is available. The OPI::Population class automatically

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 45

| ObjectProperty | Description

id A numerical ID for the object, for example, the NORAD ID for
catalogue objects.

mass The object’s mass in kg.

diameter The object’s mean diameter in m.

area_to_mass The object’s front-facing area in square metres divided by

its mass in kg. Sometimes the inverse, the mass-to-area ratio is used.
drag_coefficient | The object’s drag coefficient. A default value of 2.2 is often used.

OPI leaves it uninitialized so it must be set by the host.

reflectivity The object’s reflectivity coefficient. A default value of'1.3 is often
used. OPI leaves it uninitialized so it must be set by the host.

Table 3.2.: Description of the elements in OPI::ObjectProperties.

handles the data transfer between the CPU and the GPU via the OPI::CudaSupport class which
is explained in section 3.2.7.

3.2.4. Host Interface

OPIl::Host

+loadPlugins(directory:std::string): OPI::ErrorCode
+getPropagator(index:int): OPI::Propagator*
+getPropagator(name:std::string): OPI::Propagator*
+hasCUDASupport(): bool
+selectCudaDevice(deviceNumber:int): int

Figure 3.6.: Simplified UML depiction of OPI:Host, the class that specifies the host interface.

The class OPI::Host represents the OPI’s host-side interface. It provides methods allowing
the host to initialize and choose from the available plugins, set the population data and run
the selected propagator. As mentioned before, all device memory transfers for CUDA are han-
dled automatically by OPI. This means that the author of the host requires no knowledge of’
parallel programming. If CUDA capable hardware and drivers are available, CUDA-enabled
plugins will still function. The host has the options to check a chosen plugin for CUDA sup-
port and select a device if multiple GPUs are present using the appropriate methods.

To use an OPI propagator, the host application initializes an instance of the OPI::Host class
or derives one of’its own classes from it. The next step is to call the method loadPlugins which
takes as argument the name of a directory in which the plugins can be found. This directory
is traversed and identified propagators are loaded. Plugins requiring CUDA are skipped au-
tomatically if no capable hardware was found. To initialize population data, the host simply
creates an instance of the OPI::Population class and associates it with the host object (see list-
ing 3.2). Like explained in the previous section, the methods getOrbit, getObjectProperties and
getSize can be used by the host to iterate through the uninitialized objects and assign values
to each orbital element and object property.

46 3.2. ORBITAL PROPAGATION INTERFACE

Listing 3.2: Excerpt from a C++ program initializing an OPI host and some population data.

// Initialize a host object
OPI:: Host host;

// Load plugins from the given directory
host.loadPlugins (" plugins");

// Create a population of 200 objects and associate with the host object.
// This must be done after loading the plugin directory!
OPI:: Population data(host, 200);

OPI:: Orbitx orbits = data.getOrbit(OPI::DEVICE_HOST);
OPI:: ObjectProperties* props = data.getProperties(OPI::DEVICE_HOST);

// Set data for orbital elements and properties
for (int i=o; i<data.getSize (); i++) {
orbits[i].semi_major_axis = 7800.0f;
// ... continue with other elements

// Do not forget these two!
props[i].reflectivity = 1.3f;
props[i].drag_coefficient = 2.2f;
// ... continue with other properties

}

// Notify OPI of the population changes
data.update (OPI::DATA_ORBIT);
data.update (OPI:: DATA_PROPERTIES);

3.2.5. Plugin Interface

Backend

Figure 3.7.: Design pattern for an analytical propagator.

The architecture for OPI’s plugin side is based on a simple design pattern that is derived from
the natural properties of orbital propagation physics. The pattern is shown in figure 3.7. It

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 47

OPI::Module

+registerProperty(name:std::string, location:<multiple>): void
+createProperty(name:string, location:<multiple>): void
+setProperty(name:string, location:<multiple>): OPI::ErrorCode
+getHost(): OPI::Host*

OPI::Propagator

+propagate(data:OPI::Population&, julian_day:double,
dt:float): OPI::ErrorCode
+usesModules(): bool
+requiresCUDA(): int
#runPropagation(data:0OPI: :Population&, julian_day:double,
dt:float): OPI::ErrorCode

OPI::PerturbationModule

+calculate(data:0PI: :Population&,delta:0PI::0rbit*,
dt:float): OPI::ErrorCode
+setTimeStep(julian day:double): OPI::ErrorCode
#runCalculation(data:OPI: :Population&,delta:0PI::0rbit*,
dt:float): OPI::ErrorCode

Figure 3.8.: Simplified UML diagram of’ OPI::Propagator and OPI:PerturbationModule, both derived from
the OPI:Module class.

consists of two main components, a frontend and a backend. The frontend communicates
with the application that uses the propagator, provides input data, returns results and man-
ages the execution of the plugin components. The backend contains the actual propagation
algorithms. It is split into a number of “perturbation” components that share the same in-
terface. Each of these components individually calculates a perturbed orbit based on the
original orbit, current time and step size, as well as additional information such as the ob-
ject’s mass, reflectivity and drag coefficients. The perturbed orbits are aggregated and handed
to the frontend.

In this simple case it is possible to translate the pattern directly into an object-oriented soft-
ware architecture. OPI provides two classes for this shown in figure 3.8: OPI::Propagator for
the frontend and OPI::PerturbationModule for the backend. Both are derived from a superclass
OPI::Module which provides features common to both parts such as the PropagatorProperties
described in section 3.2.6. OPI::Propagator is the main class that a propagator needs to imple-
ment to be recognized as an OPI plugin. Its public methods are exposed to the host program
and called to perform the propagation. The most important one is the propagate function
which takes as arguments an instance of OPI:Population to which the host has previously
written the objects’ orbits and properties as well as the propagation time and step size. The
propagation results are written back to the OPI::Population. Usually, this function is called by
the host in a loop over several time steps so the next step continues with the updated pop-
ulation from the last one (see listing 3.3). The propagate function is a wrapper function that
checks whether data needs to be transferred between CUDA devices prior to calling the actual

48 3.2. ORBITAL PROPAGATION INTERFACE

propagation function, runPropagation. This is the one that plugin authors override to imple-
ment the actual functionality, as shown in listing 3.4. Another public function that should
be implemented is requiresCUDA which returns an integer corresponding to the minimum
CUDA version that this plugin requires in order to run. If not overridden, the default value is
zero signalling no dependence on CUDA. Also shown in the listing are several preprocessor
macros supported by OPI that can be used to set general plugin information such as name,
author, description and version number.

Listing 3.3: Excerpt from an OPI host running a propagation plugin.

// Initialize host and population data as shown in the previous example:
OPI:: Host host;

host.loadPlugins (" plugins");

OPI:: Population data(host, 200);

/...

// Fetch pointer to a specific propagator
OPI:: Propagator* ikebana = host.getPropagator("Ikebana");

// Set initial date (Julian day) and step size (one day = 86400 seconds)
const double julianDay = 2440980.0;
const float stepSize = 86400.0f;

// Check if the propagator exists
if (ikebana) {
// Propagate for one year, starting at julianDay, with the given step size
for (int t=o0; t<365; t++) {
double currentTime = julianDay + t;
ikebana —>propagate (data, currentTime, stepSize)
}
}

// Fetch pointer to updated orbital elements
OPIL:: Orbit* results = data.getOrbit(OPI::DEVICE_HOST);

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 49

Listing 3.4: A simple OPI propagator in C++.

#include "OPI/opi_cpp.h"
#include <iostreams>

// Set propagator name and version

#define OPI_PLUGIN_NAME "Example_Propagator"
#define OPI_PLUGIN_AUTHOR "M.._Moeckel"
#define OPI_PLUGIN_DESC "A._simple._example"
#define OPI_PLUGIN_VERSION_MAJOR o

#define OPI_PLUGIN_VERSION_MINOR 1

#define OPI_PLUGIN_VERSION_PATCH o

// Derive from OPI::Propagator
class ExamplePropagator: public OPI:: Propagator

public:
// Implement functionality into runPropagation method
virtual OPI::ErrorCode runPropagation
OPI:: Population& data, double julian_day, float dt)
{
// Fetch pointer to orbital data
OPIL:: Orbitx orbit = data.getOrbit ();

// Add mean motion to each orbit’s mean anomaly

for (int i=o; i<data.getSize (); i++) {
const float meanMotion = sqrt(MUE |/ pow(orbit[i].semi_major_axis,3.o0f));
orbit[i].mean_anomaly += meanMotion;

}

// Notify OPI of the updated orbits
data.update (OPI:: DATA_ORBIT');

// Return successfully
return OPI:: SUCCESS;

}

// Notify OPI that this propagator does not require CUDA
virtual int requiresCUDA() { return o; }

b

// Include additional functions that define the plugin
#define OPLIMPLEMENT_CPP_PROPAGATOR ExamplesPropagator
#include "OPI/opi_implement_plugin.h"

While it is possible for very simple propagators to implement all functionality into a single
class derived from OPI::Propagator it is recommended to divide the plugin into a frontend
and a backend with the latter containing individual classes for the perturbation models. Each
of them can be derived from the OPIL:PerturbationModule class that provides a suitable inter-
face. This means that perturbation modules can be developed independently by different
authors; the common interface makes it easy for others to collect different modules and com-
bine them into a working propagator. Implementations of OPI::PerturbationModule can also
be compiled into stand-alone sub-plugins. By using the OPI::CustomPropagator class instead
of OPI:Propagator a propagator can be constructed at run time from a choice of individual,
pre-compiled perturbation modules. Thus, updating a propagator or an individual model
can simply be achieved by replacing a shared object in the plugin folder.

The interface of OPIL:PerturbationModule works similarly to that of the frontend class. The
most important method to be implemented is runCalculation. It takes as argument the current

50 3.2. ORBITAL PROPAGATION INTERFACE

Population, a pointer to an array of OPI::Orbits with the same size as the population, and the
current time step. The function serves as the entry point for running a perturbation module’s
private methods that implement the respective physical model. The current time is set in a
different function, setTimeStep which takes as input the respective Julian date. The reason for
having two individual functions will become apparent in chapter 4, where a CUDA propagator
using OPI is introduced: The setTimeStep function allows the plugin to precalculate certain
values that depend on the current time but not on the objects’ properties (e.g. Sun and Moon
positions in third body perturbation). If such values are computed when the time step is set
and stored in class variables for later access, a lot of computation time can be saved compared
to running through those same calculations for every object. Like in OPI::Propagator, there
is a public wrapper function called calculate with the same signature as runCalculation that
checks for and performs necessary data transfers before calling the actual calculation. An
example of an OPI propagator using a PerturbationModule is shown in listing 3.5.

Listing 3.5: The runPropagation function of a simple OPI propagator using a PerturbationModule.

// It is assumed that an instance of a perturbation module has been created inside the
// class and that memory for resulting orbits has been allocated.

OPI:: PerturbationModule perturbation;

OPI:: Orbitx delta;

// Implementation of runPropagation using a perturbation module.
OPI:: ErrorCode runPropagation(OPI:: Population& data, double julian_day, float dt)
{

// Fetch pointer to orbital data

OPI:: Orbit* orbit = data.getOrbit();

// Initialize orbit array for perturbation

OPI:: Orbit delta[data.getSize ()];

// Forward current time to perturbation module

perturbation.setTimeStep (julian_day);

// Run perturbation module, results will be stored in delta

perturbation.calculate (data, delta, dt);

// Add deltas to original orbits

for (int i=o; i<data.getSize (); i++) {

orbit[i] += delta[i];

}

// Notify OPI of the updated orbits
data.update (OPI:: DATA_ORBIT);

// Return successfully

return OPI:: SUCCESS;

3.2.6. PropagatorProperties

One of the drawbacks of having a generic interface is that it can never account for every
kind of information that might need to be exchanged between a host and a plugin. The OPI
interface has been designed to provide the lowest common denominator of the examined
propagators. However, the physical models for some of the perturbation forces will most
likely rely on additional data. In some cases, such data can be included with the plugin and
loaded on initialization, for example, a file containing an atmospheric density table. In other
cases, it might be provided by the host (or the user via the host application’s graphical user
interface). This can be achieved in OPI by using a mechanism called PropagatorProperties. A
PropagatorProperty is a variable of any supported type that is defined and allocated inside
the plugin. By using the registerProperty function as shown in listing 3.6, the plugin author can
make a pointer to this variable available to the host under a specified designator. The host

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 51

application can then set a value to this variable by supplying it, along with the designator, to
the setProperty function?.

Supported variable types for PropagatorProperties are float, double, integer and string as well as

arrays of the three numerical types. PropagatorProperties are implemented in the OPI::Module
superclass which means that not only propagator plugins can have properties, but individual

OPI::PerturbationModules can use them as well. As an alternative to registerProperty, the method

createProperty can be used in the same manner, with the difference that OPI will manage the

associated variable internally so the module does not need to explicitly allocate it. In addition

to sending data, PropagatorProperties can also be used to set configuration options such as

activation or deactivation of a specific perturbation force at run time.

Listing 3.6: Excerpt from an OPI plugin that registers PropagatorProperties upon initialization and sets
default values.

// allocate variables for properties and set sensible default values
int opt_useAtmosphere = 1;

int opt_useThirdBody = 1;

int opt_useGravity = 1;

int opt_useSolarRadiation = 1;

// register OPI properties that can be configured by the host
registerProperty ("useAtmosphere"”, &opt_useAtmosphere);
registerProperty ("useThirdBody", &opt_useThirdBody);
registerProperty ("useGravity", &opt_useGravity);
registerProperty ("useSolarRadiation", &opt_useSolarRadiation);

"

The obvious drawback of this method is that the plugin may rely on data that is defined
outside the interface. Although the host can retrieve a list of PropagatorProperties from the
plugin as shown in listing 3.7 it can never provide optimal support for all possible properties
of all existing plugins. In the listing, for example, the host loads the propagator “Ikebana”
and sets its property “useAtmosphere” to zero which implies that the author of the host ap-
plication is aware of the existence of that property. This is bad practice as that code only
works for one specific propagator, and it would fail if the plugin author were to remove or
rename that property. A better solution would be to present the available properties to the
user via a graphical interface or a configuration file. An example for such a file is outlined in
listing 3.8: Its syntax provides a very easy way of setting the properties for every propagator
in use and can be parsed by the host using the C++ code shown in listing 3.9.

3[Thomsen, 2013] points out that for a property to be visible to the host, the registerProperty function must be called at
initialization, i.e. in the class constructor (C++) or by implementing and calling it from the OPI_Plugin_Init function
(C[Fortran).

52 3.2. ORBITAL PROPAGATION INTERFACE

Listing 3.7: Ea)icerpt from a host application that prints all properties of a specific plugin and sets a known
value.

// Initialize host and population data as shown in the previous example:
OPI:: Host host;

host.loadPlugins (" plugins");

OPI:: Population data(host, 200);

/] ..

// Fetch pointer to propagator "Ikebana"
OPI:: Propagatorx ikebana = host.getPropagator("Ikebana");

if (ikebana) {
// Print a list of the propagator’s available properties
for (int i=o; i<ikebana-—>getPropertyCount(); i++) {
std::string name = ikebana—>getPropertyName(1i);

" "

std :: cout << mame << ":." << ikebana-—>getPropertyString (name) << std::endl;

}

// Set the property "useAtmosphere"” to zero
ikebana —>setProperty ("useAtmosphere”, o);

}

Since the PropagatorProperties do not show up in the interface definition it is extremely
important that plugin authors keep the amount of properties to a minimum, and those that
are there need to be well documented. In the plugin code, the properties should assume
sensible default values that allow the plugin to run even ifno options are set. Any information
that is vital for the plugin to run should be aquired by different means, e.g. loaded from a file
provided with the plugin. A PropagatorProperty can be used to provide an optional means
to override this default. For the further development of OPI, existing plugins should be
regularly analyzed and common properties should be added as core interface functions.

Listing 3.8: Example of a configuration file for user-definable PropagatorProperties.

Here you can set properties for individual propagator plugins in the following form:
PropagatorName: Property=Value

Values can be strings , integers and floats. Strings are identified by enclosing them
in quotation marks, i.e. Propagator:Property="Value"

Floats are identified by the decimal dot, i.e. Propagator:Property=1.0

Everything else is parsed as an integer.

Ikebana options

toggle zonal harmonics perturbations (1=on, o=off)
Ikebana:useGravity=1

toggle solar radiation pressure perturbations (1=on, o=off)
Ikebana:useSolarRadiation=1

toggle third body perturbations of the sun and moon (1=on, o=off)
Ikebana:useThirdBody=1

toggle atmospheric drag perturbations (1=on, o=off)
Ikebana:useAtmosphere=1

set zonal harmonics J—Terms (2, 4 or 6)

Ikebana:jTermLevel=6

set verbose output (o=none, 1=default, 2=more, 3=lots, g4=extreme)
Ikebana:verboseLevel=1

toggle generation of objects ’ Cartesian positions (1=on, o=off)
Ikebana: cartesianPosition=o

HH O HHHEHHH

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 53

Listing 3.9: OPI host code that is able to parse the above configuration file and set the PropagatorProperties
accordingly (error handling and definition of some functions omitted for clarity).

// get next line from the config file:
string line = configFile.getNextLine ();
// first, split it at the colons

vector<string> tokens = tokenize(line,":");
// proceed if a colon was found
if (tokens.size() == 2

// use the part before the colon as the propagator’s name
string propagatorName = tokens[o];
// split the remaining line at the equals sign
vector<string > property = tokenize(tokens[1],"=");
// proceed if the split was valid
if (property.size() == 2) {

// set the first part as property name...

string propertyName = property[o];

// ...and the second as the value

string propertyValue = property[1];

// get a pointer to the propagator with the given name
OPI:: Propagator* p = host—>getPropagator(propagatorName);
// proceed if a propagator with that name exists
if (p != NULL) {
// if the value is enclosed in quotes, parse it as a string
if (propertyValue[o] == '\"’ && propertyValue[propertyValue.length()—1] == "\"’) {
p—>setProperty (propertyName, propertyValue.substr(1,propertyValue.length() —2));

// otherwise , if the value contains a dot, parse it as a float

else if (propertyValue.find_first_of(’.’) != string::npos) {
p—>setProperty (propertyName, stof(propertyValue));

}

// parse everything else as an integer

else {
p—>setProperty (propertyName, stoi(propertyValue));

}

}
}
}

3.2.7. CUDA Support

OPI::CudaSupport

+getDeviceCount(): int

+selectDevice(device:int): void
+allocate(a:void**,size:size t): void
+copy(a:void*,b:void*,size:size t,host to_device:bool): void
+free(mem:void*): void

Figure 3.9.: Simplified UML diagram of the OPI::CudaSupport class.

The Orbital Propagation Interface was designed to facilitate the use and creation of GPU-
based propagators. Plugin authors should be able to parallelize their propagators with mini-
mal effort while host authors should be able to use GPU propagators without any additional
knowledge of the technology. Since the use of CUDA is optional and other GPU computing
libraries exist that can be supported in the future, all CUDA-related code is placed inside a

54 3.2. ORBITAL PROPAGATION INTERFACE

separate class called OPIL::CudaSupport. This class can be deactivated at compile time; this way,
OPI does not rely on the CUDA SDK to be built if GPU computing capabilities are not re-
quired. To support a different GPU computing library such as OpenCL, the class can simply
be exchanged for an equivalent one that replaces all CUDA functions with their respective
OpenCL counterparts.

The OPI:CudaSupport module is used by OPI::Host and OPI::Population. Figure 3.9 shows its
most important functions. The host uses the getDeviceCount function to check for compat-
ible devices at run time. If none are found (or the module does not exist at all) GPU-based
propagators are skipped during the search for plugins. Otherwise, the selectDevice function
can be used to choose from a list of devices if more than one compatible GPU is available.
For the OPI:Population, the module provides the functions allocate, copy and free. They are
used to reserve or free GPU memory and copy data between (CUDA) host and device. These
functions simply act as wrappers for the respective CUDA calls (cudaMalloc, cudaMemcpy and
cudaFree) and can easily be replaced to support other GPU computing libraries.

3.2.8. Multi-Language Support

One of the key drivers behind the design of OPI was the ability to combine modules written
in different languages. This improves both ease of use because every developer can use their
preferred language, and cooperation because it makes it simpler to adapt existing code. OPI
is written in C++ and its design draws strongly from object-oriented principles. Host and
plugin using the framework can adapt this by deriving from OPI’s classes as shown in the
above examples. However, it is also possible to use a different approach. Two of the most
frequently used programming language in space research are Fortran and C. OPI provides
interfaces to both of these languages. They are generated automatically from the C++ code
during the build process and translate OPI's functions into appropriate equivalents in the
target languages. Techniques specific to object-oriented programming are slightly modified;
for example, instead of creating an instance of OPI::Host or deriving a class from it, C and
Fortran host applications use the function OPI_create_Host which creates a host object that
is maintained by OPI internally and returns a pointer to it. This pointer is then passed
on to other function calls that require access to it. On the plugin side, the Fortran and C
interfaces simply provide a list of functions that need to be implemented; this works just like
the C++ version except that the functions are not grouped in a class. Since host and plugin
are independent from each other they can be developed in different programming languages
and still work together as long as they conform with the interface definition. Many other
programming languages such as Java and Python as well as tools like Matlab provide support
for accessing C libraries. This can be used to extend OPT’s range of supported platforms even
further. For example, the host interface can be accessed from Matlab to call a propagator
plugin and retrieve its output.

3.2.9. Collision Detection

Besides orbital propagation, OPI supports two other plugin types for assessing collision risks
of populations. It was developed as part of the research in [Thomsen, 2013]; it works inde-
pendently from the propagation functionality and is only mentioned here for completeness.
One of the plugin types is used for spatial partitioning, the other for calculating the actual
collision probabilities. An example is shown in figure 3.10: Here, the space around Earth
is partitioned into cubes which are progressively subdivided until only two objects remain
inside one cube. The resulting list of possible collision pairs is used as input to the second

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 55

plugin which calculates the cumulated collision risk based on a method published in [Liou,
20006]. The partitioning and risk assessment are executed once per time step, i.e. several times
per second in the visualization. Both plugins have access to the CUDA support module so
they can be implemented using GPU computing. Thomsen found that the benefits obtained
through parallelization depend largely on the sorting algorithm as well as the nature of the
population.

-
',”l

7 v \VI

/ I,V s o AN
[V ASKINTRRT

HRIAV/AVEIAN VY A

Figure 3.10.: Visualization of the real-time spatial partitioning and collision risk assessment in DOCTOR.

3.3. Propagator Implementation Guidelines

The plugin pattern describes the necessity for a common interface. This is essential in an
environment that requires easy interchangeability and contributions from multiple authors.
It is, however, not sufficient to ensure seamless integration of a propagator into a host ap-
plication. Additional guidelines specific to orbital propagators must be defined to ensure
that all propagator plugins work as expected. Some of these guidelines can be implemented
into the plugin framework; but as strong enforcement of regulations might come at the cost
of flexibility or execution speed that decision must be made with great care. This section
gives the most important guidelines that host and plugin authors shall abide by to ensure
compatibility. All guidelines include the following information:

» Scope indicates whether this rule applies to host or plugin authors (or both),
m Rationale explains the reason why this rule should be followed,
» Exceptions lists possible exceptions that need to be kept in mind,

= Enforcement explains whether, and how, this rule can be enforced in OPL.

56

3.3. PROPAGATOR IMPLEMENTATION GUIDELINES

If OPI is updated in the future, the rule set has to be revised to account for the changes if nec-
essary. Missing regulations should be added whenever uncertainties and incompatibilities
are discovered during practical use.

Rule 1

Only valid orbital data shall be provided over the interface.

Scope
Rationale

Exceptions

Enforcement

Host and Plugin

Propagator and host application are two separate software projects that
are potentially developed by different people in different languages. In
order for both components to work together each of the components
has to fulfill certain expectations on which the other can rely. This in-
cludes taking responsibility for conforming to the standards set at inter-
face level. Valid value ranges for orbits and object properties are listed
in tables 3.3 and 3.4, respectively. Default values are given as a sugges-
tion and are not set automatically. Semi major axes smaller than 6400
km can be ragarded as invalid and affected objects should be marked
as decayed. Beginning of life and end of life dates before 1950 can also
be disregarded since no man-made objects existed in space prior to that
date.

Some propagators may allow hyperbolic orbits (¢ >= 1) or dates earlier
than 1950 when natural objects are propagated. This should be explicitly
stated in the documentation.

None. While the providing application should be responsible for cor-
rectness, the receiving application should apply sensible checks (e.g.
whether drag and reflectivity coefficients are set).

| Value | Valid Range |
Orbit.semi_major_axis | > 6400
Orbit.eccentricity 0<exl1
Orbit.inclination 0<i<2m
Orbit.raan 0<0O<21

Orbit.arg_of_perigee 0<w<2m
Orbit.mean_anomaly 0<M<2m
Orbit.bol 0 or > MJD19g50
Orbit.eol 0 or > MJD19g50

Table 3.3.: Constraints for orbital data provided by the host

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 57

| Value | Valid Range
ObjectProperties.id 32-bit integer
ObjectProperties.mass >0
ObjectProperties.diameter >0
ObjectProperties.area_to_mass >0
ObjectProperties.reflectivity 0 < Cgr < 2(default: 1.3)
ObjectProperties.drag_coefficient | > 0 (default: 2.2)

Table 3.4.: Constraints for object properties provided by the host

Rule 2 Angles shall always be given in radians.
Scope Host and Plugin
Rationale Practical experience shows that a lot of programming errors arise from

interpreting a degree angle as radians and vice versa. Therefore, one of
them should be chosen as a standard to be used throughout the appli-
cation. Since the intrinsic trigonometric functions of virtually all pro-
gramming languages use radians, this is the most sensible choice as it
prevents unneccessary conversions.

Exceptions May arise when angle values are provided in degrees or the host ap-
plication requires degrees for file input/output. In these cases, values
should be converted directly after reading and before writing, respec-
tively. Should it be necessary to write a degree value to a variable first the
name of that variable should reflect that the value is given in degrees.

Enforcement Not trivial since a number smaller than 27t can be both radians or de-
grees. Instead, a debug function is provided by OPI that allows to check
all angles and generate a warning if a number larger than 277 is detected.

Rule 3 Dates shall be given in the Julian Date (JD) format.
Scope Host and Plugin
Rationale Many physical models rely on date and time information which are usu-

ally given in the Julian Date format. As an alternative, the Modified Julian
Date is commonly used in astronautics applications because it provides
the ease of use of the regular Julian Date but prevents unnecessarily large
numbers by omitting the days before space flight was practiced. It is de-
fined to commence at midnight, January 1st, 1950, hence it is offset from
the regular Julian date by 2400000.5. However, some models might not
be able to handle this restriction, i.e. if natural objects are regarded or
information from earlier dates is required. The Modified Julian Date
can be used internally by the plugin but should be converted before it is
sent over the interface.

Exceptions No exceptions.

Enforcement Cannot be enforced without limiting the use of OPI to certain time pe-
riods.

58

Rule 4

3.3. PROPAGATOR IMPLEMENTATION GUIDELINES

A plugin shall never remove objects from the population.

Scope
Rationale

Exceptions
Enforcement

Rule 5

Plugin

An object that has decayed is of no use for the plugin and can therefore
be excluded. However, since the author of'a propagator does not know
how the propagation results are used they must not remove information
that the host might rely on. For example, the host might seek through
the result set based on previously stored indices or try to access the last
known position of a decayed object. In general, a plugin should always
add or change information but never remove any. Decayed objects shall
be marked accordingly - see next rule.

No exceptions.

Due to the structure of OPI this rule cannot be enforced directly. How-
ever, it is easy to keep in mind and follow in its slightly rephrased form:
The plugin shall never call OPI::Population’s resize function.

Decayed objects shall be marked and left unchanged.

Scope
Rationale

Exceptions
Enforcement

Plugin

Information about whether an object has decayed is crucial to many use
cases of propagators. It is therefore important that hosts can rely on the
plugins to supply that information. In OPI, the OPI::Orbit.eol tag must
be set to the Julian date of the current propagation step to mark a decay.
Objects that are marked as decayed should not be propagated further to
preserve information about the decay orbit and to save computational
time.

No exceptions.

None. However, a future version of OPI could enforce this rule
by automatically marking decayed objects either in OPI::Population or
OPI::Module.

3. A SOFTWARE FRAMEWORK FOR ORBITAL PROPAGATORS 59

Rule 6 A plugin shall never return a NaN value.
Scope Plugin
Rationale A host must be able to rely on the plugin to provide reasonable results.

NaN (not a number) values are usually a result of improper error han-
dling in the propagation algorithm and therefore do not fall into the
host author’s responsibility. When a NaN is generated it often propa-
gates through the following calculations invalidating their results and
making it difficult to spot their origin. Therefore, they should be caught
directly at the place of occurrence.

Exceptions If NaN values are produced as a result of the host providing invalid input
data they do not fall into the plugin author’s responsibility. Still, the
possibility of such errors occurring should be kept in mind and dealt
with appropriately.

Enforcement Automatic NaN checks can be implemented into the framework at cer-
tain points, e.g. before returning an OPI:Orbit to the host. As this pro-
cess might be very time-consuming, NaN checks are implemented only
in a “sanity check” routine used for debugging. Plugin authors need to
identify possible NaN occurrences in their algorithms and make sure
they are properly handled. Depending on the nature of the plugin,
generic NaN checks can be implemented at an appropriate place where
no significant performance reductions are expected.

Rule 7 The host should provide a means for the user to configure Properties.
Scope Host and Plugin
Rationale Since a plugin can freely define any number of properties, it is impossi-

ble for a host application to take them all into account. The host should
therefore be able to present to the user a list of properties for the chosen
plugin combined with a method of letting the user choose sensible val-
ues. Property names shall not be hard-coded into the host application.
In turn, plugins should assume reasonable default values for all of their
properties.

Exceptions This rule can be omitted if every functionality required by the host is
covered by the standard interface.

Enforcement None, since the preferred way of setting properties may vary between
host applications (e.g. GUI mask or text files). The example code shown
earlier in this section can be used as a template for implementing text file
based property setup into host applications. However, a default method
of setting properties can be implemented in a future version of OPIL.

60

3.3. PROPAGATOR IMPLEMENTATION GUIDELINES

4 High-Performance Analytical Propagation

In this chapter two analytical propagators are introduced that are implemented as OPI plug-
ins. The first is FLORA (Fast, Long-term Orbit Analysis), a Fortran 9o application that has
been developed at the Institute of Space Systems. It has been continuously improved over
the years for stability, speed and accuracy, the latest addition being the implementation of’
the OPI interface. The second is Ikebana, a port of FLORA written in C++ and CUDA. It has
been created to prove the feasibility of GPU computing for the task of orbital propagation,
with the aim to recreate the output of FLORA as accurately as possible while exploiting the
GPU'’s parallelism for run time improvements. The work has been conducted in the context
of [Mdckel et al., 2015] where preliminary results of Tkebana’s performance analysis have been

published.
4.1. FLORA

4.1.1. Overview

FLORA is an analytical propagator developed at the Institute of Space Systems. As the name
suggests it was designed with an emphasis on long-term analysis of orbital populations. It
takes into account perturbations from atmospheric drag, zonal harmonics, solar radiation
pressure as well as gravitational pull from Sun and Moon. Their implementations are based
on the analytical models described in section 2.1.1. Short-periodic perturbations are generally
omitted as they do not have any effect on the population’s long-term development. Each per-
turbation model is implemented in its own subroutine with an individual interface. These
subroutines are executed subsequently in each time step and return perturbed orbits which
are added to the original orbit, along with the object’s mean motion during that time, after
all models have been run. Original orbital data and object properties are stored in global
variables so they can be accessed by all subroutines. Double precision variables are used for
all floating point values. With the exception of the atmospheric model, the perturbation
forces are very straight-forward implementations of the analytical algorithms described in
section 2.1.1. Further details of the implementation are given in [Flegel, 2007] with updates
to the atmospherical model described in [Radtke, 2011] which are outlined in the following
sections.

FLORA can be operated in two modes. As a standalone application, it reads orbital data, object
properties and propagation time for a single object from a given input file and outputs the
resulting orbit in each time step. Further configuration options in the same input file can
be set to disregard certain perturbation models. Alternatively, FLORA can be integrated into
other applications which can then use the interface function shown in listing 4.1 to execute
a propagation step. FLORA is not designed as a dynamic library; integration is performed
by simply linking the object codes of the two applications into a single executable. FLORA
supports propagation of only one object at a time. To process multiple objects, the whole
application has to be executed once for each object. Ifit is used in the integrated mode, the
initialization step which loads the necessary data files from the hard drive can be preponed
so it has to be run only once.

62 41. FLORA

4.1.2. Atmospheric Model

The atmospheric module in FLORA uses data generated by the NRLMSISE-oo model de-
scribed in section 2.1.1.2 to provide values for atmospheric density and scale height. It cal-
culates the orbital perturbations using the analytical functions given by [King-Hele, 1987].
Details of the actual implementation are explained by [Radtke, 2011]: The data from the
NRLMSISE model is given in the form of a lookup table that was generated by running the
model about 800,000 times with all permutations of the input values given in table 4.1. For
each of these value sets, the resulting atmospheric density and scale height are listed. The
density values are averaged over the whole geographic latitude and one solar day. Since this
introduces inaccuracies for highly eccentric orbits a correction function is applied later that
eliminates the error in these cases. For each propagation step, the altitude is calculated from
the object’s current position. The other values are looked up in another table based on space
weather data provided by [Kelso, 2000]. It contains measured mean and daily Fjo 7 values as
well as three-hourly A, values for each day. For future dates, mean values are added assum-
ing a medium solar activity. To obtain the highest possible accuracy from the atmospheric
data table, a complex interpolation step is performed. For each of the four input values, the
two closest matching indices within the range and step size given in table 4.1 are calculated.
Values for density and scale height are looked up for every permutation of these indices
resulting in a total of sixteen density/scale height pairs. These values are interpolated and
returned. They are subsequently used as input for King-Hele’s equations to determine the
perturbed orbital elements. These equations require solving a modified Bessel function of’
the first kind for which a third lookup table is provided.

| Input | Range | Step Sizes |

Fig7 (daily) 50 to 300 10

Fi97 (81 day average) | 50 to 290 15

Ay o to 175 15 (from o to 75)
25 (from 75 to 175)

Altitude (km) 100 to 4000 | 10 (from 100 to 1000 km)
20 (from 1000 to 2000 km)
50 (from 2000 to 4000 km)

Table 4.1.: Input values for which NRLMSISE data is provided in FLORA.

4.1.3. Third Body Perturbations

As described in section 2.1.1.3, five parameters are required to calculate the perturbations
caused by a planetary body: Its gravitational parameter, called 3 in [Vallado, 2007], its equa-
torial inclination (i3) and right ascension of the ascending node relative to the Earth (Q)3),
the argument of mean longitude (u3) and the distance to the Earth (r3). For the gravitational
parameters of the two bodies the well-known constants are used. The equations for the other
parameters as implemented in FLORA are given in [Flegel, 2007]. Most of them are calculated
more accurately than the approximate constants given in literature based on the current Ju-
lian date in centuries. For example, the Sun’s inclination, which is defined by the Earth’s axial
tilt, is given by [Vallado, 2007] as roughly 23.5°. In FLORA the value is calculated as

4, HIGH-PERFORMANCE ANALYTICAL PROPAGATION 63

23.439291 — 0.0130042 - T}y (4.1)

where Ty is the current Julian century.

The third body perturbations in FLORA are implemented in three simple functions. Two
collect the five parameters for the Sun and the Moon, respectively. The current propagation
time is the only input required for these as all values are either constant or depend on T}y, in
the above manner. Once the parameters are collected they are given to a third function which
uses them to calculate the third body’s position relative to the satellite, and subsequently, the
orbital perturbation according to the equations given by [Vallado, 2007].

4.1.4. Solar Radiation Pressure

Solar radiation pressure is implemented in FLORA based on the model described in sec-
tion 2.1.1.4. It is assumed as constant; the acceleration it forces on the satellite is determined
based on its reflectivity coefficient and area-to-mass ratio. Using this value as well as the Sun’s
position, the RSW coordinates describing the direction of the acceleration force are deter-
mined. Escobal’s shadow function is used to check whether the object is currently within the
influence of the Earth’s shadow; if it is, the true anomalies of entry and exit points are cal-
culated as described in section 2.1.1.4. Based on the outcome, the appropriate set of analytic
equations from [Vallado, 2007] is chosen to determine the orbital perturbation.

4.1.5. Zonal Harmonics

The gravitational perturbations used in FLORA are an implementation of the analytical model
given in [Vallado, 2007]: Equations 9-38, 9-40 and 9-42 describe the changes of the right as-
cension of the ascending node, argument of perigee and mean anomaly, respectively, as a
function of time. FLORA supports zonal harmonics terms J,, J4 and J4; sectoral and tesseral
harmonics are not supported. In the implementation, the equations are divided so that the
sections corresponding to the respective zonal terms can be calculated separately. This allows
the user to configure the desired accuracy.

4.1.6. FLORA as an OPI Plugin

FLORA has been updated constantly over the years. One of the more recent changes included
structural redesigns which separated the frontend (consisting of file input/output and con-
figuration subroutines) from the actual propagation. This made adding the OPI interface a
very simple task. It was first suggested in [Mockel et al., 2012] and finally described in [Koéh-
ncke, 2014, a thesis in which the OPI interface was used to automatically compare differ-
ent propagators: The implementation involves a simple wrapper that lets the OPI function
OPI_Plugin_propagate call the original FLORA propagation routine shown in listing 4.1 and
passes on the arguments collected from OPI:Population. After successful execution of the
propagation function, the output is simply written back to the population and the function
OPI_Population_update is called to register the changes. To mark objects that have reentered
into the atmosphere in the given propagation step, FLORA uses a “reentered” flag that is
set to a negative value in case of reentry. This value is evaluated by the wrapper function;
in case of a detected reentry, the EOL value of the respective OPI::Orbit is set to the given
Julian day. The wrapper also contains implementations of the functions OPI_Plugin_Info for
general information on the plugins and OPI_Plugin_init for registering properties for config-
uration. The properties contain user-definable settings on which perturbation forces should
be considered; they are simply mapped to the respective global variables used in FLORA.

64 4.2. IKEBANA - A PARALLEL CUDA PROPAGATOR

Since FLORA only supports the propagation of a single object, the wrapper loops over all
objects of the OPI::Population and calls the propagation function separately for each of them.
With the wrapper in place, creating an OPI plugin from FLORA is merely a matter of adding
the -shared flag to the Fortran compiler to create a shared library instead of a standalone exe-
cutable. The program will then be recognized by OPI as a propagator plugin and can be used
by any host application.

Listing 4.1: Original FLORA subroutine used to execute a propagation.

SUBROUTINE floralib (

& jd_init, ' —> epoch / julian date [—]
& time , ' —> propagation time frame [d]
& dt, ' —> propagation step size[s]
& el, ! <—> orbit elements
& Am, ' —> area—to—mass ratio [m’2/kg]
& CD, I' —> drag coefficient [—]
& CR, I'—> reflectivity coefficient [—]
& reenter , I'<—— reentered flag
& data_dir, ' ——> directory of input files
& output_dir, ! —> directory of output files
& ich_flora, ! —> channel of...
I (o) .inp file
' (1) expatm.dat file
I (2) modbessel.dat file
I (3) swigsyi001. txt
I (4) output file (o = no output)
& init_flag ' —> _FALSE. for initialization
!

.TRUE. for propagation

4.2. lkebana - A Parallel CUDA Propagator

4.2.1. Overview

Ikebana was designed and implemented to work as an OPI plugin. Not only does it use
the OPI interface to communicate with its host, it also follows the structural design that is
suggested by the library. OPI’s design is also reflected in the modularization which sepa-
rates control code, calculation of an object’s movement on its orbit, and physical models for
perturbation forces. The latter are implemented as C++ classes which share the common in-
terface defined in OPI::PerturbationModule. This interface forces the perturbation models to
work with OPI's own data structures which are laid out as arrays instead of single objects, thus
allowing them to be designed for arbitrary population sizes. It also allows separating time-
dependent sections of the algorithm from those that are object-dependent. Both are signifi-
cant changes from FLORA's structure which allow Ikebana to be optimized for propagation of
multiple objects. All classes in Ikebana are tightly integrated to work as dedicated functional
units. The use of global variables is avoided as it is often a source of confusion, especially in
an environment that features asynchronous parallel execution of multiple threads. Besides
the perturbation modules, Ikebana consists of'a main class containing control code and the
OPI interface to the host, and an auxiliary class that manages the precalculated NRLMSISE
data. Each component is implemented in C++ with embedded CUDA kernels containing
the parallelized calculations. Ikebana uses OPI’s data types throughout its entire code, thus
avoiding unnecessary conversion. All CUDA kernels run at a block size of 256 threads per
block and a grid size depending on the number of objects in the population. Only the atmo-
spheric model uses optimized block and grid size settings (see section 5.3.5).

4, HIGH-PERFORMANCE ANALYTICAL PROPAGATION 65

OPI::Ropagator OPI::RopagatorModule
Propagator Propagation
Interface module interface
+runPropagation() +setTimeStep()
4 #runCalculation()
) OPI::Population A
1 Population Data |
: +get0rbit() I : I :
, |rgetobjectProperties() . - X !
| T . PMZonalHarmonics | 1 :
. iieles il | PMSolarRadiation|
1 QZZT::;I.?"S 1 1 Handles solar |
| p | radiatiqn |
\ +setTimeStep() 1 perturbations |
: #runCalculation() 1 +setTimeStep() [
- ! #runCalculation() '
llebana PMLuniSolar ! !
Frontend for the 1 Handles third | |
Ikebana body - T I
propagator perturbations 1|PMAtmosphere|
- 1 Handles =
-Population < - ;
-PMZonalHarmonics <>1_ +setT1meStep§) 1 atmospheric drag
-PMLuniSolar < #runCalculation() -AtmosphericData
-PMSolarRadiation > 1 +setTimeStep()
-PMAtmosphere < #runCalculation()
+runPropagation() -
Pag AtmosphericData|

Provides <>
NRLMSISE-00 data

+getPointAt()

Figure 4.1.: UML diagram of Tkebana.

Figure 4.1 shows the main classes of Tkebana which are described in the following sections.
For each of the more complex classes a flow chart is shown in a separate figure (4.2, 4.3,
4.4 and 4.7, respectively) depicting the basic steps through the algorithm. Serial parts that
are executed on the CPU are drawn in green, everything that happens in a CUDA kernel
is highlighted in blue. Input and output data are shown in yellow. The header files con-
taining the complete class definitions, including function names that are referenced in this
chapter, can be found in appendix C. Auxiliary classes that are not explicitly mentioned are
AstroMath which contains generic mathematical functions and astronomical constants, As-
troMathCUDA, a parallelized port of this library, IkebanaFileManager which handles file in-
put/output operations, Voice which manages the output of debug and logging information,
and the Ikebana Frontend which serves as a minimal OPI host with the ability to read and
write data in FLORA’s native format, thus completing compatibility with FLORA.

4.2.2. lkebana::lkebana

The main class of Tkebana implements the OPI::Propagator interface and therefore functions
as the connector between the host and the propagation. In the constructor, PropagatorProp-
erties are set that allow the user to activate or deactivate individual perturbation models and
the generation of Cartesian coordinates, set the J-terms to be accounted for in the zonal har-
monics module and the amount of verbose output. The OPI functions runEnable and runDis-

66

/ OPI::Population, time step /

.
DNE

ricData

4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

unchanged
OPI::Population

| (R P
perturbations

e
third £

return

AoltaPehid
deltaOr

[

propagated
OPI::Population

propagated
OPI::Population and
coordinates as
OPI::Vector3

Figure 4.2.: Flowchart of the runPropagation function in Ikebana’s main class.

4. HiIGH-PERFORMANCE ANALYTICAL PROPAGATION 67

able are overridden only to provide a message output for these events. The main functionality
is implemented in the runPropagation function which is also inherited from OPI::Propagator.
First of all, the function checks whether input data is available. If this is the case, pointers
to the orbits and ObjectProperties of the given OPI::Population are initialized on the CUDA
device. If necessary, OPI will transfer population data to the GPU memory automatically at
this point.

Next, the function checks whether the size of the input data has changed since it was called
last. Most notably, this happens on the first call. In this case, an initialization step is per-
formed on the GPU. Device memory is allocated to store the original, unperturbed orbits
as well as the delta orbits which are the sets of orbital elements representing the aggregated
changes caused by the perturbation forces. The reason for storing delta orbits separately is
to prevent loss of information due to floating point inaccuracies as explained in section 5.2.1.
The delta orbits are set to zero; information from the host is checked for validity. Invalid
values, such as undefined drag and reflectivity coefficients are set to the commonly used de-
fault values (according to [Vallado, 2007]) of 2.2 and 1.3, respectively. On the CPU, the lookup
tables for the AtmosphericData class are loaded into memory if atmospheric perturbations are
enabled.

After this initialization step, the actual propagation begins. First, the current time step is
handed to the perturbation modules that require it via their respective setTimeStep functions.
Each of them performs time-dependent precalculations on the CPU. The unperturbed mo-
tion is calculated on the GPU using the kernel described in section 4.2.3. Depending on which
perturbation modules the user has enabled, those modules’ respective calculate functions are
called which run the CUDA kernels in which the perturbation models are implemented.
These are described in detail in the following sections. The perturbed orbits they output
are added to the delta orbit. Finally, in a post-processing step on the GPU, the delta orbit
is added to the original orbit and written back to the OPI::Population instance. If Cartesian
coordinates are requested, they are calculated from the new orbit on the GPU and written to
the population as well.

The reason for checking the activation status of each module at each propagation step is to
provide a high level of flexibility to the user. For the visualization use case in particular, it
was found useful to start with just the mean motion activated by default since it provides
a smooth frame rate even with a very high number of objects. When checking for module
activation at every step, individual perturbations can be toggled by the user at any point dur-
ing run time via a GUI element or keyboard command. Since the AtmosphericData class is
initialized when it is first required, unnecessary load times and memory consumption are
avoided.

In the runPropagation function, floating point exceptions are enabled for invalid results as well
as overflows and underflows. This is to ensure that operations resulting in NaN or undefined
values cause the program to stop with an error message. The reason for this is usually invalid
input; as defined in the OPI guidelines, the host program should check the input data for
correctness in these events.

4.2.3. lkebana::PMMeanMotion

The perturbation module for the satellite’s mean motion is the simplest since it only calcu-
lates a single equation and adds the result to the provided delta orbit:

68 4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

M=,/ (4-2)

In Ikebana, this module is the minimum of what can be considered a propagation. Even with
all perturbation forces and conversion to Cartesian coordinates switched off the mean mo-
tion is still calculated. Because of’its simplicity it constitutes the smallest possible implemen-
tation of an OPI::PerturbationModule using CUDA and can be used as an easy-to-understand
example. The module’s definition is shown in listing 4.2. After the “include guard” and
inclusion of the OPI header, the class Ikebana::PMMeanMotion is defined as a derivative of
OPI::PerturbationModule. From that class it inherits a number of functions, two of which have
to be overridden in order to implement the module’s functionality: The public setTimeStep
and the protected runCalculation. Because of current API limitations, CUDA functions have
to be defined outside of classes; in this case, one global CUDA function named meanMotion
exists which does the actual calculation on the GPU.

Listing 4.2: PerturbationModule implementing normal unperturbed motion (header).

#ifndef __PERTURBATION_MEAN_MOTION_H
#define _ PERTURBATION_MEAN_MOTION_H

#include "OPI/opi_cpp.h"
class PMMeanMotion: public OPI:: PerturbationModule

public:
OPI:: ErrorCode setTimeStep(double julian_date);

protected:
OPI:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);
b

__global__ void meanMotion(OPI:: Orbit* orbit, OPI::Orbitx delta, int size, float dt);

#endif

The class’ implementation is shown in listing 4.3. The included header files contain the class
definition shown above as well as basic mathematical functions, constants such as y and the
default CUDA grid and block sizes. The function setTimeStep does nothing since the mean
motion is independent of the date. runCalculation takes as argument the current population,
an equally-sized array of delta orbits and the current step size. It calls the CUDA kernel
meanMotion, passing on the information to the GPU. The variable idx contains the objects’
individual indices; since OPI lays out the population data one-dimensionally, all kernels
working on an OPI::Population must calculate the indices in the same way. Using the index,
each thread processes equation 4.2 for the population object assigned to it and adds the result
to the mean anomaly of the delta orbit with the corresponding index. No double precision
values are used within this module.

4, HIGH-PERFORMANCE ANALYTICAL PROPAGATION 69

Listing 4.3: PerturbationModule implementing normal unperturbed motion (implementation).

#include "PMMeanMotion.h"
#include "AstroMathCUDA.h"
#include "config.h"

OPI:: ErrorCode PMMeanMotion:: setTimeStep (double julian_date)

{
return OPI::SUCCESS;

}

OPI:: ErrorCode PMMeanMotion:: runCalculation (
OPI:: Population& data, OPI::Orbitx delta, float dt)

calculateMotion <<<GRID_SIZE, BLOCK_SIZE>>>(
data.getOrbit(OPI::DEVICE_CUDA, true), delta, data.getSize(), dt
);
return OPI:: SUCCESS;
}

__global__ void meanMotion(OPI:: Orbit* orbit, OPI:: Orbitx delta, int size, float dt)
{
int idx = blockIdx.x*blockDim.x + threadlIdx.x;
if (idx < size) {
const float meanMotion =
sqrt (ASTROMATH_EARTH_GRAVITATION | pow(orbit[idx].semi_major_axis,3.0f));
delta[idx].mean_anomaly += AstroMath_moduloRad(meanMotion * dt);

4.2.4. lkebana::PMZonalHarmonics

Like in FLORA, the CUDA kernel of the zonal harmonics perturbations module is a straight-
forward implementation of the analytical equations 9-38, 9-40 and 9-42 from [Vallado, 2007]
that describe the changes of the right ascension of the ascending node, argument of perigee
and mean anomaly as a function of time. The implementation is equivalent to FLORA’s which
supports zonal harmonics terms Jp, /4 and Js. The only difference lies in the use of single
precision variables throughout the module in Tkebana where FLORA uses double precision.
Besides the objects’ respective orbits and five constants - the Earth’s gravitational parameter,
its mean radius and the three supported J-terms - no additional input data is required. Since
there are no time-dependent operations in this module, the setTimeStep function inherited
from OPI::PerturbationModule does nothing. The runCalculation function is also very simple
and merely executes the CUDA kernel. Like in FLORA, the equations are divided so that
the sections corresponding to the respective zonal terms can be calculated separately. Only
minor changes have been made such as moving some definitions of constants and variables
to resolve scoping issues. The module implements its own PropagatorProperty to allow the
J-term accuracy to be configured by the user. In Ikebana, the evaluation of this setting is
handled by the main class and transferred to the zonal harmonics module at each call. The
choice to implement it as a PropagatorProperty instead of'a class variable has been made to
facilitate detaching the class into an individual module. In terms of computational complex-
ity, reducing accuracy by skipping J4 or Js terms has virtually no effect on the overall runtime.

The kernel is shown in listing 4.4. Like all of the more complex perturbation modules in Ike-
bana, it first checks whether the object has already decayed by querying its end of life value.
If it’s still in orbit, the actual calculation begins. First some general constants are defined;

70 4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

after that, the changes in RAAN, argument of perigee and mean anomaly are added to the
delta orbit for the |, term using the respective portions of Vallado’s equations. Depending
on the setting of the PropagatorProperty defining the J-terms to be used, the same is done for
J1 and Jg. Since the equation give the change in radians per second, the results are multi-
plied with the current step size, dt. Finally, some additional settings are performed that all
perturbation modules need to do to ensure consistency. First of all, it is shown that a tempo-
rary variable was used instead of changing the delta orbit directly. While the latter wouldn’t
pose a problem in this case, sometimes previous values from the delta orbit are required in
following equations; a temporary variable must be used to prevent them from being over-
written. All unused variables of the temporary orbit must be initialized to zero; otherwise,
undefined values might get added to the delta which may change the results in unexpected
ways. Lastly, if the argument of perigee was changed by the perturbation force it needs to
be subtracted from the mean anomaly. The reason for this is that the mean anomaly calcu-
lated by Ikebana:PMMeanMotion is based on the original orbit. Since the mean anomaly is
offset from the argument of perigee by definition, changing this value later would falsify the
satellite’s position. This is prevented by subtracting the change from the mean anomaly.

4. HiGH-PERFORMANCE ANALYTICAL PROPAGATION 71

Listing 4.4: Excerpt from the kernel that calculates gravitational perturbations in Ikebana showing the

structural design of the function.

__device__ void gravity (OPI:: Orbit& orbit, OPI:: Orbit& deltaOrbit, float dt, int jTerm)

if (orbit.eol > 1.0) {
// object already decayed, do nothing

else {
// some important constants and simplifications
const float meanMotion = sqrt(EARTH_GRAVITATION/pow(orbit.semi_major_axis ,3));

const float parameter = orbit.semi_major_axis % (1 — pow(orbit.eccentricity ,2));

}
}

const float rp2 = pow(ASTROMATH_EARTH_RADIUS,2) | pow(parameter ,2);
const float ez = pow(orbit.eccentricity ,2);

const float sin2i = pow(sin(orbit.inclination),2);

OPI:: Orbit tmp; // temporary variable for the delta orbit

if (jTermAccuracy >= 2) {

//

const

J2 constant and abbreviations specific
float j2Term = 1.08262668355315e—03f;

to J2 term

const float mmj2 = meanMotion * j2Term * rp2;

const float mmj2sq = mmj2 * j2Term % rp2;

// calculate Jz RAAN — Vallado (9—38) in [rad/sec] times dt
tmp.raan = dt x
((—1.5f * mmj2 * cos(orbit.inclination)) +

// same for J2 argument of perigee (9 —40) and mean anomaly (9—42)

(3.0 f % mmj2sq

% cos(orbit.inclination) [32.0f)

*
(12.0f — g4.0f % e2 — ((80.0f + 5.0f % e2) % sinai)));

if (jTermAccuracy >= 4) { /* same for J4 terms x/ }
if (jTermAccuracy >= 6) { /+ same for JG terms x/ }

// remove change in argument of perigee from mean anomaly to prevent

// being counted twice

tmp.

mean_anomaly —= tmp.arg_of_perigee;

// set unused variables to zero

tmp.
tmp.
tmp.
tmp.
tmp.

eccentricity = o.ofj
semi_major_axis = o.ofj;
inclination = o.of}
bol = o.0f;

eol = o.0f;

// add to delta orbit
deltaOrbit = deltaOrbit + tmp;

it from

4.2.5. lkebana::PMLuniSolar

TIkebana’s default module for luni-solar perturbations is very similar to the original imple-
mentation in FLORA, except that all variables have been converted to single precision. The
luni-solar module is particularly suitable for demonstrating the usefulness of OPI’s distinc-
tion between setting the time step and performing the propagation. A great deal ofthe calcu-
lations are time-dependent but not orbit-dependent and can therefore be precalculated on

the CPU before the CUDA kernel is executed. This is shown in figure 4.3.

72 4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

/ OPI::Population, time step

v

calculate Sun calculate
parameters Sun perturbations
calculate Moon calculate
parameters Moon perturbations
add both to
¢ delta orbit
perturbed
OPI::Orbit

Figure 4.3.: Flowchart of Tkebana’s luni-solar PerturbationModule.

Since the five parameters, y3, i3, 73, u3 and ()3 are equally required for both planetary bodies
they are combined into a struct called tThirdBody. Like in FLORA, they are collected by two
functions; their equivalents in Ikebana are called getSunParameters and getMoonParameters.
These functions are called by the setTimeStep function that take as input the current Julian
date and returns an instance of tThirdBody filled with the parameters for the respective body.
They are stored as class attributes so the calculate function can access and upload them to the
GPU later.

Once all parameters for Sun and Moon are determined for the current time step, pertur-
bances can be calculated for each object. When the calculate function is called by Ikebana’s
main class it transfers the third body parameters to the GPU via a CUDA kernel call. The
CUDA kernel first checks for each object whether it has already decayed. For those which
are still in orbit, the CUDA function calculateThirdBody is called twice - first with the Sun
parameters, then with the Moon parameters. The function uses the orbital and third body
data to calculate the direction cosines A, B and C and subsequently the perturbations of the
orbital parameters according to [Vallado, 2007], equation 9-54. Since the function calculates
the changes per second, the results from both calls are multiplied with the current step size
and added to the delta orbit.

4.2.6. lkebana::PMSolarRadiation

This PerturbationModule is responsible for the calculation of the solar radiation pressure per-
turbation in Ikebana. The flowchart is shown in figure 4.4. The implementation from FLORA
received only structural updates. The majority of the algorithm is located in the CUDA ker-
nels because it depends on individual orbital elements as well as reflectivity coefficient and

4. HiIGH-PERFORMANCE ANALYTICAL PROPAGATION 73

/ OPI::Population, time step

v

calculate Sun > calculate > calculate
position SRP acceleration shadow
Yes shadow No
[<&
calculate perturbation use simplified
with shadow crossing equations

12

perturbed
OPI::Orbit

Figure 4.4.: Flowchart of Tkebana’s solar radiation pressure PerturbationModule.

area-to-mass ratio from OPI::ObjectProperties. The only independent value is the Sun’s posi-
tion whose calculation is called from the setTimeStep function. Two intermediate results from
this function, the exact obliquity of the Earth at the given date as well as the Sun’s ecliptic
longitude, are stored for upload to the GPU since they are required by the kernel for subse-
quent operations.

The kernel which is called by runPropagation first calls the device function getSRPAcceleration
which calculates the acceleration of the solar radiation pressure as described in section 2.1.1.4.
The four components, Rp, Sp, Wyin () and Wy (), are returned as a struct called tAcceleration.
The next step is carried out in the aptly named calculateShadow function. First, the perifocal
coordinates B and ¢ are calculated which, together with the orbit’s semi major axis and the
eccentricity, serve as input to solve the quartic equations given by [Escobal, 1965]. Contrary
to the rest of the kernel, the quartic equations are solved using double precision variables
because it was found that single precision floats would underflow in some cases. The results
are used to determine the entry and exit points of the satellite via Escobal’s shadow function.
Another struct called tShadow is returned that contains a boolean variable that states whether
the shadow was crossed in this propagation step; it also contains the eccentric and mean
anomalies as well as the radius vectors of the shadow entry and exit points. Although these
values are not required when the shadow was not crossed, they are calculated in both cases.
Since the threads that do not need this information have to wait for others to finish, this will
affect the run time only in the very unlikely situation that all objects in one block are outside
the shadow. Finally, with all necessary values gathered the function calculateShadowInfluence
is called which generates the orbital perturbations based on Vallado’s equations; depending
on the outcome of the shadow crossing test, the appropriate set is chosen.

74 4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

4.2.7. lkebana::AtmosphericData

The AtmosphericData class is the only major class used in Ikebana that is not derived from
OPL. It is used as a data manager for Ikebana:PMAtmosphere and provides access to the lookup
tables containing the NRLMSISE-oo data and solar activity. These tables are identical to the
ones in FLORA. A third lookup table is provided for the required modified Bessel function
of the first kind; CUDA provides a number of Bessel functions as part of its math libraries
but since the one required is not among them the lookup table approach from FLORA was
adopted. FLORA performs an interpolation step on this table upon loading; to save some
initialization time, Tkebana omits this step by using a different table created from a memory
dump of FLORA’s interpolated values. For convenience and to save disk space, all tables are
packed into a zip archive called ikebana.dat and loaded directly from there via the PhysicsFS
library ((Gordon, 2010]) which provides an abstraction layer for file system operations. The
tables are loaded automatically when they are required for the first time and kept in memory
until Tkebana is disabled.

Like in FLORA, Ikebana’s atmospheric model requires data for density and scale height.
These values are looked up and interpolated based on the four required inputs: Altitude,
mean and daily Fyo 7 values and the day-average A, (figure 4.5). To obtain the maximum effi-
ciency in the parallel portion of the code, Ikebana handles this step differently from FLORA.
Of'the four required input values, only the altitude depends on an object’s individual prop-
erty; the others only depend on the date and do not have to be determined by the kernel.
On initialization of the atmospheric module, the lookup table containing solar activity data
is loaded into CPU memory while the atmospheric data table is copied to the GPUs global
memory. In addition, three unified memory integer pointers are created for the A, and the
two Fjo7 values. During propagation, upon calling setTimeStep on Ikebana::PMAtmosphere, the
three numbers are looked up based on the given Julian date and stored in unified memory.
During propagation, each thread can now use these values together with the individual ob-
ject’s current altitude as indices into the atmospheric data table to read the correct density
and scale height information (figure 4.6).

date geodetic altitude
(once per object) (once per object)

Solar Activity Atmospheric
Table Data

Figure 4.5.: Handling of atmospheric data in FLORA.

4. HiIGH-PERFORMANCE ANALYTICAL PROPAGATION 75

CPU memory GPU memory

date geodetic altitude
(once per time step) (once per object)

2

Y !
Ap N <> density
> L
. daily F10.7 N .
Solar Activity Table P»| Atmospheric Data > scale
averaged F10.7 > > height

Figure 4.6.: Handling of atmospheric data in Tkebana.

4.2.8. lkebana::PMAtmosphere

TIkebana’s atmospherical model uses Ikebana::AtmosphericData for accessing lookup table data.
An instance of'it is maintained by Ikebana:PMAtmosphere which serves as the main class for
this PerturbationModule. Figure 4.7 shows the combined flowchart for the two. On the mod-
ule’s first use, the PMAtmosphere class calls the initialization routine of the data provider to
load the data from the lookup tables into their respective memory areas. As explained above,
the setTimeStep function calculates the indices for three of the four input values based on the
current Julian date and makes them accessible to the kernel. When the actual kernel is run
by calling the runPropagation function, first the geodetic altitude of each object is calculated.
If it is larger than 4000 km, the object is assumed to be outside the atmospheric influence
and is returned unaltered. Otherwise, the geodetic altitude serves as the fourth and final
index into the atmospheric data table. Since this was stored in GPU memory by the data
provider, the kernel can now aquire the correct density and scale height for each object. This
is done via the data provider’s getDataAt function which takes as input the geodetic altitude
as well as pointers to the atmospheric data table and the previously calculated indices for A,
and F 7 values. The points around these indices are chosen and interpolated with functions
equivalent to FLORA'’s as described in section 4.1.2. Next, the ballistic coefficient is calculated
from the object properties given in the OPI::Population. With all required input values col-
lected, King-Hele’s equations can now be solved; depending on the orbit’s eccentricity, the
corresponding set is chosen. The Bessel function required for solving these equations is cal-
culated in double precision because some resulting values would overflow a single-precision
float. The determination of the change in eccentricity is also conducted in double precision
because it was found to cause inaccuracies for small values otherwise.

76 4.2. IKEBANA - A PARATILEL CUDA PROPAGATOR

/ OPI::Population, time step/

unchanged perturbed
OPI::Orbit OPI::Orbit

Figure 4.7.: Flowchart of Ikebana’s Atmospheric PerturbationModule (including functions from Atmo-
sphericData).

5 Performance Analysis

5.1. Reference Population

For the task of comparing speed and accuracy between FLORA and Ikebana, a reference pop-
ulation was created based on publicly available data. A snapshot of the full TLE catalogue
from [Space-Track.org, 2015] was used as the basis and transformed to single mean Kepler
orbits with the SGP4 algorithm. Some missing information was added randomly, with value
ranges representing realistic satellites:

m Mass between 500 and 5,000 kg,
®m mean diameter between 1 and 9 metres,

® mass-to-area ratio between 40 and 480 kg per square metre,

® mean anomaly between o and 359 degrees.

Figure 5.1.: The reference population used for propagator validation and analysis, visualized with DOC-
TOR.

Since the TLE snapshot contained only around 15,000 objects, this process was repeated 100
times to generate a catalogue of roughly 1.5 million objects. The whole resulting file was
shuffled to ensure equal distribution of orbit types in case a smaller number of objects was
picked.

78 5.2. ACCURACY

5.2. Accuracy

5.2.1. Floating Point Considerations

Ikebana uses single precision floating point variables where possible because of their higher
performance on the GPU ([NVIDIA Corporation, 2013]; also see section 5.4). Since FLORA was
written with double precision throughout, the question arises whether this change will have
an impact on the results. In [Fraire et al., 2013], for example, it is shown that the GPU port of
SGP4 struggles with this issue: The switch from double to single precision causes errors that
increase over time. The paper shows an average deviation in the object’s position of about 12
km after approximately 23 years. Since the SGP4 algorithm is quoted as having a relative error
margin of'1-3 km per day, this additional error is insignificant in the given context. However,
it is still significantly larger than that of the double precision implementation which stays
below 1 km and does not increase. Even though this example proves that reducing preci-
sion is not always possible without significant loss of information, the general use of double
precision should be avoided for performance reasons when designing an algorithm for the
GPU. To achieve the best possible tradeoff between speed and accuracy, the algorithm has to
be studied carefully to identify the locations where single precision is sufficient, those where
the use of double precision can be worked around by rearranging the equations, and those
where double precision is unavoidably required. Some of these have already been mentioned
in the previous chapter.

Floating point inaccuracies can occur when two numbers with different magnitudes are
added. Consider the example shown in listing 5.1: The semi major axis of'a GEO orbit,
42,131.114 km, is stored to a single precision float variable. A perturbation of one metre
is added to that value for ten consecutive time steps. In the first method, both numbers are
added directly, resulting in the output shown in the leftmost column of table 5.1: The first
issue that stands out is that the exact initial value for the semi major axis cannot be repre-
sented in single precision so it is rounded to the nearest representable value, 42,131.113281.
Applied to reality, this means that just by reading the value into a single precision float, the
semi major axis is already off by roughly 72 centimetres. Secondly, the perturbation added
to it is so small by comparision that it is annihilated in the rounding process. Every consec-
utive addition follows the same process, thus resulting in complete loss of the perturbation
information. In other words, every time step adds one metre to the error.

To minimize this effect, Ikebana uses the second method shown in the algorithm: Instead
of adding the perturbation to the semi major axis directly, a delta value is introduced that
“collects” the changes by summing up only the perturbations, thus making sure that the
summands stay in roughly the same magnitude. The final result is created by adding the
collected delta to the original semi major axis. Since the delta value becomes larger after a
few time steps, the rounding error is less severe. The second column of table 5.1 shows that
while some information is still lost, the eftect is much less destructive and, most importantly,
does not carry into consecutive operations. The error stays around one metre during all time
steps. However, if the number of steps becomes large enough for the delta value to enter the
magnitude range of the original semi major axis, it should be added to it and reset to avoid
the problem that method 1 demonstrates. Both methods, rewritten with double precision
variables as shown in the rightmost column, are able to exactly represent the chosen values.

5. PERFORMANCE ANALYSIS 79

Listing 5.1: Example of precision loss when using floats and how to minimize it.

#include <stdio.h>

int main (int argc, charxx argv)
float semi_major_axis = 42131.114f;
float perturbation = o.oo01f;

// Method 1:
float result = semi_major_axis;
for (int t=o; t<io0; t++) {
result += perturbation;
printf("Method_1,_step %d: %f\n" ,t,result);
}

// Method 2:

float delta = o.of};

for (int t=o; t<io0; t++) {
delta += perturbation;

result = semi_major_axis + delta;
printf("Method_2,_step.%d: %f\n" ,t, result);
}
return o;

| || Float, Method1 | Float, Method 2 | Double, Methods 1&2 |

| Initial value || 42131.113281 | 42131113281 | 42131114000 |
t=o0 42131.113281 42131.113281 42131.115000
1 42131.113281 42131.117188 42131.116000
2 42131.113281 42131.117188 42131.117000
3 42131.113281 42131.117188 42131.118000
4 || 42131113281 42131.117188 42131.119000
5 || 42131.113281 42131.121094 42131.120000
6 42131.113281 42131.121094 42131.121000
7 || 42131.113281 42131.121094 42131.122000
8 || 42131113281 42131.121094 42131.123000
9 || 42131.113281 42131.125000 42131.124000

Table 5.1.: Results of the algorithm from listing 5.1.

The same problem occurs when the Julian date is represented by a single precision variable:
Adding a small amount of time such as a single second to a recent Julian date will most likely
result in that second being lost in the rounding process. It is possible to avoid this problem
in a similar manner, for example by using two floats: One to count the years that have passed
and one to count the seconds of the current year. However, the Julian date is only required
in kernel code on two occasions in Ikebana: Once to calculate the correction factors for the
atmospheric lookup table, and in the post-processing step to set the end-of-life date for de-
caying objects. All other values relying on the date are precalculated on the CPU and the
results are uploaded to the GPU. Therefore, using a double precision variable for the date
has no measurable effect on the GPU execution speed.

80 5.2. ACCURACY

In the implementation of Tkebana with OPI, this solution has one major drawback: When
Tkebana is initialized, an array of delta orbits is created with the same size of the input popu-
lation (see section 4.2.2 for details). This array is managed by the propagator. When the host
program changes the size or the order of population objects, the delta orbits do not match
anymore; the propagation process up to that point is lost. In order to preserve this informa-
tion, the host application has to download the current propagation process from the plugin,
apply it to the updated population as required and then send the updated population back
to the plugin. This is another example that shows the amount of implementation effort that
is added by constraining the application to single precision floats.

5.2.1.1. Overflows, Underflows and NaN

Floating point overflows and underflows occur when operations result in a number that ex-
ceeds the largest and smallest representable value, respectively. In Ikebana, an example of a
possible underflow can be found in the solar radiation pressure module when a very small
eccentricity is raised to the power of four; the result may be too small to be represented in
single precision and must be either stored in a double variable or raised artificially. NaN is
a value defined in the floating point standard which is used to represent undefined values
such as the result of a division by zero or the sqare root of a negative - the floating point
type does not include complex numbers. Occurrences of overflows, underflows and NaNs in
analytical propagation should be treated as programming errors. When using single preci-
sion for critical values like eccentricity, this might limit the domain of possible inputs which
requires appropriate handling and documentation. Ikebana was tested with all objects of’
the reference population and found to produce no problematic output. In the event of over-
flows, underflows or NaN results, Ikebana terminates with an exception. This behaviour can
be disabled in debug mode in order to track the problem.

5.2.2. Accuracy Dertermination

To test the accuracy of Tkebana, 1000 randomly chosen objects of the reference population
were propagated over 50 years with both FLORA and Ikebana. As a starting date, January 1st,
1971, was selected arbitrarily, the time step size was set to one day. Both propagators were
addressed through the OPI interface to ensure identical handling of input and output val-
ues. The software used for this is based on a work by [K6hncke, 2014] which demonstrates
the usefulness of OPI for automated propagator validation. FLORA stores all intermediate
results in double precision internally; small rounding errors may occur when fetching them
through OPI, but consistent errors or loss of information can be ruled out. The original ver-
sion of FLORA employs a different rounding process when writing the output files which
causes tiny differences. Figure 5.2 shows a typical test case with all perturbations applied
and negligible deviation. Propagations were conducted individually for every perturbation
module; in a final scenario, all perturbation forces were activated. For all tests, representative
individual object results are given that show average values or significant exceptions.

Many publications comparing orbital propagators cite the objects’ positional errors as a
benchmark for accuracy. However, for statistical long-term analysis of large populations,
the main use case of Ikebana, individual objects’ positions have little meaning; the shape
and position of the orbit as a whole is more significant. Therefore, results are collected and
displayed individually for semi major axis, eccentricity, inclination, perigee height and right
ascension of the ascending node. Results for the argument of perigee are shown only for the
gravitational perturbations. The mean anomaly values, representing the objects’ positions,
are omitted for the reason stated above.

5. PERFORMANCE ANALYSIS 81

It is important to note that the goal of the tests conducted in this section is to prove that
analytical propagation can be carried out on the GPU despite the constraints that this plat-
form poses in terms of floating point accuracy. It shall be proven that the deviations between
FLORA and Ikebana are within an acceptable range for their designated use cases. Therefore,
Tkebana aims to recreate FLORA'’s output as closely as possible, not to improve its absolute
quality. In section 5.2.4, the errors caused by Ikebana’s lower accuracy are compared against
errors introduced by uncertainties in other input values such as solar activity and atmo-
spheric density; inaccuracies within this magnitude are considered acceptable. An example
of the propagators’ performance against real measurement data is shown in section 5.2.5.

5.2.3. Individual Model Accuracy

5.2.3.1. Gravitational Perturbations

Ikebana’s gravitational perturbations module shows no significant deviations from FLORA.
The changes in RAAN and argument of perigee match FLORA'’s output very well in all or-
bital regimes. Differences are generally below 10 degrees which is acceptable since this value
changes at a high rate. The overall progress of the curve is the same in both propagators.
Figures 5.3 and 5.4 show examples for LEO and GEO orbits, respectively. The other elements
(with the exception of the mean anomaly) are not affected.

5.2.3.2. Third Body Perturbations

The third body perturbations module shows very good overall results in all orbital config-
urations. The vast majority of objects display no significant errors as the examples show
(figures 5.5 and 5.6). In a few cases, a slight shift in the eccentricity of GEO orbits was ob-
served, causing the orbit height to deviate (figure 5.7). The error is introduced at a specific
point in time and stays relatively constant afterwards.

Listing 5.2: The lines of MPLuniSolar that cause the inaccuracy visible in figure 5.7.

float julianCentury = (julianDate — 2451545.0f) [36525.0f;

const double moonRAANEcliptic = AstroMath_moduloDeg(
125.04455501f — (5.0f % 360.0f + 134.1361851f) x julianCentury
+ 0.0020756f * pow(julianCentury ,2) + 2.136e—6f % pow(julianCentury ,3)
— 1.65e—8f * pow(julianCentury ,4)) % ASTROMATH_DEG2RAD;

const double moonMeanAnomaly = AstroMath_moduloDeg(
93.27209061f + 483202.0172f * julianCentury
— 0.003542f * pow(julianCentury ,2)
— 2.88056e—7f * pow(julianCentury ,3)
+ 1.15833e—9f % pow(julianCentury ,4)) * ASTROMATH_DEG2RAD;

The problem is located in the two lines in Ikebana:PMLuniSolar that calculate the Moon’s
RAAN and mean anomaly, shown in listing 5.2. Floating point inaccuracies cause a slight
error in the Moon’s position and thus in the direction of’its gravitational pull. Reverting the
constants to double precision was able to noticably reduce the severity to the acceptable level
shown in the figure. Since the code for determining the third bodies’ positions runs entirely
on the CPU the change did not affect the runtime speed. The remaining error is introduced
when the position vector is converted to single precision on transfer to the GPU.

82 5.2. ACCURACY

7292 | | | I
7291 T — FLORA (OP]) ——— |
7290 [—
7289 =
7288 |—

7287 |—
7286 | | |

Semi Major Axis [km]

0.00166
0.00164 — —
0.00162 ff] ' 2|
0.0016 \ ’
0.00158 |
0.00156 (—

Eccentricity []

0.00154 [—

0.00152 |— 1

0.0015

82.95
82.048 — —
82.946 — —
82.944
82.942

82.94 pl
82.938 —

Inclination [deg]

82.936 |— —
82.934

7280.5
7280
7279:5
7279
72785
7278
7277.5
7277
72765
7276
e | | | | | | |

Perigee Height [km]

10

[e]
-
N
w
NN
w
[e)}
3
oo
O

400
350

300
250
200
150

100
50

RAAN [deg]

Time [years]

Figure 5.2.: Comparison between Ikebana and FLORA with and without OPI. Very small differences be-
tween the two FLORA versions are caused by slightly different rounding of the output data.

RAAN [deg]

Arg. of Perigee [deg]

400
350

300
250
200
150

100
50

400
350

300
250
200
150

100
50

5. PERFORMANCE ANALYSIS 83
[
1dra
a
[| | | | | |
o 5 10 15 20 25 30 35 40 45 50

'nu
I

T

o 5 10 15 20 25

Time [years]

i

il
i

Figure 5.3.: Comparison of the zonal harmonics module of Tkebana and FLORA on a LEO orbit. Object
number: 13464

RAAN [deg]

Arg. of Perigee [deg]

400
350
300
250
200
150

100

400
350

300
250
200
150

100
50

Flora
Ikebana

[e]
v

10 15 20 25 30 35 40

Flora
Ikebana

o 5 10 15 20 25 30 35 40

Time [years]

Figure 5.4.: Comparison of the zonal harmonics module of Tkebana and FLORA on a GEO orbit. Object

number: 28472

84

5.2. ACCURACY

7340
7320 —
7300 [—
7280 [—

Flora ——————— —
Tkebana ----e--ceecee-

7260 =
7240 |—
7220 —

Semi Major Axis [km]

7200 |—

7180

0.0044
0.0043
0.0042
0.0041

0.004
0.0039
0.0038
0.0037
0.0036
0.0035
0.0034
0.0033

Eccentricity []

83.7
83.6 —
835 [—
83.4 —
833 [—
832
831 —

Inclination [deg]

8

82.9

863
862
861
860
859
858
857
856

Perigee Height [km]

8s5

RAAN [deg]
8
[«
[TTTTTTTI

o

5 10 15 20 25 30 35 40 4 50

Time [years]

Figure 5.5.: Comparison of the third body perturbations module of Ikebana and FLORA on a LEO orbit.
Object number: 13464

5. PERFORMANCE ANALYSIS 85

42700

42600 [—
42500 |—
42400 |—
42300 |—

Flora
Tkebana --=--eeeceeeee |

Semi Major Axis [km]

42200 =
42100 |—
42000 [—
41900 |—
41800 [—

41700

0.00031
0.00030
0.00030
0.00029
0.00029
0.00028
0.00028

Eccentricity []

0.00027
0.00027

40

30—
25 —
20 [—
15 —
10 —

Inclination [deg]

35827
35826.8
35826.6
35826.4
35826.2

35826
35825.8
35825.6
35825.4
35825.2

Perigee Height [km]

400
350 |~
300 |—
250 —
200 |-
150 |-
100 =

RAAN [deg]

50

5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.6.: Comparison of the third body perturbations module of Tkebana and FLORA on a GEO orbit.
Object number: 28472

86

Eccentricity [] Semi Major Axis [km]

Perigee Height [km] Inclination [deg]

RAAN [deg]

5.2. ACCURACY

42600 T T
42500 — Flora
42400 1™ Tkebana
42300 |—

42200 |—=

42100 [—

42000 [—

41900 [—

41800 —

41700 I I I I

0.00122

0.0012
0.00118
0.00116
0.00114

0.00112

0.0011

0.00108

35

30

25

20

15

10

35742
35741
35740
35739
35738
35737
35736

35 T

30

25 —

20 —

15 —

| | | | | | |
o 5 10 15 20 25 30 35 40 45 50

10

Time [years]

Figure 5.7.: Third body perturbations: Slight deviations in eccentricity caused by the code shown in list-

ing 5.2. Object number: 22963

5. PERFORMANCE ANALYSIS 87

5.2.3.3. Solar Radiation Pressure

In the solar radiation pressure module, several effects can be observed. For many LEO orbits,
Ikebana’s result seems to oscillate around FLORA’s value, sometimes with a slight increasing
or decreasing tendency. This effect can be seen in figure 5.8. It’s explanation lies in example
given in section 5.2.1. Tkebana uses the second of the described methods to add changes to
the original orbit, which results in these oscillations. The error caused by it is in the range
of around ten metres.

In GTO orbits, the semi major axis of Tkebana sometimes deviates from FLORA in a more
linear fashion; an example is shown in figure 5.9 where the values even propagate into dif-
ferent directions causing the error to increase over time. The maximum error sizes observed
for this effect are in the range of 1-2 km over 50 years.

The other orbital elements often behave in a similar manner: In figure 5.8, this effect can be
observed for inclination and RAAN, figure 5.9 also shows this for eccentricity. For the latter,
the deviation occurs for eccentricities larger than o.1; smaller eccentricities seem to be unaf-
fected (figure 5.8). These deviations can be observed in all orbital regimes with error margins
staying below o.o1 degrees for inclination, 0.1 degrees for RAAN and o.0001 for eccentricity.
A probable reason for this effect is the calculation of the ecliptic longitude of the Sun which
heavily influences the solar radiation pressure acceleration and its direction. The value is
calculated in double precision on the CPU but converted to single precision when it is up-
loaded to the GPU.

On very rare occasions, an anomaly can be observed when the eccentricity approaches zero.
Some of the analytical equations that both FLORA and Ikebana are based on can cause a
negative eccentricity to be generated. Both propagators work around this problem by arti-
ficially raising the eccentricity to a very small positive value. This introduces an error that
FLORA and Ikebana handle difterently. Usually the curves align after some steps or a small
constant error is introduced. However, figure 5.10 shows that this problem can sometimes
lead to unpredictable results that affect the other elements. Both FLORA and Ikebana show
this behaviour, with Ikebana displaying it a little more frequently. While such occurrences
are overall very rare the possibility of such occurrences must be taken into account.

In general the solar radiation pressure has very little effect on the catalogue objects. This is
the reason why the deviations caused by Ikebana’s lower floating point precision stay within
an acceptable range. Since the force exerted on the object depends directly on its area-to-
mass ratio, the influence of the perturbation and the severity of the error would multiply for
high area-to-mass ratio (HAMR) objects. In addition, a step size of one day was used for the
analysis which might be too large to accurately determine the shadow entry and exit points.
For these reasons, an in-depth reevaluation of the underlying implementation in FLORA as
well as Ikebana’s use of single precision variables needs to be performed before a general
conclusion can be derived.

5.2. ACCURACY

88

[TTTTTTTI
el =
S K
| g =
P
=
I I
I"al'a Rl el a el el a sl s
RRER2RRQAAR
(oI J\o R\ JiNs JNo JNs BN JiNo 2o I s
O 00000000 O0OO0o
o oA A A A A A A A H A
| A T T N N A T N N

[uny] stxy T0fel TUIaS

50

45

40

35

30

25

20

15

10

2T

0.00463
0.00462
0.00462
0.00462
0.00461

[] fmo1ryuaooyg

0.00461
0.00460

50

45

40

35

30

25

20

15

10

& S

[3op] wonyeurdUT

50

45

40

35

30

25

20

15

10

e p—
sl
~u2 2 -
e 2o
-t
fans - p—
-3
s, .
[~ o
ess: 5.
|eus: - —
fuve
o 31
“us! -
eas! ==
s
72 2o p—
e
o .
-aE l!'
113 l”l
. -
.
LS.
=2ee
IS
3313
ocee |
sse
Ve
csze
e et
w wm ~ w
38 23 & %5
288 &sev
=] © 3 O
[wey] 1ySrop 2981rag

695.95

50

45

40

35

30

25

20

15

10

flllL

— £z —

[
¢

B |

ey

=

leead

[85p] NVVY

50

45

40

35

30

25

20

15

10

Time [years]

such as an oscillating semi major axis and small deviations in inclination and RAAN. Object

Figure 5.8.: Solar Radiation Pressure: This LEO orbit comparison shows several of the observed effects
number: 37452

89

5. PERFORMANCE ANALYSIS

T
Flora
Tkebana

14502.4

14502
14501.8
14501.4
14501.2

14501
14500.8

14502.2
14501.6

[wny] stxy 10l TUIDg

50

45

40

35

30

25

20

15

10

i
il
Il

vlIlIIIIIIIIIIIIIIIIIIIIIIII

I I I
30 35 40

25

[] Amotryuasoyg

50

45

20

15

10

[Sop] woryeurouy

895.6

Tt | |

¥ 9 8 R 9 ¥
0w wn T <+
X & X

3 3 L B L
[wny] 1ySrop 2981rag

___ —t—
QYEEYLS LYY
AN A R A AT
VWA A YWY NN

[elNe)
928999¢9¢979
[8ap] NVVE

50

45

40

35

30

25

20

15

10

Time [years]

Figure 5.9.: Solar Radiation Pressure: Small deviations occur in all orbital elements. Object number: 34242

90 5.2. ACCURACY

42700 i i
42600 I~ Flora ——— |
42500 |— _
42400 — Tkebana --------=----- —
42300 |— _
42200
42100 |—
42000 [—
41900 |— _
41800 (— _]
41700 | | | | | | | | |

Semi Major Axis [km]

0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.00006
0.0004
0.0002

Eccentricity []

0.0302 -]
3023 I I I I I Y,

AN
"1’ -"-("‘i’.'a' LAY \v'"‘f' pp—

o
pe.

0.03022 — NA A
3 o AN
,,)...L J-,}\ A -~ J"V“\." ‘\'A‘v)‘ ‘.'"J".-:"" LAY ¥

4 -
gotrd s 3
s’ v ¥

0.03021 — ".L..u'"'

0.03020

0.03019

Inclination [deg]

0.03018

0.03017

35830
35820 ¥y

| |
35810 |
35800 |—
35790 |—
35780 |—
35770 |—
35760 —
35750 — v v v Y
35740 ' | I I | | |

Perigee Height [km]

P Ay
ANAYAY
N RN CAX
AN WA

— - o NS,
7'8 PR N W W X N AU
PN Y ~ -
PN WA N W o,
2 e
..............

o A YA A e
7.6 = _

75 _
74—
73

7.9 PP

RAAN [deg]

o 5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.10.: Solar Radiation Pressure: Error handling for negative eccentricities can lead to unpredictable
results. Object number: 38098

5. PERFORMANCE ANALYSIS 91

5.2.3.4. Atmospheric Model

The accuracy comparison of the atmospheric model shows good results. Obviously, objects
with a perigee over 4000 km are not affected at all. For LEO regions, figure 5.11 shows typical
deviations in eccentricity, inclination and RAAN. As in the solar radiation pressure module,
these can be attributed to floating point inaccuracies and are within the same ranges for the
examined population. Another common effect shown in that figure is the slightly stronger
decrease of the semi major axis with an error of usually around 1-2 km. This deviation is
caused by rounding errors in the interpolation of the atmospheric data values which result
in slightly different scale height and density outputs. The error is assumed to be within the
range of the uncertainties introduced by using a lookup table with a discretized height scale.
It should be noted, however, that for low orbits such as the one shown in figure 5.12, this
difterent behaviour leads to an earlier decay of the object and a slightly increased decay rate
for the whole population (see table 5.3 in section 5.3.2).

Objects in GTO orbits usually show a similarly stronger decrease of the semi major axis
(figure 5.13). GTO orbits with a very low perigee experience a strong atmospheric drag that
causes the apogee to drop by several thousand kilometres after 50 years; in these cases the
absolute deviation also increases into the 100 km range as seen in figure 5.14. This plot also
shows that while Ikebana shows an overall higher decay rate, some objects also decay more
slowly than in FLORA.

92

5.2. ACCURACY

7060
7055
7050
7045
7040
7035
7030
7025
7020
7015

Semi Major Axis [km]

Y
S

D>

.

Flora
Tkebana

7010

0.0115
0.011
0.0105
0.01

0.00095

Eccentricity []

0.009

0.0085

98.535
98534
98533
98.532
98.531

9853
98.529
98.528
98.527

Inclination [deg]

15

[¢) 5 10 15 20 25 30 35 40 45 50
_ ! ! | i T I I I
B ‘~\ --------------- |
- T ~
| | l | l l |
[¢) 5 10 15 20 25 30 35 40 45 50

605
600
595
590
585
580
575

Perigee Height [km]

570

78.6876
78.6876
78.6876
78.6875
78.6875
78.6875
78.6875
78.6875
78.6874
78.6874

RAAN [deg]

5 10

20

10 15

20 25

Time [years]

Figure 5.11.: Atmosphere: Slight deviations in eccentricity, inclination, and RAAN. Object number: 28075

5. PERFORMANCE ANALYSIS 93
7000 | l l
é’ ggoo u I Flora =
£ 6 oo Tkebana ~wc----------
5 700 |— N
o 6600 |—]
=N 6500 |— | N
= 6400 |— E 5
E 6300 |— | n
A 6200 [— ; -
6100 | | |
o 10 20 2 30 N
0.0008
0.0007]
= 0.0006]
>
T 0.0005 a
é 0.0004 i
o] 0.0003]
= 0.0002 7]
0.0001 7]
o
10 15 20 25 30 3
82.46
58 82.44 —]
[
= 82.42 — |
: 1
2 82.4 |— E]
g H
é 8238 |- é |
= 8236 — E |
8234 | |
o 10 20 2 20 N
600 |
g 500 |— — N
= 400 -
@, 300 [-
- B —
s 200
v 100 |— n
&
g o a
~ -100 |— N
-200 |
o 10 20 2 1 N
276.346 - | I I —
276.346 ,]
g 276.346 ~....\==]
é 276.346 % 7
276.346 |]
= 70.34 |
276.346 |]
2‘76'346 | | | H
10 15 20 25 30 15

Time [years]

Figure 5.12.: Atmosphere: The semi major axis declines slightly faster in Tkebana. Object number: 33504

94

26914.5
26914
26913.5
26913
26912.5
26912
26911.5
26911
26910.5
26910
26909.5
26909

Semi Major Axis [km]

5.2. ACCURACY

..,
..

.....

.

Flora

IKe€Dand

..,

o

15 20 25

0.738
0.736
0.734
0.732

0.73
0.728
0.726

0.724

Eccentricity []

0.722

5 10

15 20 25 30

35 40 45

64
63.8
63.6
63.4

63.2
63
62.8

Inclination [deg]

62.6

5 10

15 20 25

30

35 40 45

50

881.4
881.2

881
880.8
880.6
880.4
880.2

880

Perigee Height [km]

........

879.8

15 20 25

52.2

51.8

51.6

514
51.2

RAAN [deg]

51

15 20 25 30

Time [years]

35 40 45

50

Figure 5.13.: Atmosphere: Decline of the semi major axis in high-eccentricity GTO orbits Object number:

25850

Perigee Height [km] Inclination [deg] Eccentricity || Semi Major Axis [km]

RAAN [deg]

5. PERFORMANCE ANALYSIS

95

20000
19500
19000
18500
18000 |—
17500 [—
17000 |—
16500 |—
16000 [—

Flora
Tkebana

15500

15

20

25

30

35

40

45

0.67
0.66
0.05
0.64
0.63
0.62
0.01

0.6

0.59
0.58

0.57

15

20

25

30

35

40

45

50

2.29
2285 |—
228 |—
2275 —
227 |-
2205 =

226 |—
2255 |—
225 —
2.245 — |

2.24

15

20

25

30

35

40

45

253
252.8
252.6
252.4
252.2

252
251.8
251.6
251.4
251.2

251

250.8

15

20

300
299 —
2908 —

297
206 |-
295 —
204 [~

293

15

20

25

Time [years]

30

35

40

45

50

Figure 5.14.: Atmosphere: Decline of the semi major axis in high-eccentricity GTO orbits Object number:

36833

96 5.2. ACCURACY

5.2.4. Total Accuracy Results

Adding the perturbed orbits of all four models provides good overall results. Figure 5.19
shows a typical LEO orbit with the slightly faster decline of the semi major axis caused by
the atmosphere and only very minor changes to the other orbital elements. The faster decay
rate shown for the atmospheric model is reflected in the overall results as well (figure 5.20).
Like in the individual model results, the relative errors of semi major axis, eccentricity and
inclination are generally acceptable for statistical analysis of the space debris population.
Figures 5.15 and 5.18 show an overview of the errors in the orbital elements Tkebana produced
compared to FLORA,; table 5.2 lists the classifications used for the histogram plot. The defi-
nition of the border between “acceptable” and “large” is based on experience with long-term
evaluation of large populations; it is placed at the point where the deviations are deemed to
cause significant statistical discrepancies if a high number of objects is affected.

| Element | Verysmall | Small | Acceptable | Large |
Semi Major Axis | < 2km < 10km | < 100km > 100km
Eccentricity < 0.0001 < 0.001 | <0.01 > 0.01
Inclination < 0.001° <0.01° | <0.1° >0.1°
Perigee Height < 2km < 10km | < 100km > 100km
RAAN < 0.1° <1° < 10° > 10°

Table 5.2.: Classification of the results.

Over a propagation time frame of 50 years, the deviation of the semi major axis stays below
2 km for 9o per cent of the objects and under 10 km for 96 per cent. For the eccentricity,
the error stays below o.0001 for 88 per cent of the objects and under o.001 for 98 per cent.
Inclination deviations are lower than o.001 degrees for only 36 per cent of the objects but 98
per cent stay under o.1 degrees. The relatively fast-changing right ascension of the ascend-
ing node shows deviations of less than ten degrees for 84 per cent of the objects. While this
might cause a relatively large positional error for some objects it is acceptable for statistical
analysis where the exact position of the object is not important.

LEO objects with an error of more than 10 km in semi major axis are often those for which
decay is imminent; since Ikebana generally shows earlier decay than FLORA, the deviations
increase during this state (figure 5.21). Orbits with strong deviations in semi major axis and
eccentricity are highly eccentric orbits with a low perigee and a high apogee such as GTO and
Molniya orbits that experience a strong atmospheric drag in the perigee region (figure 5.22).
In almost all cases, the atmospheric model is responsible for the largest deviations. The error
plot with the atmospherical model disabled is given in appendix B and shows reduced error
rates in semi major axis and eccentricity by around two orders of magnitude (figure B.5). For
the above examples, results with the atmospherical model disabled are shown in figure 5.23.
Thus, GEO orbits with no atmospherical disturbances are generally free of errors; a typical
example is shown in figure 5.24. The long-periodic perturbations visible in inclination and
eccentricity are reproduced accurately. The errors introduced in the solar radiation pressure
module which propagated some of the orbital elements into opposing directions are small
enough to be cancelled out when changes from other modules are added to the delta orbit.
This can be seen in figure 5.25 when compared to figure 5.9. In cases where the solar radia-
tion pressure is the only perturbation force that is taken into account, this effect should be

5. PERFORMANCE ANALYSIS 97

further investigated. The above figure also shows the slight deviation of the semi major axis
that is present in many GTO orbits.

As stated above, this data gives only a relative comparison between two analytical propaga-
tors and provides no evidence for the absolute quality of either FLORA or Ikebana. FLORA
has been validated in the process of a long-term population analysis project ((Mockel et al.,
2013)) against the numerical propagator ZUNIEM and was found to provide satisfactory re-
sults. However, the report also mentions that the solar radiation pressure model built into
FLORA shows the largest relative errors and works on the LEO population only because the
influence of the SRP perturbation on catalogue objects is very small. Since Tkebana amplifies
this effect the model’s implementation should be reevaluated in both propagators. Other-
wise, the deviations that Tkebana introduces are within the range of the uncertainties that
are intrinsic to analytical propagation. According to [Tapping and Charrois, 1993], errors in
determining the F10.7 values are in the range of around 2%. [Bruinsma et al., 2012] compared
the density output of the NRLMSISE-oo model to actual measurement data and found de-
viations between 3% and 10% for different sets of data. Figures 5.16 and 5.17 show the error
rates introduced into FLORA when F10.7 and density values are overshot by two and three per
cent, respectively. Comparing this to figure 5.15 shows that the error introduced by precision
loss in Tkebana is in the same order. The slightly higher deviations in RAAN and inclination
can be explained by the fact that the first figure includes differences from all perturbation
models whereas the parameter variations in FLORA only affect the atmospheric model.

100
1 !
— 80 — : : —
= [!
S 70— i : —
i -]
& 6o : : —
w 1 1
.L_)) 1 1
L — [} | —
RN 50
3 .
1 1

OD — —
£ 40 : :
b= |
.E 30 | | _
%)
(@]

20 — —

10 — —

(e}

Semi Major Axis Eccentricity Inclination = Perigee Height
Very small [N Acceptable (7777770
Small DU Large [

Figure 5.15.: Total Results: Histogram showing the error rates between FLORA and Ikebana.

98 5.2. ACCURACY

100

90—
_ 8o |—
=
3 70 |
2
= 6o |-
i3]
R
@)
g o
ks 30 |-
|5
A
20
10 —
o
Semi Major Axis Eccentricity Inclination Perigee Height RAAN
Very small [N Acceptable [0
Small DD Large [

Figure 5.16.: Total Results: Histogram showing the error introduced into FLORA'’s output when the Fi0.7
values for solar activity are overestimated by 2%.

100 T : .
|

90
_ 8o —
i
8 70 |
g
R 6o —
12}
k3]
R
O
Foer
k&
E 30
&)

20—

10 |—

o

Semi Major Axis Eccentricity Inclination = Perigee Height RAAN
Very small [N Acceptable L7777
Small DI Large [

Figure 5.17.: Total Results: Histogram showing the error introduced into FLORA’s output when the atmo-
spheric density values are overestimated by 3%.

Error [km)]

Error ||

Error [deg]

Error [km)]

Error [deg]

5. PERFORMANCE ANALYSIS

99

10000
1000
100

10

0.1
0.01

[[[
++‘++*§t

n #

+ o+
R
+ F 4 +
o
+

+ =
+ +;§;¥;
+ I

I
+ +
=+,
* +

+
|

+

+'_

0.001

0.1
0.01
0.001
0.0001
1€-05
1e-06
1€-07
1e-08
1€-09

1000
100
10

0.1
0.01
0.001
0.0001
1€-05
1e-06

1000
100
10

0.1
0.01
0.001

1000
100
10

0.1
0.01
0.001
0.0001

10000 15000 20000 25000 30000 35000

Semi Major Axis

40000

45000

+]

fited

++_
*

£

#+ + + - +4:':
+ + + oy f
j-%- + + * + +£—

+

+ [
+

[
Fi .

o 0.1 0.2 03 0.4 0.5 0.6 0.7

Eccentricity

o

-9

Inclination

(o]

-
N

R [[[[
+ +
++
A P
+ +
| | | | | |

o 5000 10000 15000 20000 25000 30000

Perigee Height

40000

Figure 5.18.: Total Results: Error rates of 1000 random objects.

(o]

N
(e}

100

Eccentricity [] Semi Major Axis [km]

Perigee Height [km Inclination [de
g g g

RAAN [deg]

7060
7055
7050

5.2. ACCURACY

Flora

Tkebana

7045
7040 —
7035
7030 =
705 — T —

7020 [~ T
7015

0.0115
0.011
0.0105
0.01

0.00095

0.009

0.0085

98.6
98.58
98.56
98.54
98.52

985
98.48
98.46
98.44

605

600

595
590
585
580
575

400
350

300
250
200
150

100
50

| | il |
o 5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.19.: Total Results: Typical LEO object with slightly faster decline of the semi major axis and no

major changes in the other elements. Object number: 28075

5. PERFORMANCE ANALYSIS 101

6900 |— Flora

Tkebana

6800 [—
6700 —
6600 —
6500 [—

Semi Major Axis [km]

6400

0.0009
0.0008
0.0007
0.0006
0.0005

0.0004 |— Rex —
0.0003 |— —
0.0002 |— —
0.0001 |— —

Eccentricity []

979
97.8
977
97.6
975
97-4
973
97.2

Inclination [deg]

700 | | |
600 —

500 [— —
400 |— —
300 |— —

200 — —

Perigee Height [km]

100 — —

400
350 =
300
250
200 —
150 —
100 —

-

RAAN [deg]

[¢) 2 4 6 8 10 12 14 16 18 20

Time [years]

Figure 5.20.: Total Results: The faster decline of the semi major axis in the atmospherical model causes
an overall slightly increased decay rate. Object number: 39769

102 5.2. ACCURACY

7200
7150
7100 [—
7050 —
7000
6950
6900
6850
6800

Flora ——————
Tkebana --------------

Semi Major Axis [km]

0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01

Eccentricity []

61.98
61.97
61.96
61.95
61.94

61.93
61.92

Inclination [deg]

430
420
410
400
390
380
370
360 |—
350

Perigee Height [km)]

4t

400
350

300
250
200
150

100
50

RAAN [deg]

i

Time [years]

3 3 40 45 50

Figure 5.21.: Total Results: LEO objects with imminent decay show relatively large deviations of semi ma-
jor axis and eccentricity at the final data point. Object number: 3757

Perigee Height [km] Inclination [deg] Eccentricity [| Semi Major Axis [km]

RAAN [deg]

18500
18000
17500
17000
16500
16000

15500

0.64
0.63
0.62
0.61

0.6

0.59

5. PERFORMANCE ANALYSIS 103

Flora
Tkebana

........
..........
.....
........

10

15

20 25 30 35 40

10

15

20 25 30 35 40

=
1]

o

10

15

20 25 30 35 40

450

400 —

350 I

300

250 [~

~ceaa.,
-,

gt

.

"""

200

10

15

20 25 30 35 40

45

400
350

300
250
200
150

100
50

10

15

20 25 30 35 40

Time [years]

45

Figure 5.22.: Total Results: Some highly eccentric orbits with low perigees show relatively large deviations
of semi major axis and eccentricity. Object number: 22670

104

5.2. ACCURACY

18199.6
18199.5
18199.5
18199.4
18199.4
18199.3
R AT T T T o) [Ut B S S -
18199.2 |—

Semi Major Axis [km]

.....

e W

18199.2

40

45

0.638
0.637
0.636
0.635
0.634
0.633
0.632
0.631

0.63

Eccentricity [|

0.629

25

30

35

40

45

50

6.7
6.6 —
65 |—

Inclination [deg]

63 | | |

25

30

35

40

45

50

380

340
320
300
280

260 '
240 —

Perigee Height [km]

220

25

30

35

40

45

50

400
350
300
250
200

150
100

RAAN [deg]

25

Time [years]

30

35

40

45

50

Figure 5.23.: Total Results: Without the atmospherical model, the inaccuracies visible in figure 5.22 have
largely vanished. Object number: 22670

5. PERFORMANCE ANALYSIS 105

42600 I [

42500 |— Flora

42400 — Tkebana ----=-==------
42300 |—

42200 [—

42100 |—

42000 |—

41900 |—

41800 —

41700 l l l | l

Semi Major Axis [km]

0.00145
0.0014 |—

0.00135 [— ‘
0.0013 i

0.00125 i ’
0.0012

0.00115

Eccentricity ||

0.0011
0.00105

Inclination [deg]

35744
35742 [—
35740
35738
35736 |
3573417

35732 R
35730 | ,
728 1™ | | | | |

35726

Perigee Height [km]

400
350

300 |—
250 [—
200 —
150 |—

100 [—
50 =

RAAN [deg]

|
o 5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.24.: Total Results: Propagation of GEO orbits is generally free of deviations. Object number: 22963

106

Eccentricity [| Semi Major Axis [km]

Perigee Height [km] Inclination [deg]

RAAN [deg]

5.2. ACCURACY

14502.6
14502.5
14502.4 |—
14502.3 |—
14502.2 |—
14502.1 [—
14502 — .,
145019 |— ..
14501.8 |— | |

Flora
Tkebana

14501.7

0.504
0.502

05
0.498
0.496
0.494

0.492

45

50

53.95
53.9
53-85
53.8
5375 |~
537 [

———

53.65

45

50

1000
980
960
940
920
900
880
860
840

820

45

400
350

300
250
200
150

100
50

et T 1]
——

o 5 10 15 20 25 30 35 40

Time [years]

45

50

Figure 5.25.: Total Results: The deviations introduced by the solar radiation pressure module (compare

figure 5.9) are small enough to get cancelled out. Object number: 34242

5. PERFORMANCE ANALYSIS 107

5.2.5. TLE Data Comparison

To give an idea of FLORA'’s and Ikebana’s absolute accu-
racy, both propagators were tested against the publicly
available TLE data set of Vanguard-1 (figure 5.26). This
satellite was launched in 1958 and has not yet decayed,
making it the oldest man-made satellite still in orbit
and one of the few objects for which positional data is
available for over 50 years. TLE data was aggregated for
dates between August 11, 1964 and December 28, 2014;
FLORA and Ikebana were configured to propagate the
initial set of orbital elements for 50 years with a time
step of 12 hours. The satellite has a diameter of 0.165m
and a mass of 1.47kg which amounts to an area-to-mass Figure 5.26.: Vanguard-1.

ratio of 0.0145 square metres per kilogram. For the drag

coefficient, the default value of 2.2 was assumed. The resulting orbital data is shown in fig-
ure 5.28. After 50 years, both FLORA and Ikebana show deviations in semi major axis of’
around 20 km and in eccentricity of around o.002. While the decay of the original orbit is
slightly faster than what the propagators predict, the overall progress is reproduced accu-
rately. For the inclination, FLORA and Ikebana show a smaller amplitude in the periodic
disturbances but stay well within the average range. The perigee height shows minor devia-
tions but again, the overall progess is depicted accurately. In all cases, the data shows that the
floating point deviations between FLORA and Ikebana are negligible compared to the uncer-
tainties that are inherent to the propagation algorithm itself'as well as the input values. To
demonstrate the latter, figure 5.27 shows an additional propagation with a drag coefficient of’
2.4 (see [Bowman, 2002]). The deviations caused by this change slightly improve the absolute
results and are more significant than the difference between FLORA and Ikebana.

e 8675 |
% 8670 Flora]
5 8665 |~ Tkebana ------==------ N
N 8660 |- Flora (CD 2.4)
3 8655 | - ora 2.4
= 8650 |— TEESE T,
g 8645 |— | | | i‘:‘l'_":-:"_--:--_-:-;--...
A 8640 =
o 10 20 30 40 50
Time [years]
0.19 | |
= 01895
2 0189 —
g 01885 |—
=
% 0188 |- ' VA 2
S 01875 — AV s VIl YL ! A
H 0187 — oYM
0.18065 l l
o 10 20 30 40 50
Time [years]

Figure 5.27.: Vanguard-1 propagated with FLORA and Ikebana. The dashed line shows the changes caused
by setting the drag coefficient to 2.4 which is realistic according to [Bowman, 2002)).

108 5.2. ACCURACY

8680 I
8670 Vanguard-1 TLE =------ —
8660 Flora

Ikebana =--==--=-===--
860 —~ TTT==-sa

8640 [— ~ =

Semi Major Axis [km]

8630 |— R |
8620 l l l

0.191
019 [—
0.189

\

0188 SENTANAA

0187 | <N
"

!
0.186 | \,r'-h.,',bh"’.nl‘.‘v'ul .]
3 m ‘i' U
0.185 — | | Ll '\l" l“-,/ "',\"\‘\“M-I‘\"“

o 10 20 30 40 50

Eccentricity [|

0.184

343
34.29
34.28
34.27
34.26
34.25
34-24
34.23
34.22
34.21

Inclination [deg]

658 T T
656 —
654 R 1)
652

e o
- 1

650
648 |
646 P —
644

Perigee Height [km]

o

10 20 30 40 50

400

350 :
300 RN ;:.:::m::,ﬂ: ,
250 ; SRS R AR P I\‘l Il"l'Illlw'"“I:llll‘:”‘::::‘I
150 byt ‘H||||I‘I}\l|\:|' |

100

50

I
1) 1
TR

I
b ottt B il laa Wi A st
Ul et

RAAN [deg]

o)
)) it

Time [years]

Figure 5.28.: Vanguard-1 TLE data plotted against FLORA and Ikebana results.

5. PERFORMANCE ANALYSIS 109

5.3. Speed

5.3.1. Runtime Evaluation

The process of propagating a given set of objects multiple times over a given time frame is
called a propagation scenario. The time required for computing a propagation scenario with
a sequential, analytical propagator depends on three main factors:

= N,y - the number of objects to be propagated
m N;; - the number of time steps to be propagated
m f - the average computation time for one object time step

If any overhead such as loading data into memory or writing output to a hard drive is ne-
glected the overall run time for a scenario is the product of these three values:

trotal = Nobj * Nt - tst (5.1)

The number of time steps is usually broken down into a propagation time frame Tp which
is divided into equally-sized segments, the propagation step size AT

Tp
Nyt = AT (5.2)

The product of N,; and N gives the number of propagation operations, Np. This is exactly
the number of times the propagation algorithm is called for the given scenario:

Np = Nypj - Nt (53)

In the case of ideal parallel propagation, fs is divided by the number of objects that can
be processed at once resulting in a speedup factor equal to the number of parallel threads.
In reality, complete parallelization is not possible or useful. In Ikebana, for example, this
applies to everything that happens in the setTimeStep functions. The equation describing the
maximum achievable speedup as a function of the number of processors, Ny, is known as
Amdahl’s Law ([Amdahl, 1967]):

1

Ppar
(1= Ppar) + Rppac

S(Nproc) = (54)

where Py, is the percentage of the algorithm that can be parallelized. It increases with larger
population sizes and smaller numbers of time steps.

The values for Nyyj, Tp and AT are usually given through the definition of the propagation
scenario. During a long-term analysis, for example, a population of a given size is used as a
starting point. Tp is the time frame for which the population should be examined, e.g. 200
years from a given date for which the initial population is valid. AT is used to configure
the desired trade-off between accuracy and run-time requirements and can be anywhere be-
tween a millisecond and several years. As a rule of thumb, the smaller the value for AT, the
more accurate the results will be but the computation time will increase linearly according to
eq. 5.1. In the visualization use case, Ny, is the size of the population that is being displayed
and Tp is the length of the animation, usually in the range of several minutes. AT is adjusted

110 5.3. SPEED

dynamically at run-time; it is linked to the configured animation speed and the program’s
frame rate to ensure a fluid animation, usually ranging between several milliseconds to sev-
eral minutes. The value for f;; depends on a lot of factors such as the computer’s processing
power and workload, the complexity of the perturbation models and the properties of the
population objects that state, for example, if and how long an object will travel through the
Earth’s atmosphere. Therefore, f;; is determined by measuring f,,, of a reference popula-
tion and taking the average over all objects and time steps. Keeping ., as small as possible
is the goal of optimizing the run time of a propagator.

Example: For a long-term analysis study ((Mockel et al., 2015]), several scenarios have been
executed for a time frame of 200 years between 2013 and 2213 with a population of 49,000
objects!. With the step size AT set to three days, the overall time required for computing this
scenario on a single core of a typical desktop PC was measured to be a little under two hours.

200 - 365.25d
3d

This gives an average t; of about six microseconds - circa 21,600 CPU cycles on a 3.6GHz
processor:

trotal = Nobj - Nt - tst = 49,000 - -ty = 7,159s ~ 1.99h (5.5)

ttoml . 7, 159s

Nopj - Nst 49,000 - 200365254

tst = ~6-10°s (5.6)

5.3.2. Benchmarking

As an easily comparable and convenient index for propagation algorithms the ratio between
Np and t;y4,; can be used, multiplied with a factor of 10~° for readability. Thus, the Propagator
Benchmark Index, M, is defined as

. 1 Np
M = = .
tsp - 106 tyopqr - 106)

For the above example, the index can be calculated as

Np 49,000 200-365.250 P

M= = =0.167— 8
trotar - 10° 7,159s - 106 s (5-8)

or megapropagations per second. From the two possible candidates, the other being t;,,;, this
value was chosen as a benchmark because of its independence from object count and number
of time steps as well as its clear definition: While the term “run time” can refer to anything
from total propagator run time, total host run time, propagation with or without data trans-
fer, etc., “(mega)propagations per second” defines exactly what is being measured. With M
being the inverse of t;; the benchmark depends on the same uncertainties as this variable.
It is also important to note that fy is averaged over the whole population. In reality, an ob-
ject that is outside the atmosphere will have a much shorter propagation time than one for
which the atmospherical disturbances have to be calculated. The propagation time for an
object that has already been marked as decayed will, ideally, be no longer than it takes the
processor so evaluate a single if -statement. Propagating a population consisting of only GEO
or fast-decaying objects will therefore always be faster than a LEO population of the same size.

In the actual scenario, the object number increased over time due to launches and collisions. For this example, a fixed
object number is assumed.

5. PERFORMANCE ANALYSIS 111

To compare the run time of two propagators it is necessary to minimize these uncertainties
by ensuring the following conditions:

The population and configuration given to both propagators must be identical. For the reasons
stated in the above example, this is the most important condition. The population should
also be representative of the propagator’s specific use case.

Both propagators must achieve the same level of accuracy. Again, the question of how much
accuracy is sufficient depends on the propagator’s use case. If two algorithms are sufficiently
accurate for a specific task a benchmark test can be performed to identify and select the faster
one.

Both propagators must lead to a similar decay rate. Objects that have been marked as decayed
will be excluded from the propagation process. Therefore, a propagator that shows a higher
decay rate will likely be faster because the number of full propagation operations is smaller.
Table 5.3 shows the mean decay rates of FLORA and Ikebana over the time periods that were
chosen for the benchmark. Since Ikebana was aimed at recreating the results of FLORA as
accurately as possible, the decay rates of the two propagators would ideally be identical. In
fact, Ikebana shows a slight tendency towards earlier decays that can be attributed to slight
deviations in the atmospherical model as described previously. The difference is however
not large enough to have a significant influence on the run times. In an earlier version of the
application, a programming error caused the decay rate of Ikebana to be slightly less than
FLORA's; the effect on the benchmark results was negligible, and the error did not otherwise
affect the propagator’s run time.

Np FLORA | Ikebana

trotal

1 year 0.94% 0.99%
5 years 2.09% 2.19%
10years | 4.02% 4.23%
20years | 7.45% 7.76%
soyears | 12.06% | 12.47%

Table 5.3.: Mean decay rates of FLORA and Ikebana over different propagation times.

Both propagators must be executed on the same platform. Usually this condition is to ensure
that no platform-specific bottlenecks falsify the results. However, when comparing a GPU
adaptation of'a CPU algorithm, this is inherently impossible. For this reason benchmarks are
often given using another layer of abstraction such as “performance per dollar” or “perfor-
mance per watt”, although the usefulness of the latter has been questioned ([Akenine-Méller
and Johnsson, 2012]). Since this work focuses mainly on practical use of the GPU propagator
any further abstraction is omitted. Instead, performance tests were conducted on various
off-the-shelf graphics cards that are readily available in an office environment or can easily
be installed into a standard PC. The hardware choices are outlined in the next chapter with
power consumption and approximate price added for reference.

5.3.3. Performance Evaluation Setup

To analyze the performance of Tkebana versus FLORA, the reference population detailed in
section 5.1 was used as a basis. From the randomized population, subsets of 1000, 10,000,

112 5.3. SPEED

50,000, 100,000 and 200,000 objects were propagated over time spans of one, five, ten, twenty
and fifty years each. A time step of one day was chosen in each case, resulting in a combined
total of approximately 11.33 billion propagation operations per tested processor. All scenar-
ios were executed with FLORA on two different CPUs (table 5.5) and with Ikebana on three
different GPUs (table 5.4). Each time, the run time of the propagations was averaged over two
consecutive runs before determining the MP/s value. Memory transfers between the CPU
and the GPU are not included even though they may have an impact on the overall run time;
the reason for not including them here is that the amount of intermediate results that needs
to be transferred back to the CPU depends largely on the use case. Long-term simulations
may require only yearly output while a visualization software may need to download the data
once every frame. Measurements including memory transfers are shown in section 6.4.

For FLORA, two standard Intel Core iy CPUs were used, one in a desktop and one in a mobile
environment. Both processors have multiple cores but since FLORA does not support paral-
lel execution, only one core was used in each case. For power consumption the TDP (Thermal
Design Power) is given; it indicates the maximum power intake for which the cooling system
is designed which is usually the amount of power the device draws when running typical
high-performance applications. Since the CPUs only use one core in FLORA and Ikebana is
unable to push the GPUs to maximum capacity (see section 5.3.5) the actual power consump-
tion for these tests is lower in all cases; the TDP value should therefore only be regarded as
a coarse point of reference.

The graphics processors used for the Ikebana benchmarks are listed in table 5.4. Since Ike-
bana is written in CUDA, only processors made by NVIDIA are currently supported. The
Tesla K2oc is a professional level adapter that was designed specifically for GPU computing,
It has more cores and faster double precision support than standard consumer level GPUs
and it can be installed into high performance clusters. It also has more RAM than other
graphics cards of the time with support for error correction (ECC). The GeForce GTX 86om
is a mobile GPU. Since it is not available separately, table 5.4 lists no price tag. It is usually
built into laptops focused on gaming and multimedia applications which come at a retail
price of around 1,000 €. The processor’s design for power efficiency results in a relatively
low core count. The GeForce GTX 960 is a current generation consumer graphics adapter
for desktop PCs that is easily availabe at retail stores. Of the current lineup, it is the card that
is balanced for highest cost-effectiveness. While it has support for the faster PClIe 3.0 bus, the
test system only supported the slower PCle 2.0 variant so the card’s full memory bandwidth
could not be utilized.

| | TeslaK2oc | GeForce GTX 86om | GeForce GTX 960 |

Build Year 2012 2013 2014

Architecture Kepler Maxwell (1st Gen.) Maxwell (2nd Gen.)
Clock Rate 758 MHz 1029 MHz 1127 MHz

Bus Interface PCle 2.0 PCle 3.0 PCle 2.0

Kernel Count 2496 640 1024

Power Consumption (TDP) | 225W ca. 100W 125 W

approx. Retail Price 3,100€ (not sold separately) | 200€

Table 5.4.: GPU specifications

5. PERFORMANCE ANALYSIS 113

| | Intel Coreiy-3820 | Intel Core i7-4710HQ |

Environment Desktop Laptop
Build Year 2012 2013
max. Clock Rate 3.6 GHz 3.5 GHz
Power Consumption (TDP) | 130W 47W
approx. Retail Price [€] 350€ 320€

Table 5.5.: CPU specifications

5.3.4. Performance Results

Tables 5.6 to 5.10, as well as figures 5.29 and 5.30, show the performance of FLORA and Ikebana
on the different hardware setups. FLORA ran at relatively similar speeds on both processors;
with the desktop CPU achieving around o.13 MP/s and the laptop performing at around o.1
MP/s, the desktop showed an advantage of around 30 per cent. Only little variation between
the scenarios was observed; the higher number of decaying objects in longer scenarios ex-
plains the slight increase of speed compared to the shorter ones.

For Tkebana, all GPUs were able to significantly outperform both CPUs. The massively par-
allel architecture of the graphics processors can only be fully utilized with a large number
of objects; therefore, the scenarios with 1,000 and 10,000 objects run at slower speeds. Also,
the relative overhead from the non-parallel portions of the perturbation modules is larger
for small object numbers. Between 100,000 and 200,000 objects, the MP/s value only shows
a very minor increase implying that the algorithms maximum hardware utilization has been
reached. However, as outlined in the next section, this does not mean that the hardware is
running at 100 per cent capacity. At 200,000 objects, the Tesla runs at approximately 2.8 MP/s,
outperforming the CPUs by factors of around 22 and 28, respectively. Each newer hardware
generation raises these factors by a significant amount, with around 38/47 for the laptop GPU
and and 60/75 for the newest generation hardware. The slight increase caused by the higher
number of decayed objects in the longer running scenarios is observable on the GPU as well.

Nop;
tf:]:; l 1000 10,000 50,000 100,000 200,000
1 year 0.11945 0.119712 | 0.119452 | 0.119884 | 0.119834
5 years 0.119956 | 0.120749 | 0.120591 | 0.120982 | 0.1209
1oyears | 0.120608 | 0.121818 | 0.121499 | 0.121888 | 0.121376
2oyears | 0.123131 | 0.124555 | 0.124283 | 0.124415 | 0.123985
soyears | 0.128331 | 0.129064 | 0.129029 | 0.129724 | 0.129694

Table 5.6.: Performance of FLORA on Intel(R) Core(TM) i7-3820 CPU [MP/s]

114 5.3. SPEED

S S B i R
7]
6 I ”o"" —
5 1— ll" _____________________________ —
= -
3 47
’
2 / |
1 |
I w
o
50 100 150 200
Objects [1000]
Ikebana (Tesla K2oc) FLORA (i7-3820)
Ikebana (GTX 860om) ===-- FLORA (i7-4710HQ) —-—-—-
Ikebana (GTX 960) ======--

Figure 5.29.: Performance in megapropagations per second of FLORA and Ikebana on various platforms.

8o

70 - -
60 | B bbb L L L DL L DT T T TP SRR
50 [_.e" -

40 |-/ -

rel. Speedup

30
10 —]

| | |
50 100 150 200

O

Objects [1000]

Tkebana (Tesla K2oc)
Ikebana (GTX 860m) ====-

Ikebana (GTX 960) =======

Figure 5.30.: Relative speedup of Tkebana on various platforms compared to FLORA (i7-3820).

5.3.5. CUDA Runtime Analysis

The CUDA programming language looks and feels very similar to the C language, hiding
the fact that the architecture of a GPU is vastly different from that of a CPU. While recent
programming languages and techniques abstract from the underlying hardware, CUDA pro-

5. PERFORMANCE ANALYSIS

Now;
tf:[f; l 1000 10,000 50,000 100,000 200,000
1 year 0.0879236 | 0.101952 0.094835 0.0875917 | 0.0991498
5 years 0.0884989 | 0.0997737 | 0.0887108 | 0.0885253 | 0.104466
1oyears | 0.0888536 | 0.093495 0.0930509 | 0.0891623 | 0.103896
2o0years | 0.0907781 | 0.0974876 | 0.102065 0.0911142 | 0.100514
soyears | 0.0943272 | 0.103678 0.108652 0.0949654 | 0.09600

115

Table 5.7.: Performance of FLORA on Intel(R) Core(TM) i7-4710HQ CPU [MP/s]

Nop;
tf:]:; l 1000 10,000 50,000 100,000 | 200,000
1 year 1.05587 | 1.80505 | 2.37784 | 2.66331 | 2.79332
5 years 1.05023 | 1.78512 | 2.36734 | 2.67464 | 2.83257
1oyears | 1.04503 | 1.79503 | 2.39443 | 2.67615 | 2.85134
20years | 1.04946 | 1.80277 | 2.4206 2.7535 2.81937
50 years 1.0611 1.84529 | 2.43957 | 2.74108 | 2.9648

Table 5.8.: Performance of Ikebana on NVIDIA Tesla K2oc [MP/s]

grammers need to take this into account to achieve the best performance. While Ikebana
already outperforms FLORA, a deeper analysis outlined in this section shows that there is
still room for improvement. Figure 5.31 shows the run time portions of the individual per-
turbation models in CUDA. On all devices, the atmospherical model is by far the most load-
intensive module although the actual percentages vary greatly. On the Tesla card, calcula-
tions for the atmosphere take up more than 9o per cent of the compute time while the same
operations performed on the two GeForce cards use only around 6o per cent. Also, the rela-
tively low overall performace of the Tesla comes as a surprise. Since the card has almost four
times as many cores as the laptop GPU a much better performance could be expected. An
analysis of the atmosphere kernel with CUDA’s visual profiler (Appendix A) shows that the
Tesla card’s performance is limited by memory constraints while the main bottleneck of the
GeForce cards is the available register count. The exact reason for this particular outcome
can only be found in the optimization routines of the CUDA compiler which are subject to
NVIDIA’s trade secrets. Although not the most significant issue on the Tesla, the limited
register count is a bottleneck common to all three cards. Since all threads in a block share
the available registers, the amount of concurrent kernels is limited by the register memory
that each thread requires. This means that although the hardware supports more than 2400
parallel threads, the atmospherical model requires too much memory to be able to run all
of them at the same time. For this reason, the atmospherical model of Tkebana is already
configured to run at lower block size of 64 threads per block. On the GTX 960, the CUDA
compiler’s optimization routine decided to reduce the number of occupied registers to 63
per thread compared to 76 on the other cards. This allows the GTX 960 to run 16 concurrent
blocks (i.e. 1024 concurrent threads) instead of 12 blocks (i.e. 732 threads) by sacrificing faster
memory access. A possible reason for this decision is the faster clock rate of the GTX 960
that allows the threads to finish in a shorter time. Neither of the cards achieve full use of all

116

Now;
tfil; l 1000 10,000 50,000 100,000 | 200,000
1 year 1.92289 | 3.63601 | 4.42572 | 4.58937 | 4.67917
5 years 2.03542 | 3.63923 | 4.44351 | 4.60205 | 4.69514
1oyears | 2.03567 | 3.65581 | 4.45251 | 4.61073 | 4.70606
2o0years | 2.03913 | 3.67133 | 4.47067 | 4.63292 | 4.73661
soyears | 2.04413 | 3.70397 | 4.51904 | 4.69204 | 4.8018

Table 5.9.: Performance of Tkebana on NVIDIA GeForce GTX 860M [MP/s]

Nop;
tf:]f; l 1000 10,000 50,000 100,000 | 200,000
1 year 240742 | 5.16932 | 7.18636 | 7.46922 | 7.5274
5 years 2.72049 | 5.20699 | 7.22574 | 7.47147 | 7.52225
10years | 2.72968 | 526549 | 7.22861 | 7.47152 | 7.52344
20years | 2.74429 | 532267 | 7.25659 | 7.49771 | 7.54349
soyears | 2.74599 | 541565 | 7.28331 | 7.54792 | 7.5971

5.3. SPEED

Table 5.10.: Performance of Tkebana on NVIDIA GeForce GTX 960 [MP/s]

available cores; however, this glimpse into the compiler’s optimization process suggests that
one hundred per cent occupancy does not necessarily yield the optimal performance.

For the GeForce cards, the analysis lists the kernel’s relatively high use of double precision
variables as an additional bottleneck. The Tesla’s hardware is optimized for faster double
precision calculations and therefore shows no significant slowdown. A possible reason for
this is that on CUDA hardware, double precision operations are performed by linking two
single precision FPUs; on the Tesla, the relatively low occupancy increases the availability of
unused FPUs. For neither card the bus speed proves to be a limiting factor; therefore con-
necting the GTX 960 to a faster PCle 3.0 bus cannot be expected to increase the performance
of the atmospherical model.

The profiler results point at additional possibilities for optimization, some of which can be
applied to all three GPUs. Concurrency could be enhanced further by limiting the amount of’
registers required by each thread; but with complex models such as the atmosphere, this is
not a trivial task. Another example is the strong diversion at the if -statements that determine
whether or not an object is affected by the atmosphere, and whether the equations for near-
circular or eccentric orbits have to be applied. Since the SIMD architecture demands that all
kernels follow the same branches, concurrently propagating e.g. a LEO and a GEO object in
the same block will cause stalling. This can be prevented by sorting the objects so that only
those likely to follow the same branches will be assigned to the same block. Provided that a
sorting algorithm can be found with a run time shorter than the time lost by stalling, this
will further enhance performance. A function for this could be provided by OPI so plugin
writers would have an extra benefit without further effort. Sorting could easily take place on
the CPU and would not have to be executed for each time step since only a small percentage

5. PERFORMANCE ANALYSIS 117

of objects cross the border into the atmosphere’s area of effect or change from eccentric to
near-circular orbits. A sorting algorithm optimized for arrays with small changes should be
able to perform this task very efficiently. With a divergence of nearly 100 per cent, perfor-
mance can be expected to nearly double in the best case.

The analysis also shows that the atmospheric module makes no use of the relatively fast
shared memory. Values that are common to all threads of'a block could be placed into shared
memory to increase performance. Possible candidates for this are the date-dependent values
which are the same for all objects, such as the pointers into the lookup table for the atmo-
spherical data. The constant memory would be well-suited for read-only data such as the
atmospheric model’s lookup table itself; unfortunately, with only 64 kilobytes available it is
much too small to hold the approximately 50 megabytes of atmospherical data.

Another area of optimization is the warp size: All three cards only execute two warps per
block. In the event of a memory stall, CUDA hardware can switch between warps so another
set of threads can be computed while another one waits for the memory transfer to finish.
If only two warps are available to choose from, the choice is limited so the probability of all
threads having to wait is higher. Increasing the warp size might decrease stall times; however,
since memory bandwidth is not as big an issue as register count of divergence, the expected
speedup is smaller.

The final possible optimization is specific to the different bottlenecks of the Tesla GPU. The
memory throughput of that card can be improved by using individual variables instead of’
structs such as OPI:Orbit and OPIL:Properties which would greatly reduce readability. Another
way to achieve this would be optimizing the structs’ memory alignment with precompiler di-
rectives such as #pragma pack. In OPI, this would require some extra effort to ensure Fortran
compatibility. Both options were ultimately discarded because they provide only minor im-
provements to the Tesla’s performance and none to the GeForce GPUs which are not limited
by memory bandwidth.

118 5.4. DoUBLE PRECISION COMPARISON

100

90
8o
70
60
50
40

30

Compute Time [per cent]

20

10

Tesla K2oc GeForce GTX 86om GeForce GTX 960

Atmosphere I

Solar Radiation Pressure D
Lunisolar mmmm

Zonal Harmonics

Mean Motion NiEE——_—_
Processing CTITIT!

Figure 5.31.: Percentage of the total run time of each perturbation module.

5.4. Double Precision Comparison

As concluded from section 5.2, the accuracy of Ikebana is deemed sufficient for its desig-
nated use case; the continuous use of double precision variables is not necessary. However,
small deviations can be observed for most objects. To determine if these issues are caused
by Ikebana’s lower floating point precision, the application was fitted with the new variable
type ikfp_t which was used for all internal floating point variables. Depending on the desired
precision, ikfp_t can be set to either float or double. The data types provided by OPI were left
unchanged so the resulting orbits are still converted to single precision after each module
finishes its calculation. Judging by the GPUs’ specifications, using double instead of sin-
gle precision leads to significant performance losses in CUDA. [NVIDIA Corporation, 2013]
lists the maximum peak performances of the Tesla card at 3.52 Tflops (i.e. trillion floating
point operations per second) for single precision and 1.17 Tflops for double precision. Since
the Tesla cards are specifically optimized for scientific applications, regular consumer GPUs
show even bigger performance gaps. To verify this, the scenarios from section 5.3.3 were ex-
ecuted again with ikfp_t set to double precision.

The performance results are listed in tables 5.11 to 5.13. While the GTX 86om and the GTX
960 show significant losses by factors of around 3.5 and 2.5, respectively, the Tesla K2oc per-
forms at almost the same speed as with single precision variables. Given its specific purpose

5. PERFORMANCE ANALYSIS 119

Now;
Np 1000 10,000 50,000 100,000 | 200,000

trotal
1 year 0.841087 | 1.78385 | 2.31649 | 2.53422 | 2.62704
5 years 0.835525 | 1.80175 | 2.32506 | 2.50202 | 2.59523
1oyears | 0.833607 | 1.79742 | 2.32413 | 2.50324 | 2.64006
2oyears | 0.833681 | 1.82396 | 2.36799 | 2.53014 | 2.6106
soyears | (0.834151 | 1.838 2.37197 | 2.55913 | 2.7054

Table 5.11.: Performance of Tkebana (Double Precision) on NVIDIA Tesla K2oc [MP/s]

Now;
Np 1000 10,000 50,000 100,000 | 200,000

trotal
1 year 0.834616 | 1.24769 | 1.31528 | 1.34153 | 1.3506
5 years 0.864329 | 1.25345 | 1.31753 | 1.34356 | 1.35244
1oyears | 0.864029 | 1.25527 | 1.31866 | 1.34399 | 1.35362
20years | 0.864404 | 1.25908 | 1.32189 | 1.34719 | 1.35699
soyears | 0.866791 | 1.26627 | 1.32836 | 1.35402 | 1.3640

Table 5.12.: Performance of Tkebana (Double Precision) on NVIDIA GeForce GTX 860M [MP/s]

MP/s

N W B U1 OV O
[
|

=

@)

50 100 150 200
Objects [1000]

Ikebana (Tesla K2oc, Double)
Ikebana (GTX 86om, Double) ====-
Ikebana (GTX 960, Double) ===----
FLORA (i7-3820)

FLORA (i7-4710HQ) =—-—-—--

Figure 5.32.: Performance of FLORA and Ikebana with double precision: All platforms but the Tesla suffer
significant performance losses.

it is expected to show the smallest performance drop; however, contrary to the specification
which lists a lower peak performance for doubles, the test result almost exactly matches that

120 5.4. DoUBLE PRECISION COMPARISON

Now;
Np 1000 10,000 50,000 100,000 | 200,000

trotal

1 year 1.20366 | 2.20059 | 2.75035 | 2.85016 | 2.88783
5 years 1.27224 | 2.21461 | 2.7424 2.85219 | 2.88677
10years | 1.26674 | 222022 | 2.76192 | 2.84734 | 2.8884
20years | 1.2703 223497 | 2.67323 | 2.85242 | 2.8927
soyears | 1.26979 | 223551 | 2.7686 2.83752 | 2.9018

Table 5.13.: Performance of Tkebana (Double Precision) on NVIDIA GeForce GTX 960 [MP/s]

8o

70 =
6o —
50 |- -
40 =

30 - -

rel. Speedup

20

10

o | | |
50 100 150 200

Objects [1000]

Ikebana (Tesla K2oc, Double)
Ikebana (GTX 86om, Double) =----
Ikebana (GTX 960, Double) =====--

Figure 5.33.: Relative speedup of Tkebana with double precision compared to FLORA.

of the single precision version. As explained in the previous section, it is assumed that the
card’s peak performance is not reached and therefore no difference is visible.

Looking at the propagation results, the double precision version of Tkebana shows little de-
viation from the single precision variant. In the LEO and GEO regimes, the output of the
original version is reproduced exactly for the vast majority of objects (figures 5.34 and 5.35);
the mean decay rates of both versions are identical. In a few cases where FLORA and Ike-
bana deviate due to very low eccentricities, the double precision version resembles FLORA’s
output more closely; figures 5.36 and 5.37 show different examples of this effect. Due to the
overall very small effect of the solar radiation pressure module it is likely that floating point
inaccuracies resulting from it are too small to be noticed in these results. No further analysis
has been conducted as this module was found to be in an incomplete state.

It should be noted that the double precision version of Tkebana has not been verified for cor-
rectness so these results should be regarded as preliminary. However, it can already be con-

5. PERFORMANCE ANALYSIS 121

cluded that most of the floating point inaccuracies between FLORA and Ikebana are caused
by the single precision OPI types. This is plausible since the OPI types are prominently used
throughout the propagator. However, for the same reason, changing them to double preci-
sion is likely to cause another substantial performance drop on the consumer GPUs. With
the exception of the rare low eccentricity problem, all other occurrences of floating point
inaccuracies appear to have been identified and properly addressed.

122 5.4. DoUBLE PRECISION COMPARISON

7110 | |
7S Flora —————— —
7100 |— TkebanalKFP =====-- —
7095 — Ikebana = --------------]
7090 |— B
7085 — _|

Semi Major Axis [km]

7080 [— —
7075

0.0047
0.0046
0.0045
0.0044
0.0043
0.0042
0.0041

Eccentricity []

0.004

0.0039

Inclination [deg]

700
695
690
685
680
675
670
6065

Perigee Height [km]

400
350

300
250
200
150

100
50

RAAN [deg]

o 5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.34.: Tkebana with double precision: Most objects show no significant deviation from the single
precision version (LEO). Object number: 37452

5. PERFORMANCE ANALYSIS 123

42600

42500 |—
42400 [—
42300 |—
42200 |=

Flora
TkebanalKFP
Tkebana

Semi Major Axis [km]

42100 |[—
42000 [—
41900 [—
41800 —

41700

0.00145
0.0014
0.00135
0.0013
0.00125
0.0012
0.00115
0.0011

Eccentricity []

0.00105

10

15

20 25 30 35 40

45 50

10

15

20 25 30 35 40

45 50

Inclination [deg]

20 25 30 35 40

45 50

35744

35740
35738
35736
35734
35732 R

Perigee Height [km]

35742 —

35730 [
35728 |—

35726

10

15

20 25 30 35 40

45 50

400
350 —

300 |—
250 [—
200 —
150 |—

100 [—
50 =

RAAN [deg]

20 25 30 35 40

Time [years]

45 50

Figure 5.35.: Ikebana with double precision: Most objects show no significant deviation from the single
precision version (GEO). Object number: 22963

124 5.4. DOUBLE PRECISION COMPARISON
7195 T T
g 190 Fl _
v} 719 ora
4 7185 IkebanalKFP ------- —
% 7180 |— Ikebana ----s--eeeeee-
oL 775
E 7170 —
g 165 [—
z ne | | | | | | | | |
7160
o 5 10 15 20 25 30 35 40 45 50
0.00018 I
0.00016]
= o.00014 M ' ; A _|
g 0.00012 |- AR AL ARAARARANRE
H H 4 H 3 v 3 -11
5 0.0001 [— : Tee b £11
§ 5 i *] : iy
8 e-05 [— H
6e-05 |—
4e-05 | | I |
o 5 10 15 20 25 30 35 40 45 50
82.97
. 82.9065 —
o ’L
5 82.96 |
.g 82.955
'*é 82.95
E 82.945 1]
- 82.94 _|
82.935 | | | | | | |
o 5 10 15 20 25 30 35 40 45 50
815
g 810
= 805
=
.20 8oo
e
Y 795
.50 790
o
A 785
780 | | | | | I |
o 5 10 15 20 25 30 35 40 45 50
400
350
w 300 l l
o, 250 l
. 200 1
2 1501
100 ‘ ‘
50
° | | | | [
o 5 10 15 20 25 30 35 40 45 50

Time [years]

Figure 5.36.: Ikebana with double precision: In other cases, the results from FLORA are reproduced more

closely. Object number: 12952

Eccentricity [] Semi Major Axis [km]

Inclination [deg]

Perigee Height [km]

RAAN [deg]

5. PERFORMANCE ANALYSIS

125

20900
29800 —
29700 |—
29600 |—

Flora
TkebanalKFP
Ikebana

29500 [—
20400 —
20300 [—

20200

0.0007
0.0006 |—
0.0005
0.0004
0.0003

—
| a=——]

0.0002
0.0001 [—

o
v

10 15 20

25 30 35 40

45 50

25 30 35 40

45 50

23154
23152 |—
23150 [—
23148 —
23146
23144 i
23142]
23140 I}
23138 |
23136 |—

23134 1— | |

3
=
2
o
>
274
3¢

23132

25 30 35 40

400
350

300
250
200
150

100
50

25 30 35 40

Time [years]

Figure 5.37.:: Ikebana with double precision: The low eccentricity problem of Tkebana can be addressed by
using double precision (GTO). Object number: 37847

126 5.5. SUMMARY

5.5. Summary

Overall, Ikebana provides propagation results that are very close to that of FLORA. Even
though some of the deviations do increase with time, all of them are well within the ac-
ceptable range for the use cases of long-term population analysis and visualization. An issue
that should be observed is the artificial increase of very low eccentricities that causes un-
predictable deviations. These happen in FLORA as well and are an inherent singularity of’
analytical propagation. While raising the precision does lessen the impact, occurrences of
this issue are extremely rare and are therefore unlikely to affect the overall results in large
populations. The solar radiation pressure module can be expected to cause more significant
errors with HAMR objects and will have to be reevaluated before use with certain types of
space debris such as MLI foil. Apart from this uncertainty, it can be concluded that for ana-
lytical propagation, sufficiently accurate results can be produced without the general use of
double precision variables. However, it is also evident that reducing the floating point pre-
cision causes significant additional effort. Just as shown in the research of [Fraire et al., 2013]
mentioned in section 5.2.1, porting an existing algorithm directly to the GPU and simply
reducing the floating point accuracy can be problematic. Possible occurrences of precision
loss have to be identified and equations have to be rearranged. This work can be extremely
difficult and tedious, especially with the more complex perturbation models like atmosphere
and solar radiation pressure. A brief investigation into a double precision version of Tkebana
(section 5.4) suggests that the most significant locations of precision loss have been identified.
In many cases, such locations consisted of a single line of code that caused major deviations
for a specific class of objects. Once they were found, rearranging the equation or converting
elements to double precision was sufficient to solve the problem. Remaining accuracy devi-
ations are either a result of undetected programming errors, or the lower accuracy of OPI’s
data types.

The run time measurements detailed in section 5.3 show that the additional effort and the
minor loss of precision can be justified by the vast performance improvement delivered by
GPU computing. With a speedup factor of up to 6o, the time required to generate one ta-
ble of measurement data for this chapter could be reduced from approximately 2.6 days to
under an hour with Ikebana. In long-term analysis, this advantage can be used, for exam-
ple, to improve the results by increasing the number of Monte Carlo simulations. Every new
GPU generation performs significantly faster than their predecessor, allowing the specula-
tion that there is still much room for improvement in future hardware developments. An
in-depth analysis of the atmospheric model hints at optimization opportunities that could
double its performance.

The difterent GPUs provided the same results for all calculations. In theory, the ECC mem-
ory of the Tesla card is able to automatically correct corrupted data. During the analysis
however, no situation was identified where this was applicable. For the use cases of statistical
long-term analysis and visualization, such occasional errors are very unlikely to have a sig-
nificant effect on the final outcome. In terms of performance, enabling or disabling the error
correction on the Tesla had no significant impact on Ikebana’s performance. The lack of'this
requirement coupled with the fast deprecation and the high price of the hardware make the
Tesla card a highly uneconomic choice in this case. Unless cluster computing is required
for extremely large populations or complex parallel post-processing in the host program,
regular consumer GPU cards are sufficiently capable of performing analytical propagation
of large populations.

6 Use Case Study: Space Debris Visualization

6.1. Overview

DOCTOR (Display of Objects Circulating in Terrestrial Orbits)is a visualization program designed
to illustrate the development of the space debris environment. It is capable of drawing and
animating large numbers of objects. Each object can be selected individually to display addi-
tional information such as the current and original orbits, name, type and origin. A ground
track can be painted in real-time and exported as a Mercator projection (figure 6.1). The main
use of the application is to generate images and animations for research and educational pur-
poses but it has also been used for publicity and even works of art ([Peus, 2013], [Najjar, 2014],
[Bundeskunsthalle, 2014]). For the latter, additional features have been implemented such as
support for stereoscopic displays and the ability to place the camera on top of any moving ob-
ject. The application also facilitates verification of source models for space debris objects; in
[Rohrbeck, 2011] for example, it was used to identify the cause for an erroneous distribution
of the West Ford needle population. With the help of the OPI interface the program can be
used to visualize the performance of any propagator in real-time in order to spot unexpected
behaviour. However, to perform its main objective, the depiction of the whole space debris
population, it requires a very fast propagator.

Figure 6.1.: Ground track projection in DOCTOR.

128 6.2. CLASSES

OPI::Host OPI::Population
Interface for Population data
orbital
- propagators
A

—— -y = —— —— -

1 I
0..*
1

Figure 6.2.: Simplified UML diagram of DOCTOR.

i) 0 1

6.2. Classes

Figure 6.2 shows an UML diagram of DOCTOR’s most important classes which are described
in detail in the following sections. DOCTOR makes use of several open source libraries which
are noted in the appropriate sections.

6.2.1. DOCTOR::DOCTOR

This is the main class of the visualization. It is responsible for setting up and running the
program which includes parsing command line arguments from the user and loading the
population data and other input files such as models and textures. It uses the open source
Simple Directmedia Layer (SDL) library ([Latinga, 2014]) to interface with the graphical envi-
ronment of the operating system, provide a basic OpenGL context and process input from
mouse and keyboard. At the heart of the class is the main loop which runs continually un-
til the user issues the quit command (figure 6.3). It first checks for mouse movement and
button presses and executes the functions associated with that specific input. For exam-
ple, if a window of the graphical user inferface was clicked, the key presses are forwarded
to the DOCTOR:GuiWrapper class which handles that input. The main loop then issues an
update command to all classes that need to perform per-frame tasks, most importantly DOC-
TOR:TimeMachine which keeps track of run time and simulated time. Subsequent updates
are performed by other classes such as DOCTOR:Gaia which calculates the Earth’s rotation.
Finally, the loop calls the update function on DOCTOR::Debris to propagate the objects and

6. UskE CASE STUDY: SPACE DEBRIS VISUALIZATION 129

[]

End /

Figure 6.3.: Flowchart illustrating DOCTOR’s initialization and main loop.

then executes OpenGL operations that run the shader programs and draw the frame. To pro-
vide a fluent animation, the propagation time step is chosen based on how much time has
passed since the drawing of the last frame.

6.2.2. DOCTOR::SpaceObject

This class represents an object orbiting Earth. In addition to the orbital elements and prop-
erties defined by OPI::Population this class stores additional information fetched from the
Satellite Situation Report (SSR), a document which is periodically released by NASA and can
be loaded by DOCTOR on startup. The object ID that is used in DOCTORs input files con-
tains the object type (e.g. payload, rocket body, explosion fragment, etc.), its country of origin
and the NORAD ID ifiit represents a catalogued object. In that case, the ID is checked against
the SSR; if 'a match is found, additional information such as name, launch and decay dates
are read from the catalogue and stored in the SpaceObject class. The object’s color is chosen
based on its type, the size based on its diameter. The orbital parameters are analyzed to de-
termine the orbit type (e.g. LEO, GEO, Molniya, etc.). Originally, the SpaceObject class had
a propagation function that was called on each update and each instance, thus propagating
the whole population sequentially on the CPU. As this quickly proved unfeasible for popula-
tions larger than a few thousand objects this function was deprecated and replaced with the
methods described in section 6.3.

130 6.2. CLASSES

6.2.3. DOCTOR::Debris

This class manages an array of SpaceObject instances which represent a population. Since the
deprecation of sequential propagation this class is also responsible for propagation. For this
purpose it implements the OPIL::Host interface and checks for propagator plugins at startup.
If'a plugin is found, it uses the list of SpaceObjects to compile an OPI::Population from its data
and calls the plugin’s propagate function for every frame. If no plugin is found a fallback to a
simple shader-based propagation method is used (see section 6.3). The class has additional
functions used for providing information to the user. One function identifies the object at
the position of the mouse if a left-click was registered. A pointer to the identified object
is stored which can be used to display information about its current position and to draw
its orbit and ground track. Another function can apply a filter to the population to display
only objects of a specific type, name, size, nationality and other properties. Other functions
control display-specific properties such as the objects’ scale on screen or the thickness of the
ground track.

6.2.4. DOCTOR:: TimeMachine

This class controls date and time information. Most of its methods are static so that all other
classes can easily access current information. The default date is set to January 1st, 1950,
the point from which the Modified Julian Date is defined!. From there the time progresses
with the application’s run time, with a scaling factor that controls the animation speed. The
default factor is 120, i.e. one second of run time corresponds to two minutes of propagation
time. This value can be decreased or increased with the “<” and “>” keys. A similar function
can be used to fast-forward the current time by a day, a month or a year. The class keeps record
of the drawing times of the last frames which are used to set the time step for propagation.
Other functions include controls such as pausing time, locking the frame rate to a fixed value,
changing the default Julian date and calculating the Sun’s position for lighting effects.

6.2.5. DOCTOR::GuiWrapper

This class is responsible for drawing the graphical user interface. It uses the CEGUI open
source library ([Turner, 2014]) which is capable of drawing common GUI components directly
in OpenGL. The window elements of the GUI are defined in a layout file that is loaded on
startup. The CEGUI library handles clicks and key presses that aftect the GUI elements; the
functionality is implemented in the GuiWrapper in the form of callback functions, i.e. functions
to which pointers are provided to the CEGUI library to be executed on a specific event. The
GuiWrapper is accompanied by a class called CEGUIPhysFSResourceProvider which serves as an
interface to DOCTOR’s FileManager (see section 6.2.7); it enables the GUI to load image and
layout files directly from DOCTOR’s universal resource file, doctor.dat.

6.2.6. DOCTOR::ScriptEngine

DOCTOR's scripting engine features an embedded interpreter for the Lua scripting language
([Terusalimschy et al., 2006]) and allows users to control DOCTOR’s most important functions
via Lua scripts. These include loading and deleting populations, applying filters, controlling
animation speed, moving the camera on predefined paths, recording video and setting Prop-
agatorProperties via OPI. Script files are usually provided at start via the command line and
parsed in every frame; the auxiliary function runOnce is provided that allows the user to trig-
ger commands at a specific point in simulation time. Alternatively, Lua commands can be

LSince OPI takes time information in the regular Julian date format, it is converted for propagation.

6. UsEe CASE STUDY: SPACE DEBRIS VISUALIZATION 131

entered directly through the GUT’s console window (figure 6.4). Scripts are used to execute a
predefined set of input commands that can be used for automatic creation of videos such as
the excerpt shown in listing 6.1.

setPropagatorProperty("useAtmosphere”, 1)
Command executed.
setPropagatorProperty(*useThirdBody”,1)
Command executed.

Population = View Plugins

:1 Time passed: Oy Od 4h 20m 1s

FPS: 47,9922

<
S

Figure 6.4.: The GUT’s scripting console allows direct input of Lua functions for controlling animation
and setting PropagatorProperties for OPI plugins.

Listing 6.1: Example Lua script for automating a control sequence.

function init ()

lockFramerate (35) — set a fixed frame rate for video recording
setSpeed (1) — set speed to real time
clearPopulation () — remove all objects
loadPopulation("clouds.sim") — load new object file
setFilter ("pgheight", 200, 200000)
applyFilter () — don’t show objects lower than 200 km
selectObject(99999) — select object with given ID
end
runOnce(o, init) — run init function at second o
runOnce (6, setSpeed, 720) — increase speed after six seconds of sim time
runOnce (16373, selectObject, 99998) — select an object after ~4.5 hours of sim time
— steadily increase the speed shortly afterwards
for i = 1, 10 do
local execTime = 17000 + i % 200
local newSpeed = 720 + i * 120

runOnce(execTime, setSpeed, newSpeed)
end

132 6.3. PROPAGATION

6.2.7. Auxiliary Classes

In addition to the classes controlling DOCTOR’s main features, the application uses sev-
eral auxiliary classes that handle the underlying data. The DOCTOR::FileManager is the same
class that is used by Ikebana; it uses the PhysicsFS library ((Gordon, 2010]) to load files from
an archive called doctor.dat. This archive contains textures, GUI resources, 3D models, basic
scripts and shader programs. All of DOCTOR's classes access their respective data through
the FileManager. The class is also responsible for writing output files such as screenshots
and ground track projections. The DOCTOR::ModelManager provides access to 3D models
which are loaded via the Open Asset Import Library ([Gessler et al., 2014]) and represented
by the DOCTOR::Model class. The latter stores the model data in a format that OpenGL can
process as well as the shaders required for drawing the model. Shader programs are handled
by the DOCTOR::ShaderManager class. It loads the shader code from the resource file, uses
the appropriate OpenGL functions to compile them into executable GPU binaries and runs
them when required. It also provides basic functions for debugging shader code and check-
ing hardware capabilities. Finally, the DOCTOR::TextureManager provides access to texture
images. They are converted into an OpenGL-compatible format and uploaded to the GPU
upon request. Each texture is assigned a unique identifier which other classes can use to
order a specific image. Textures, like models, are loaded from the resource file dynamically
when they are first requested; alternatively, it is possible to load all of them at startup to pre-
vent loading times during the application’s execution.

The remaining classes are DOCTOR::Camera which controls the movement of the camera and
parameters for stereoscopic vision, and DOCTOR::Gaia which is responsible for the physical
and visual representation of the Earth.

6.3. Propagation

DOCTOR supports two types of propagation. The first is a GPGPU approach using shader
programs written in GLSL, the second is plugin-based propagation using OPI. The two meth-
ods are outlined the following sections.

6.3.1. GPGPU Approach

The initial version of DOCTOR propagated the objects sequentially on the CPU. When this
proved infeasible for smooth animation of large populations, a shader-based propagation
algorithm was used. It was first published in [Mdckel et al., 2011] as a proof-of-concept for
the performance benefits of the GPU. The concept is shown in figure 6.5: The population
is represented as a particle system consisting of a two-dimensional grid of vertices, one for
each object. Two textures are loaded into GPU memory: The first contains properties such
as object type and size. These are used to determine the size and color of the objects; the
fragment shader then replaces each vertex with a two-dimensional image of a ball with the
given color and size. Additional lighting effects are applied based on the Sun’s position and
predefined material properties such as shininess and opacity. The second texture contains
the orbital elements; from these, the vertex shader calculates the true anomaly for each object
and transforms the resulting position into Cartesian coordinates; the vertex is then placed at
that point in the scene. The data is encoded into the textures in such a way that the texture
coordinates map one set of data to each vertex based on its position in the two-dimensional
array. In a later version, the textures are replaced with vertex attributes, an OpenGL data type
that can be used to assign properties to vertices directly without having to use textures.

6. UsEe CASE STUDY: SPACE DEBRIS VISUALIZATION 133

verticesn=0..9 parameter texture

(D) [P |Pi [P, Qoo

@@@ + P4 P5 Pe - O @) O

OO0 PP 006
v

: +
0o 0° a0 o

e — oo o
“Q90 0© [Blala

orbit data texture

<

Figure 6.5.: llustration of the GPGPU propagation from [Mdckel et al., 2011]: The orbital data and pa-
rameters were provided as textures and used by a vertex shader to calculate the true anomaly.

The vertex shader discards the positional information after drawing the objects which means
that there is no trivial way to use the results on the CPU. This makes tasks such as displaying
the current position or drawing a perturbed orbit extremely difficult. For identifying the
object which was clicked a technique called color picking is used. When a mouse click is regis-
tered, a special frame is rendered in which the colors of all objects are replaced by a unique
color that is generated from their coordinates in the vertex array. All other objects such as the
Earth, GUI and 3D models are hidden. Using the OpenGL function glReadPixels, the color of
the pixel at the position of the mouse is returned. By using the inverse of the function used to
generate the object colors, the index of the clicked object can be calculated. Since the object
is picked based on the 2D screen projection of the scene this method is unable to return the
3D Cartesian coordinates of an object. For some additional features that require the object’s
position, the clicked object is propagated again on the CPU and the position is stored in the
corresponding SpaceObject. This involves duplicating propagation code on the CPU which
has to be kept up-to-date when the shader is changed. For this reason, the shader is kept
as simple as possible; it does not calculate any perturbations except the change in the right
ascension of the ascending node caused by zonal harmonics which can be added optionally.
Since the inclusion of OPI, shader-based propagation is only used as a fallback for the case
when no OPI propagators are found or they are unsupported on the current hardware. Due
to the limitations of the shader approach many features such as drawing a ground track or
displaying a 3D model at the object’s position are only available when OPI is used.

6.3.2. OPI Approach

In the context of the research conducted by [Thomsen, 2013] DOCTOR was outfitted with
OPI to provide a generic propagation and collision detection interface. The DOCTOR::Debris
class was modified to inherit the methods from OPI::Host. Upon instantiation, it initializes
OPI and checks for plugins in the given folder. If no suitable plugin is found the shader

134 6.3. PROPAGATION

fallback is used. DOCTOR can use any OPI plugin but due to its high performance demands
it is recommended to use a CUDA-capable propagator unless the population consists only
of a small number of objects. In addition to being compatible with the system’s hardware,
the propagator requires support for generating Cartesian coordinates in order to work. By
default, DOCTOR supplies a very simple CUDA-based propagator which is a port of the one
used in the vertex shader. Comparing listings 6.2 and 6.3 shows that GLSL and CUDA are very
similar; the only differences between the two implementations are the additional identifiers
used in CUDA and the different names of the vector data types (vec3 in GLSL versus float3 in
CUDA).

In every frame, the update function of the DOCTOR::Debris class calls the propagate function of’
the selected plugin using the time step provided by DOCTOR:: TimeMachine. A shader is still
used to draw the objects but instead of arranging the vertices in a grid and providing the or-
bital data the vertex positions are set from the Cartesian coordinates supplied by the plugin.
Color and size information are provided as vertex attributes like in the original approach. To
maintain a high accuracy, larger propagation time skips are subdivided into several propaga-
tion steps. If the user fast-forwards by a day, a loop is executed that runs 24 propagations with
a fixed time step of 3600 seconds. Likewise, month and year skips are divided into smaller
time steps. Contrary to shader propagation, the positional information for all objects in
the population can be used on the CPU. It is downloaded from the GPU once every frame
and stored in the respective SpaceObjects. This means that up-to-date information is readily
available for all objects and therefore it does not need to be generated specifically for a single
clicked object on the CPU. This can be used to easily implement additional features such
as showing multiple perturbed orbits at once or displaying advanced population statistics.
Although this additional data allows for different approaches to identifying a clicked object,
the original code was kept as it proved to be very efficient.

Listing 6.2: Simple object propagation in an OpenGL vertex shader.

vec3 propagate(float years, float seconds,

float sma, float ecc, float inc, float raan, float aop, float phi)
{

float orbit_period = 2.0%PI * sqrt(powf(sma,3.0f) / RMUE);

float t = mod(years*SECS_PER_YEAR + seconds, orbit_period);

// calculating mean and excentric anomaly
float mean_anomaly = mod(sqrt ((RMUE % t % t) |/ pow(sma,3.o0))+phi, 2.0%PI);

float excentric_anomaly = mean2excentric(mean_anomaly, ecc);

// converting excentric anomaly to true anomaly

float sin_ea = sin(excentric_anomaly/2.0);

float cos_ea = cos(excentric_anomaly/2.0);

float true_anomaly = 2.0 x atan(sqrt((z.0 + ecc)/(1.0 — ecc)) * sin_ea/cos_ea);
// based on the true anomaly, calculate Cartesian object coordinates

float u = true_anomaly + aop;

vec3 w = vec3(cos(u) * cos(raan) — sin(u) * sin(raan) % cos(inc),

cos(u) * sin(raan) + sin(u) % cos(raan) = cos(inc),
sin(u) * sin(inc));

float p = sma x (1.0 — pow(ecc,2.0));

float arg = 1.0 + (ecc * cos(true_anomaly));
float r = p | EPSILON;

if (arg > EPSILON) r = p [arg;

return w * r;

6. UsEe CASE STUDY: SPACE DEBRIS VISUALIZATION 135

Listing 6.3: Simple object propagation in CUDA. The code is almost identical to the vertex shader code.

__host__ __device__ void propagate(float years, float seconds, float sma,

float ecc, float inc, float raan, float aop, float phi, OPI::Vector3& position)
{

float orbit_period = 2.0f % PI % sqrt(powf(sma,3.0f) / RMUE);

float t = fmod(fmod(years+*SECS_PER YEAR + seconds, orbit_period);

// calculating mean and excentric anomaly
float mean_anomaly = fmodf(sqrtf((RMUE * t % t) / powf(sma,3.0f))+phi, 2.0f*PI);

float excentric_anomaly = mean2excentric(mean_anomaly, ecc);

// converting excentric anomaly to true anomaly

float sin_ea = sin(excentric_anomaly/2.0f);
float cos_ea = cos(excentric_anomaly/2.0f);
float true_anomaly = 2.0f % atan(sqrtf((z.0f + ecc)/(1.0f — ecc)) * sin_ea/cos_ea);

// based on the true anomaly, calculate Cartesian object coordinates

float u = true_anomaly + aop;

float3 w = make_float3(cos(u) % cos(raan) — sin(u) * sin(raan) % cos(inc),
cos(u) x sin(raan) + sin(u) * cos(raan) = cos(inc),

(u) * sin(inc));

float p = sma * (1.0f — powf(ecc,2.0f));
float arg = 1.0f + (ecc * cos(true_anomaly));
float r = p |/ EPSILON;

if (arg > EPSILON) r = p /[arg;

position.x = w.Xxx*r;
position.y = w.y*r;
position.z = w.z*r;

6.4. Performance

DOCTOR’s performance was measured on the GeForce GTX 960 with various configura-
tions listed in table 6.1. For this test, the speed is given in frames per second (FPS) for Ikebana
with and without perturbations, the fallback propagation shader and the simple CUDA-based
plugin that is provided as a default. Since the graphics driver limits the maximum frames
per second to 6o to conserve energy, higher values are not listed. The results show that DOC-
TOR is capable of displaying the 1mm population of over 200,000 objects based on MASTER
population data at a smooth frame rate of almost 40 frames per second when propagated
with Tkebana and all perturbations enabled. As this is a different population from the one
used in chapter 5 the corresponding Benchmark Index is slightly higher, around 8.1 MP/s for
this configuration. Using the reference population, DOCTOR displays 150,000 objects at a
frame rate of'39.2 fps and 1.5 million objects at 4.6 fps. This corresponds to around 6-7 MP/s
which is a little below the 7.5 MP/s that were measured for this configuration. This can be
explained by the fact that the GPU, in addition to performing the propagations, is also busy
with drawing the scene in OpenGL. Also, DOCTOR does not yet have support for intercon-
necting CUDA and OpenGL; therefore, instead of drawing the objects directly from CUDA
memory as supported by those libraries, they are transferred to the CPU in every frame and
uploaded to the GPU again. The shader propagation performs fastest because there is no
transfer of data between CPU and GPU memory; the CUDA plugin derived from it is slowed

136 6.4. PERFORMANCE

Time passed: Oy Od 1h 38m 59s

FPS: 38.7289

Population Statistics

.| Total Objects:....... 149932 (149932)
149932 (149932)

149932 (149932)
()
(@)
()
Explosion Fragments:.@ (0)
Collision Fragments:.@ (@)
()
(@)
(@)
(@)
(@)
(@)
West-Ford Needles:...0 (@)

OK

Figure 6.6.: Ikebana propagating 150,000 objects in DOCTOR at almost 40 frames per second.

down by this transfer?. At approximately 4 million objects, Tkebana drops to 5.5 frames per
second, even with no perturbations enabled, while the shader still performs at 30 fps and the
CUDA plugin at around 11 fps. This discrepancy is caused by the relative overhead of Tkebana
which returns more information and manages additional data structures such as the delta
orbit and PropagatorProperties.

| Population | Objects | Ikebana (all pert.) | Ikebana(no pert.) | CUDA | Shader |

10 cm 23,000 6o fps 60 fps 6o fps 60 fps
1cm 110,000 6o fps 6o fps 6o fps 60 fps
1 mm 219,000 37.1 fps 60 fps 60 fps 6o fps
0.1 mm 1,500,000 | 7.2 {ps 13.9 fps 60 fps
Ejecta 3,900,000 | 2.8 fps 5.5 fps 10.6 fps

Reference 150,000 39.2 fps 60 fps 60 fps 60 fps
Reference 1,490,000 | 4.6 fps 14.1 fps 60 fps

Table 6.1.: Speed of DOCTOR with Ikebana, simple CUDA and shader propagation (in frames per second)

2The performance plot shown in chapter 5, figure 3.1 does not include the data transfer which is why CUDA performs
faster there.

7 Conclusions and Further Research

7.1. OPI

The Orbital Propagation Interface described in chapter 3 was designed to facilitate the inte-
gration of orbital propagators into existing software applications. The implementation cre-
ated by Patrick Thomsen was used in a variety of different software tools used in the context
of this work: FLORA, Tkebana and the simple CUDA propagator used in DOCTOR were all
implemented as OPI plugins. DOCTOR itself serves as an OPI host, as does the Tkebana fron-
tend and the tool that was used to compare the propagators. Both FLORA and Ikebana could
seamlessly be transferred from one host application to another without further concern. OPI
is currently being used in ongoing research projects at the Institute of Space Systems to de-
couple the development of the host application from the propagator and to be able to easily
update the propagation algorithm at a later state.

OPI was released as open source software with the goal to spread it and encourage further
development by other researchers with difterent use cases. If adopted by others it has the
potential to simplify the exchange of propagation algorithms and individual perturbation
models between research groups. By releasing their work as an OPI module they would al-
low others to directly integrate and use it without having to port or adapt it. Modules could
even be distributed and licensed in closed source form although this would contradict the
spirit of open science. In section 3.3, implementation guidelines for orbital propagators as
well as host applications were introduced. These are intended to serve as a starting point for
further discussion and improvement of the interface.

Being in a very early state of development, many feature enhancements for OPI are conceiv-
able for the future. The most obvious is the support for other GPU computing languages.
This step has already been prepared by moving all CUDA code to a separate module. To
complement orbital propagators another type of plugin, the PopulationModifier, would be a
valuable addition. As the name states, it would allow to apply modifications to a population
based on a given set of parameters. A corresponding class could be derived from OPI::Module
as shown in figure‘7.1. The interface would be similar to OPI::PerturbationModule described
in section 3.2.5, except that instead of delta orbits, the output consists of the modified popu-
lation.

Such a plugin could be used in long-term analysis to simulate satellite launches, debris mit-
igation measures, active removals or the generation of explosion and collision fragments.
An example is shown in figure 7.2: The PopulationModifier takes as input an OPIL:Population
and the current date via its standard interface; additional information such as launch traffic
data can be provided via an input file or via the property-related functions inherited from
OPI::Module. The resulting population would be the same as the original with added objects
that were launched at the given time. A PopulationModifier could also be used to simulate col-
lisions: Using input from a collision probability plugin as outlined in section 3.2.9, it could
replace collided objects of the population with a debris cloud generated by a breakup model.

138 7.2. IKEBANA

OPI::Module

+registerProperty(name:std::string, location:<multiple>): void
+createProperty(name:string,location:<multiple>): void
+setProperty(name:string, location:<multiple>): OPI::ErrorCode
+getHost(): OPI::Host*

|
OPI::PopulationModifier

+apply(data:0PI::Population&,modified:0PI: :Population*): OPI::ErrorCode
+setTimeStep(julian_day:double): OPI::ErrorCode
#runModifier(data:0PI: :Population&,modified:0PI: :Population*): OPI::ErrorCode

Figure 7.1.: UML diagram of the proposed OPI::PopulationModifier plugin type.

Launch Traffic Statistics OPI::Population,
(from input file or Property) Julian date

»| OPI::PopulationModifier

OPI::Population with
newly launched objects

Figure 7.2.: Example of an OPI:PopulationModifier used to add launch traffic to a population.

7.2. lkebana

The accuracy analysis in section 5.2.4 shows that Ikebana delivers good results compared to
FLORA. For determining the absolute accuracy, one test against TLE data was performed in
section 5.2.5; FLORA was validated against a numerical propagator. All investigations show
that both propagators are suitable for long-term analysis. Although Tkebana is slightly less
accurate than FLORA, the deviations caused by its lower floating point precision are in an
acceptable range. While the TLE data comparison looks very promising, further tests are de-
sirable to reinforce this conclusion.

The most significant difference between FLORA and Ikebana lies in the atmospheric model
which causes the semi major axis of many object to decline slightly faster in Ikebana. This
leads to a decay rate that is modestly higher as shown in table 5.3. While it is assumed that the
divergence is small enough to be statistically insignificant in a long-term analysis, this has
not yet been verified empirically. A successor to the project described in [Mdckel et al., 2015]
which includes further studies on the effect of debris removal and mitigation measures on
the space debris population is currently in preparation. It is intended to replace FLORA with
Tkebana for these long-term simulations and validate the propagator in a practical context.

7. CONCLUSIONS AND FURTHER RESEARCH 139

Arguably the most satifying result of this work is its immediate practical value. Using GPU-
computing techniques, Ikebana’s performance was increased by a factor of up to 60 compared
to FLORA run on a modern 6th generation Intel Core iy CPU. Not only does this improve-
ment justify the accuracy trade-off for long-term studies, it also enables the propagator to be
utilized for interactive object visualization. Being able to use the same propagator for both
scenarios has a number of significant advantages: From a software developer’s point of view,
it prevents unnecessary code duplication; from a researcher’s stand point, it allows the val-
idation of the algorithm in a different context. Some errors that remain undetected in one
use case might become immediately apparent in another.

The different architecture of the GPU requires different optimization techniques than regu-
lar processors, even when developing for a multicore CPU. Simply converting the code from
one language to another is not enough to take full advantage of the platform’s capabilities
and to avoid the pitfalls of its shortcomings. The analysis of the CUDA profiler results in
section 5.3.5 hints at further opportunities for improvement. Implementing these is likely to
provide another performance boost for Ikebana.

140 7.2. IKEBANA

8 Outlook

8.1. GPU Computing

Computer science has a history of advancing at a quick pace. With that in mind, Mr Car-
mack’s statement quoted in chapter 1 can easily be misinterpreted to imply that software de-
velopers merely have to wait for new hardware to become available. However, the paradigm
shift towards massively parallel computing architectures presents a major change in the way
algorithms have to be designed, and this change is only beginning to trickle into the main-
stream. But even without a new major paradigm shift, existing software must be upgraded
regularly because performance trade-offs may shift with hardware updates. As an example
from graphics programming, [van Waveren, 2013] shows the changes that are necessary to
update a 3D graphics engine for modern computers after about ten years because the perfor-
mance balance between CPU, GPU and memory has shifted, deprecating old performance
tweaks and introducing new bottlenecks.

The advances in parallel computing, in terms of both hardware and software, are in continu-
ous motion. During the years in which the research presented herein was conducted, several
new versions of CUDA have been released, each reducing the amount of manual optimization
that was necessary to achieve the best results. It can be expected that future versios of CUDA,
OpenCL and newly emerging frameworks like OpenACC will continue this trend of hiding
the hardware level from users. All of these changes will simplify the development of new
algorithms. OPI can profit from this in the future because its automated memory manage-
ment routines can be simplified. However, given the amount of manual optimization on the
memory and register level that is still required in Ikebana it is difficult to forsee the extent
to which automated optimizations will be able to deliver optimum performance.

8.2. Numerical Propagation

So far this work has covered analytical propagation; OPI has been designed based on this
premise. The interface should be fit for semi-analytical propagation as well. For numer-
ical propagators, the interface as well as the GPU computing techniques used for Ikebana
will have to be revised. Some numerical propagators take object data as a set of Cartesian
coordinates representing a position in one of several coordinate systems. Applications like
ZUNIEM are able to convert from Keplerian orbits but for use cases with very high demands
for precision, the resulting loss of information might not be acceptable. Furthermore, dif-
ferent conversion algorithms have to be used depending on whether the host delivers single-
mean, double-mean or osculating elements which would all have to be added to the interface.

Regarding GPU computing, numerical propagation is challenging as well. Numerical algo-
rithms rely on an integrator that adjusts its step sizes dynamically. Depending on the shape
of the orbit and the object’s mean anomaly, step sizes may differ greatly for individual ob-
jects. This contradicts the SIMD principle that GPU hardware is based on, which delivers
optimal results only if the kernel follows the same instructions for every object. Divergence
can be counteracted by dynamically grouping the objects based on their orbit types, positions

142 8.2. NUMERICAL PROPAGATION

and predicted step sizes; the effectiveness of such measures will have to be studied further.
The floating point deviations present in Ikebana are acceptable given the propagator’s over-
all accuracy. For a high-precision numerical propagator, the impact of such errors on the
results will be much larger. Whether they can be kept within acceptable limits needs to be
researched.

A CUDA Profiler Report for the Atmospherical Model

A.l. GeForce GTX 86om

Analysis Report

atmosphereGPU(OPI::Orbit*, OPI::ObjectProperties*, OPI.:Orbit*, int,

tAtmoData*, int*, double*, float, float)

Duration 6.796 ms (6,795,909 ns)
Grid Size [782,1,1]
Block Size [64,1,1]
Registers/Thread 74
Shared Memory/Block 0B
Shared Memory Requested 64 KiB
Shared Memory Executed 64 KiB
Shared Memory Bank Size 4B
[0] GeForce GTX 860M
Compute Capability 5.0
Max. Threads per Block 1024
Max. Shared Memory per Block 48 KiB
Max. Registers per Block 65536
Max. Grid Dimensions [2147483647, 65535, 65535]
Max. Block Dimensions [1024, 1024, 64]
Max. Warps per Multiprocessor 64
Max. Blocks per Multiprocessor 32
Number of Multiprocessors 5
Multiprocessor Clock Rate 1.02 GHz
Concurrent Kernel true
Max IPC 2
Threads per Warp 32
Global Memory Bandwidth 80.16 GB/s
Globa Memory Size 4GiB
Constant Memory Size 64 KiB
L2 Cache Size 2MiB
Memcpy Engines 1
PCle Generation 3
PCleLink Rate 8 Ghit/s
PCle Link Width 16

1. Compute, Bandwidth, or Latency Bound

Thefirst step in analyzing an individual kernel isto determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "atmosphereGPU" is most
likely limited by compute. Y ou should first examine the information in the "Compute Resources" section to determine how it is
limiting performance.

1.1. Kernel Performance Is Bound By Compute

For device "GeForce GTX 860M" the kernel's memory utilization is significantly lower than its compute utilization. These
utilization levelsindicate that the performance of the kernel is most likely being limited by computation on the SMs.

100%
90%
80%
70%
60%

50%

Utilization

40%

30%

20%

10%

Function Unit (Double) Memory (Texture)

2. Compute Resour ces

GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in awarp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within awarp. Compute resources are used most efficiently when instructions do not overuse a function unit.
The results below indicate that compute performance may be limited by overuse of afunction unit.

2.1. Low Warp Execution Efficiency

Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution efficiency
will increase utilization of the GPU's compute resources. The kernel's warp execution efficiency of 18.6% is less than 100% due to

divergent branches and predicated instructions. If predicated instructions are not taken into account the warp execution efficiency
for these kernelsis 19.5%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel.

2.2. Divergent Branches

Compute resource are used most efficiently when all threads in awarp have the same branching behavior. When this does not
occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below points to a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/home/marek/projects/repos/ikebanalsrc/ikebanal AtmosphericData.cu
Line4l Divergence = 99.7% [1559 divergent executions out of 1563 total executions]
Line 44 Divergence = 30.7% [478 divergent executions out of 1559 total executions]

/home/marek/projects/repos/ikebanalsrc/ikebanalPerturbationAtmosphere.cu
Line107 |Divergence = 26.9% [420 divergent executions out of 1563 total executions]

Line114 |Divergence= 98.1% [1534 divergent executions out of 1563 total executions]

Line134 |Divergence = 95% [1485 divergent executions out of 1563 total executions]

Line245 |Divergence = 2.1% [1028 divergent executions out of 48839 total executions]

Line292 |Divergence=4.8% [71 divergent executions out of 1485 total executions]

Line293 |Divergence =5.2% [77 divergent executions out of 1481 total executions]

Line294 |Divergence = 5.5% [82 divergent executions out of 1478 total executions]

Line295 |Divergence=4.3% [63 divergent executions out of 1471 total executions]

Jusr/local/cuda-6.5/targets/x86_64-linux/include/math_functions.h
Line9549 |Divergence = 24.5% [665 divergent executions out of 2709 total executions]
Line9549 |Divergence = 12.4% [207 divergent executions out of 1667 total executions]
Line9549 |Divergence = 17.5% [207 divergent executions out of 1180 total executions]

2.3. GPU Utilization IsLimited By Function Unit Usage

Different types of instructions are executed on different function units within each SM. Performance can be limited if afunction

unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially
limited by overuse of the following function units: Double.

Load/Store - Load and store instructions for shared and constant memory.
Texture - Load and store instructions for local, global, and texture memory.

Single - Single-precision integer and floating-point arithmetic instructions.
Double - Double-precision floating-point arithmetic instructions.

Special - Specia arithmetic instructions such as sin, cos, popc, €etc.
Control-Flow - Direct and indirect branches, jumps, and calls.

High

Utilization Level

I B Bl

Load/Store Texture Single Double Special Control-Flow

2.4. Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructionsin that class. The

"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

100%

90%

80%

70%

60%

50%

40%

30%

Execution Count (% of total)

20%

10%

ST — [

FP32 FP64 Integer Control-Flow Load/Store Bit-Convert Comm. Misc. Inactive

2.5. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operationsin that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

Execution Count (% of total)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

FP32 Add

FP32 Mul

FP32 Mul-Add

FP Special

FP64 Add

FP64 Mul

FP64 Mul-Add

3. Memory Bandwidth

Memory bandwidth limits the performance of akernel when one or more memoriesin the GPU cannot provide data at the rate
requested by the kernel.

3.1. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

Transactions Bandwidth Utilization

Shared Memory

Shared Loads 0 0 B/s

Shared Stores 0 0 B/s

Shared Total 0 0 B/s k T T T T ™ T N N T i
Idle Low Medium High Max

L2 Cache

Reads 2543299 11.797 GB/s

Writes 540865 2.509 GB/s

Total 3084164 14.305 GB/s k T N N N " N N - N 1
Idle Low Medium High Max

Unified Cache

Local Loads 92837 430.611 MB/s

Local Stores 296769 1.377 GB/s

Global Loads 2556472 11.858 GB/s

Global Stores 244090 1.132 GB/s

Texture Reads 557018 2.584 GB/s

Unified Total 3747186 17.381 GB/s —_—
Idle Low Medium High Max

Device Memory

Reads 154891 718.44 MB/s

Writes 238043 1.104 GB/s

Total 392934 1.823 GB/s _—_
Idle Low Medium High Max

System Memory
[PCle configuration: Gen3 x16, 8 Gbit/s]

Reads 0 0 B/s r - ™
Idle Low Medium High Max

Writes 5 23.191 kB/s B - 5
Idle Low Medium High Max

4. Instruction and Memory L atency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
performance of latency-limited kernels can often be improved by increasing occupancy. Occupancy is a measure of how many
warps the kernel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy
provides an upper bound while achieved occupancy indicates the kernel's actual occupancy. The results below indicate that
occupancy can be improved by reducing the number of registers used by the kernel.

4.1. GPU Utilization Is Limited By Register Usage

The kernel uses 74 registers for each thread (4736 registers for each block). Thisregister usageis likely preventing the kernel from
fully utilizing the GPU. Device "GeForce GTX 860M" provides up to 65536 registers for each block. Because the kernel uses 4736
registers for each block each SM islimited to simultaneously executing 12 blocks (24 warps). Chart "Varying Register Count"
below shows how changing register usage will change the number of blocks that can execute on each SM.

Optimization: Use the -maxrregcount flag or the __launch_bounds _ qualifier to decrease the number of registers used by each
thread. Thiswill increase the number of blocks that can execute on each SM.

Variable Achieved Theoretical Device Limit Grid Size: [782,1,1] (782 blocks) Block Size: [64,1,1]
Occupancy Per SM
Active Blocks 12 32 P —— T § T T i

0 4 8 12 16 20 24 28 32
Active Warps 22 24 64 (R —— T T r n

0 9 18 27 36 45 54 a4
Active Threads 768 2048 I, T i

0 512 1024 1536 2048
Occupancy 34.4% 37.5% 100% A ¥ U i

0% 25% 50% 75% 100%
Warps
Threads/Block 64 1024 - T i

0 256 512 768 1024
Warps/Block 2 32 - ¥ i

0 4 8 12 16 20 24 28 32
Block Limit 32 32 1

0 4 8 12 16 20 24 28 32
Registers
Registers/Thread 74 255 (R " ” 1

0 64 128 192 255
Registers/Block 5120 65536 - T 1

0 16k 32k 48k 64k
Block Limit 12 32 N — 3 T T 3 i

Shared Memory

Shared Memory/Block 0 65536 § 3 v "
0 16k 32k 48k 64k

Block Limit 32

4.2. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy.

Varying Block Size

64 T
56 +
48 +
= 1
& 40
1Sy
o
e 5
0
-3
"
S o
] —
3 24 @ 64 —_—
— —
16 + I_,—I_’
—
gt
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block
Varying Register Count
e
56
48 +
40 + L—-—-,
*T __
24 \o—\
24 @ 74\
16 + —
84 \
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Registers Per Thread

64

56

40 1

32 +

24 4

24 @ 0k

16 T

Varying Shared Memory Usage

4k

24k 28k 32k 36k 40k

Shared Memory Per Block (bytes)

44k

48k

52k

56k

60k

64k

152 A.2. GEForCE GTX 960

A.2. GeForce GTX g6o

Analysis Report

atmospher eGPU(OPI::Orbit*, OPI::ObjectProperties*, OPI::Orbit*, int,
tAtmoData*, int*, double*, float, float)

Duration 3.299 ms (3,298,552 ns)
Grid Size [782,1,1]

Block Size [64,1,1]
Registers/Thread 62

Shared Memory/Block 0B

Shared Memory Requested 96 KiB

Shared Memory Executed 96 KiB

Shared Memory Bank Size 4B

[0] GeForce GTX 960

GPU UUID GPU-206126¢3-782c-6757-35bb-74f09da6b657
Compute Capability 5.2

Max. Threads per Block 1024

Max. Shared Memory per Block 48 KiB

Max. Registers per Block 65536

Max. Grid Dimensions

[2147483647, 65535, 65535 |

Max. Block Dimensions

[1024, 1024, 64]

Max. Warps per Multiprocessor 64

Max. Blocks per Multiprocessor 32

Single Precision FLOP/s 2.618 TeraFLOP/s
Double Precision FLOP/s 0 FLOP/s
Number of Multiprocessors 8
Multiprocessor Clock Rate 1.278 GHz
Concurrent Kernel true

Max IPC 6

Threads per Warp 32

Global Memory Bandwidth 112.16 GB/s
Global Memory Size 3.999 GiB
Constant Memory Size 64 KiB

L2 Cache Size 1MiB
Memcpy Engines 2

PCle Generation 2

PCleLink Rate 5 Ghit/s
PCle Link Width 16

1. Compute, Bandwidth, or Latency Bound

Thefirst step in analyzing an individual kernel isto determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "atmosphereGPU" is most
likely limited by compute. Y ou should first examine the information in the "Compute Resources" section to determine how it is
limiting performance.

1.1. Kernel Performance Is Bound By Compute

For device "GeForce GTX 960" the kernel's memory utilization is significantly lower than its compute utilization. These utilization
levelsindicate that the performance of the kernel is most likely being limited by computation on the SMs.

100%
90%
80%
70%
60%

50%

Utilization

40%

30%

20%

10%

Function Unit (Double) Memory (Device)

2. Compute Resour ces

GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in awarp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within awarp. Compute resources are used most efficiently when instructions do not overuse a function unit.
The results below indicate that compute performance may be limited by overuse of afunction unit.

2.1. Low Warp Execution Efficiency

Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution efficiency
will increase utilization of the GPU's compute resources. The kernel's warp execution efficiency of 19.4% is less than 100% due to

divergent branches and predicated instructions. If predicated instructions are not taken into account the warp execution efficiency
for these kernelsis 21.1%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel.

2.2. Divergent Branches

Compute resource are used most efficiently when all threads in awarp have the same branching behavior. When this does not

occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below pointsto a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/home/wansti/work/ikebana/src/ikebana/ AtmosphericData.cu

Line4l Divergence = 99.7% [1559 divergent executions out of 1563 total executions]
Line 44 Divergence = 31.2% [486 divergent executions out of 1559 total executions]

/home/wansti/work/ikebana/src/ikebana/PerturbationAtmosphere.cu
Line107 |Divergence=10.2% [160 divergent executions out of 1563 total executions]
Line114 |Divergence= 98.1% [1534 divergent executions out of 1563 total executions]
Line134 |Divergence=95.1% [1487 divergent executions out of 1563 total executions]
Line245 [Divergence = 2.1% [1042 divergent executions out of 48910 total executions]

Jusr/local/cudalbin/../targets/x86_64-linux/include/math_functions.hpp
Line1324 |Divergence = 14.4% [168 divergent executions out of 1166 total executions]
Line 1324 |Divergence = 10.5% [168 divergent executions out of 1607 total executions]
Line 1324 |Divergence = 27.4% [744 divergent executions out of 2718 total executions]

2.3. GPU Utilization IsLimited By Function Unit Usage

Different types of instructions are executed on different function units within each SM. Performance can be limited if afunction

unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially
limited by overuse of the following function units: Double.

Load/Store - Load and store instructions for shared and constant memory.
Texture - Load and store instructions for local, global, and texture memory.
Single - Single-precision integer and floating-point arithmetic instructions.
Double - Double-precision floating-point arithmetic instructions.

Special - Specia arithmetic instructions such as sin, cos, popc, etc.
Control-Flow - Direct and indirect branches, jumps, and calls.

High

Med

Utilization Level

Low

B e

Load/Store Texture Single Double Special Control-Flow

2.4. Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The

"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

100%
90%
80%
70%
60%
50%
40%
30%

20%

Execution Count (% of total)

10%

L N eees —

FP32 FP64 Integer Control-Flow Load/Store Bit-Convert Comm. Misc. Inactive

2.5. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operationsin that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

Execution Count (% of total)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

FP32 Add

FP32 Mul

FP32 Mul-Add

FP Special

FP64 Add

FP64 Mul

FP64 Mul-Add

3. Memory Bandwidth

Memory bandwidth limits the performance of akernel when one or more memoriesin the GPU cannot provide data at the rate
requested by the kernel.

3.1. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

Transactions Bandwidth Utilization

Shared Memory

Shared Loads 0 0 B/s

Shared Stores 0 0 B/s

Shared Total 0 0 B/s ¥ T T T T B T T N T i
Idle Low Medium High Max

L2 Cache

Reads 2562943 23.632 GB/s

Writes 586513 5.408 GB/s

Total 3149456 29.04 GB/s I T T T T T T T N T i
Idle Low Medium High Max

Unified Cache

Local Loads 162764 1.501 GB/s

Local Stores 340876 3.143 GB/s

Global Loads 2581989 23.808 GB/s

Global Stores 245630 2.265 GB/s

Texture Reads 599954 5.532 GB/s

Unified Total 3931213 36.248 GB/s I U K T T - T T N T i
Idle Low Medium High Max

Device Memory

Reads 749349 6.91 GB/s

Writes 700971 6.463 GB/s

Total 1450320 | 13.373GBs | — o ————————————————
Idle Low Medium High Max

System Memory
[PCle configuration: Gen2 x16, 5 Gbit/s]

Reads 28 258.179 kB/s ¥ - N
Idle Low Medium High Max

Writes 5 46.103 kB/s - -
Idle Low Medium High Max

4. Instruction and Memory L atency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
performance of latency-limited kernels can often be improved by increasing occupancy. Occupancy is a measure of how many
warps the kernel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy
provides an upper bound while achieved occupancy indicates the kernel's actual occupancy. The results below indicate that
occupancy can be improved by reducing the number of registers used by the kernel.

4.1. GPU Utilization May Be Limited By Register Usage

Theoretical occupancy is less than 100% but is large enough that increasing occupancy may not improve performance. Y ou can
attempt the following optimization to increase the number of warps on each SM but it may not lead to increased performance.

The kernel uses 62 registers for each thread (3968 registers for each block). Thisregister usage islikely preventing the kernel from
fully utilizing the GPU. Device "GeForce GTX 960" provides up to 65536 registers for each block. Because the kernel uses 3968
registers for each block each SM islimited to simultaneously executing 16 blocks (32 warps). Chart "Varying Register Count”
below shows how changing register usage will change the number of blocks that can execute on each SM.

Optimization: Use the -maxrregcount flag or the __launch_bounds__ qualifier to decrease the number of registers used by each
thread. Thiswill increase the number of blocks that can execute on each SM. On devices with Compute Capability 5.2 turning
global cache off can increase the occupancy limited by register usage.

Variable Achieved Theoretical |Device Limit Grid Size: [782,1,1] (782 blocks) Block Size: [64,1,1] (64 threads
Occupancy Per SM
Active Blocks 16 32 T — T T T —

0 3 6 9 12 15 18 21 24 27 30 32
Active Warps 29.52 32 64 T N 3 U r

0 7 14 21 28 35 42 49 56 664
Active Threads 1024 2048 T — T T N i

0 256 512 768 1024 1280 1536 1792 2048
Occupancy 46.1% 50% 100% T — v 1

0% 25% 50% 75% 100%
Warps
Threads/Block 64 1024 — T T T T T T i

0 128 256 384 512 640 768 896 1024
Warps/Block 2 32 - T T T T T T T T T T 1

0 3 6 9 12 15 18 21 24 27 30 32
Block Limit 32 32 —

0 3 6 9 12 15 18 21 24 27 30 32
Registers
Registers/Thread 62 255 A ¥ T T T T !

0 32 64 96 128 160 192 224 255
Registers/Block 4096 65536 _— u u 5 1

0 16k 32k 48k 64k
Block Limit 16 32 T ——— '

0 3 6 9 12 15 18 21 24 27 30 32
Shared Memory

Shared Memory/Block 0 98304 F T T "
0 32k 64k 96k
Block Limit 32

4.2. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy.

Warps Per SM

64 T

56 +

Varying Block Size

32 N e @_ﬁﬂ_‘?{____,__,__l_li — e
I —
24 + —_—
! Bl
—

e

16 +
84
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block
Varying Register Count
L ——
56 +
48 +
40 + L—-——-,
32+
32@ 62
! i
16 + —
g4 \
0 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Registers Per Thread

Varying Shared Memory Usage
64 T

56

48 +

32 €
32 @ Ok

24+

161 s

4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 44k 48k 52k 56k 60k 64k 68k 72k 76k 80k 84k 88k 92k 96k

Shared Memory Per Block (bytes)

A. CUDA PROFILER REPORT FOR THE ATMOSPHERICAL MODEL

A.3. Tesla K2oc

Analysis Report

atmospher eGPU(OPI::Orbit*, OPI::ObjectProperties*, OPI::Orbit*, int,

tAtmoData*, int*, double*, float, float)

Duration 17.818 ms (17,817,977 ns)
Grid Size [782,1,1]
Block Size [64,1,1]
Registers/Thread 76
Shared Memory/Block 0B
Shared Memory Requested 48 KiB
Shared Memory Executed 48 KiB
Shared Memory Bank Size 4B

[0] TesaK20c
Compute Capability 35
Max. Threads per Block 1024
Max. Shared Memory per Block 48 KiB
Max. Registers per Block 65536

Max. Grid Dimensions

[2147483647, 65535, 65535]

Max. Block Dimensions

[1024, 1024, 64]

Max. Warps per Multiprocessor 64

Max. Blocks per Multiprocessor 16
Number of Multiprocessors 13
Multiprocessor Clock Rate 705.5 MHz
Concurrent Kernel true

Max IPC 7
Threads per Warp 32

Globa Memory Bandwidth 208 GB/s
Global Memory Size 4.687 GiB
Constant Memory Size 64 KiB
L2 Cache Size 1.25MiB
Memcpy Engines 2

PCle Generation 2
PCleLink Rate 5 Ghit/s
PCle Link Width 16

161

1. Compute, Bandwidth, or Latency Bound

Thefirst step in analyzing an individual kernel isto determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "atmosphereGPU" is most
likely limited by instruction and memory latency. Y ou should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory L atency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K20c".
These utilization levelsindicate that the performance of the kernel is most likely limited by the latency of arithmetic or memory
operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency issues.

100%
90%

80%

c

o
-g 60% Il Memory operations
g 50% I control-flow operations
E Il Arithmetic operations
2 40% Il Memory (System)

30%

20%

10%

Compute Memory (System)

2. Instruction and Memory L atency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
performance of latency-limited kernels can often be improved by increasing occupancy. Occupancy is a measure of how many
warps the kernel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy
provides an upper bound while achieved occupancy indicates the kernel's actual occupancy. The results below indicate that
occupancy can be improved by reducing the number of registers used by the kernel.

2.1. GPU Utilization IsLimited By Register Usage

The kernel uses 76 registers for each thread (4864 registers for each block). Thisregister usageis likely preventing the kernel from
fully utilizing the GPU. Device "Tesla K20c" provides up to 65536 registers for each block. Because the kernel uses 4864 registers
for each block each SM islimited to simultaneously executing 12 blocks (24 warps). Chart "Varying Register Count" below shows
how changing register usage will change the number of blocks that can execute on each SM.

Optimization: Use the -maxrregcount flag or the __launch_bounds _ qualifier to decrease the number of registers used by each
thread. Thiswill increase the number of blocks that can execute on each SM.

|Variab|e | Achieved | Theoretical | Device Limit |Grid Size: [782,1,1 1 (782 blocks) Block Size: [64,1,1] ‘
Occupancy Per SM
Active Blocks 12 16 Ty 1

Warps

Threads/Block

Block Limit

Registers
Registers/Thread 76
Block Limit 12

Shared Memory

Shared Memory/Block 0 49152 r y T "

2.2. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy.

Varying Block Size

64 T
56 +
48 +
= 1
& 40
1Sy
o
e 5
0
-3
"
S o
1 —
3 24 @ 64 —_—
— —
16 -+—o I_,—I_’
—
gt
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block
Varying Register Count
64 —
56
48 +
40 +
32
24 \—0—\
24@ 74
16 + L
84 \
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Registers Per Thread

Varying Shared Memory Usage
64 T

56

48 +

24 4
24 @ Ok

161 s

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k 38k 40k 42k 44k 46k 48k

Shared Memory Per Block (bytes)

3. Compute Resour ces

GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in awarp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within awarp.

3.1. Low Warp Execution Efficiency

Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution efficiency
will increase utilization of the GPU's compute resources. The kernel's warp execution efficiency of 19.4% is less than 100% due to

divergent branches and predicated instructions. If predicated instructions are not taken into account the warp execution efficiency
for these kernels is 20.5%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel.

3.2. Divergent Branches

Compute resource are used most efficiently when al threads in a warp have the same branching behavior. When this does not
occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below points to a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/home/users/mmoeckel/projects/repos/i kebana/src/ikebana/ AtmosphericData.cu
Line4l Divergence = 99.7% [1558 divergent executions out of 1563 total executions]
Line 44 Divergence = 30.6% [477 divergent executions out of 1558 total executions]

/home/users/mmoeckel /projects/repos/ikebanal/src/ikebana/PerturbationAtmosphere.cu
Line107 [Divergence = 22.5% [351 divergent executions out of 1563 total executions]

Line114 |Divergence= 98.1% [1534 divergent executions out of 1563 total executions]

Line134 |Divergence= 95.1% [1486 divergent executions out of 1563 total executions]

Line245 |Divergence = 2.1% [1034 divergent executions out of 48874 total executions]

Line292 |Divergence=4.7% [70 divergent executions out of 1486 total executions]

Line293 |Divergence = 4.5% [67 divergent executions out of 1484 total executions]

Line294 |Divergence =6.1% [91 divergent executions out of 1480 total executions]

Line295 |Divergence = 4.4% [65 divergent executions out of 1472 total executions]

usr/local/cuda/biny/../finclude/math_functions.h
Line 9549 |Divergence = 25.8% [694 divergent executions out of 2692 total executions]
Line9549 |Divergence = 16.8% [202 divergent executions out of 1204 total executions]
Line9549 |Divergence = 12% [202 divergent executions out of 1690 total executions]

3.3. Function Unit Utilization

Different types of instructions are executed on different function units within each SM. Performance can be limited if afunction
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.

Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

Arithmetic - All arithmetic instructions including integer and floating-point add and multiply, logical and binary operations, etc.
Control-Flow - Direct and indirect branches, jumps, and calls.

Texture - Texture operations.

High

Utilization Level

Low -

Load/Store Arithmetic Control-Flow Texture

3.4. Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructionsin that class. The

"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

100%
90%
80%
70%
60%
50%
40%

30%

Execution Count (% of total)

20%

10%

L s ——

FP32 FP64 Integer Control-Flow Load/Store Bit-Convert Comm. Misc. Inactive

3.5. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operationsin that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

Execution Count (% of total)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

FP32 Add

FP32 Mul

FP32 Mul-Add

FP Special

FP64 Add

FP64 Mul

FP64 Mul-Add

4. Memory Bandwidth

Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate
requested by the kernel.

4.1. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

| |Transactions | Bandwidth | Utilization |
L1/Shared Memory

Local Loads 298584 183.657 MB/s

Shared Loads .o | oBs | |

Global Loads 1577599 3s2G6Bs | |

Atomic | o [0Bs |
||

L2 Cache

L1 Reads 2364781 4.004 GB/s

Texture Reads o | o085 |

Noncoherent Reads T 7S
|

Texture Cache

Reads 0 0 B/s N T T T - T T - T "
Idle Low Medium High Max

Device Memory

Reads 706146 1.196 GB/s

System Memory
[PCle configuration: Gen2 x16, 5 Gbit/s]

Reads 1358125 2.299 GB/s N N K N N N B B N

170 A.3. TesrA K20c

B Individual Error Rate Plots

1000
100
10

0.1
0.01

Error [deg]

0.001
0.0001

o)

N
o

o 50 100 150 200 250 300 350

RAAN [deg]

Figure B.1.: Error rates of the zonal harmonics module.

172

Error [|

Error [deg]

Error [km)]

Error [deg]

0.001
0.0001
1€-05
1e-06
1e-07
1e-08
1€-09
1e-10

1000
100
10

0.1
0.01
0.001
0.0001
1€-05
1e-06

100

10

0.1
0.01
0.001

0.0001

1000
100
10

0.1
0.01
0.001
0.0001
1€-05
1e-06

| | | + +]

+ S +% & gﬁ*# + + 7

+ 7 R ey =

+ =

| | | | | | E
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

Eccentricity (|

| E

+ 3

+#‘ﬁf + —
&t‘: ++ —=
TR aks £ L S
+ + + =

| | | | | E
20 40 60 8o 100 120

Inclination [deg]

+ | | | | | 3
+F + + _f
T S

$+ + +&+

+H —

| | | | | | =

5000 10000 15000 20000 25000 30000 35000 40000
Perigee Height [km]

Figure B.2.: Error rates of the lunisolar module.

o]

N
]

Error [km)]

Error ||

Error [deg]

Error [km)]

Error [deg]

B. INDIVIDUAL ERROR RATE PLOTS 173

100
10

0.1

0.01

|||I|||I|||I|||I||||
.

+

e

+
+ |

A
ol il

0.001

£ +

ﬁ-'--&# +1 + _;_" + +
8 +
- | | | | | | |

10000 15000 20000 25000 30000 35000 40000 45000

0.0001

Semi Major Axis [km]

0.001
0.0001
1€-05
1e-06
1€-07

1e-08

1€-09

o

0.2 03 0.4 05 0.6 0.7 0.8 .9

Eccentricity ||

0.1
0.01
0.001
0.0001
1€-05

+
III|I II|I II|I II|I II|I 11

1e-06

1€-07
o

-
N

o 20 40 60 8o 100 120

roo | | | | | |
0 i

++ ¥

o1 FH, +F §++ ey
0.01 t+

H
it
+
++
+
+
+
1 II|| II|| II|| II|| II|| L

+
0.001 +

[¢] 5000 10000 15000 20000 25000 30000 35000 40000

0.0001

Perigee Height [km]

0.1
0.01
0.001
0.0001

1e-05

1e-06
o)

]
v
(e}
I
[o]
o]
=
[V
[e]
[N
o
[e]
N
%
[e]
w
(e}
o]
w
vl
[e]
N
(e}

Figure B.3.: Error rates of the solar radiation pressure module.

174

Error [km)]

Error ||

Error [deg]

Error [km)]

Error [deg]

1000 F T I 3
100 [+ 1: —
10 [i T +f —
B ++ ++$_+ +F g+ 3
1 E ++ + ++++ =
C + "t]
0.1 E ‘g: + +¢‘¢+ + _E
0.01 :—_1:[- =
ooor E | | | | | |]
10000 15000 20000 25000 30000 35000 40000 45000
Semi Major Axis [km]
o 1 | T, | 3
01 + 44 + 1 3
0.001 N + #+ T+ + =
0.0001 4 t + % 4t ++ N { + =
1e-05 + + + o+ f =
+ + + N =
1e-06 + + =
1e-o§ + % —%
1e-0 =
P | | | | | | E
o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9
Eccentricity []
“E T | PR]
0.01 [+ + # -
- + * §
0.001 R -
B + _
0.0001 |- + -
- + + s m
1€-05 | + n * i + =
1e-06 L l l l -
o 20 40 60 8o 100 120 140
Inclination [deg]
100 | | | 3
10 -
1 —
+]
0.1 " -
0.01 +W _;
ooo - | | | | | .
o 5000 10000 15000 20000 25000 30000 35000 40000
Perigee Height [km]
ot | | F T | L] | 7
0.01 —
0.001 g + _&f 4 Tt + . "30- Py ;—. . =
0.0001 +-H— + +1 _H;l-ﬁ + ﬁ ++ -0+ ++ +Hh +7 T —
e Lty RaaE # + +
1e-05 [b +ﬁ+ it =
£]
1€-06 | * —
reoy] | | | | | | |]
o 50 100 150 200 250 300 350 400
RAAN [deg]

Figure B.4.: Error rates of the atmospherical module.

Error [km)]

Error ||

Error [deg]

Error [km)]

Error [deg]

0.01
0.001

0.0001

0.01
0.001
0.0001
1€-05
1e-06
1€-07
1e-08
1€-09

1000
100
10

0.1
0.01
0.001
0.0001
1€-05
1e-06

1000
100
10

0.1
0.01
0.001
0.0001

1000
100
10

0.1
0.01
0.001
0.0001
1€-05

B. INDIVIDUAL ERROR RATE PLOTS

175

;_ + + + + ++ _;
I + + ik -F-H"';E- + g+ + .
= H O 4 et T g oW K. % +y =
- + + + + + + :‘:]
= +t+ 4+ o+ + + 3
C ++ + + _;
C | | | | | | i
10000 15000 20000 25000 30000 35000 40000 45000
Semi Major Axis [km]
[[[[. +|+ [[=
+ I, s % + 3
+ I+ g T + 3
+ o+ Tosoth ﬁf + ot f =
+ + .
+ + o+ =
| | | | | | | E
o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9
Eccentricity ||
[[3
+# ﬂﬁ =
% + E
| | 3
o 20 40 60 8o 100 120 140
Inclination [deg]
+| [[[[[_g
+J°"+i+ t o+ + ¥ E
y + —
%+ * E S HoOERT
o ko =
+]
| | | | | | | E
o 5000 10000 15000 20000 25000 30000 35000 40000
Perigee Height [km]
o 50 100 150 200 250 300 350 400
RAAN [deg]

Figure B.5.: Combined error rates of zonal harmonics, lunisolar and solar radiation pressure modules.

176

C lkebana Class Headers

C.1. lkebana::lkebana

#ifndef __IKEBANA_H__
#define __IKEBANA_H__
#define OPI_CUDA_PREFIX

_host device__

#include "OPI/opi_cpp.h"

// Plugin information

#define OPI_PLUGIN_NAME "Ikebana"

#define OPI_PLUGIN_AUTHOR "M. Moeckel, _ILR, _-TU-BS"
#define OPI_PLUGIN_DESC "FLORA, _rearranged”

// Plugin version

#define OPI_PLUGIN_VERSION_MAJOR o
#define OPI_PLUGIN_VERSION_MINOR 1
#define OPI_PLUGIN_VERSION_PATCH o

#include "PMMeanMotion.h"
#include "PMZonalHarmonics.h"
#include "PMLuniSolar.h"
#include "PMAtmosphere.h"
#include "PMSolarRadiation.h"

/*
#
#
H#H#
H# # ## # T H#H#
H## # HHHHEEEEEE # HHHHEEEE # #H#
H#HH# # # # # H##
#
H#H# # # # # #
#H
#
#H # # # # # # T ## #
H#H# ## # # s T
H#HHHE # # # # # # ## # Fisizid
#HO# S HH # #HH HH
H# # HHEE i
FLORA — REARRANGED
*/

//! A CUDA-capable, analytical OPI Propagator.

/*! Ikebana is a port of the analytical propagator FLORA to C++ with the main
* functionality being implemented as CUDA kernels. It uses the OPI interface
x for easy integration into host applications that support it.

*/

class Ikebana: public OPI::Propagator

public:
//! Class contructor.

/%!

178 C.1. IKEBANA:IKEBANA

* This class implements the OPI:: Propagator interface that enables it to be

* compiled and used as an OPI plugin.

« It is used to register OPI properties and set initial values for all variables.
* @param host A pointer to the OPI::Host that calls this OPI:: Propagator.

*/

ITkebana (OPI:: Host& host);

//! Class destructor. Currently without function.
~Ikebana ();

//! OPI function that returns the minimum CUDA compute capability required to run.
/x! @return 3, as this is the minimum CC required for Ikebana.

*/

int requiresCUDA ();

//! OPI function that returns whether this propagator can propagate backwards.
/x! @return false (until backward propagation is properly implemented and tested).
*/

bool backwardPropagation ();

protected:
//! OPI-defined function to start propagation for a given Population and time.
/x!

* It takes as argument an instance of an OPI:: Population containing data of orbital
* objects that are to be propagated. The function starts propagation at the given
* Julian Day and calculates the objects’ absolute positions after the given amount
* of seconds (dt) have passed. This function is ususally called multiple times by
% the host in a loop over a specified time frame. The value of dt is usually the

* amount of seconds that have passed between the Julian Days of two subsequent calls.
x @param julian_day The date of the beginning of this propagation step.

* @param dt The amount of seconds to be propagated.
* @return OPI::SUCCESS or an error message.

OPI:: ErrorCode runPropagation(OPI::Population& data, double julian_day, float dt);

//! Callback for initialization.

/x!

* This function is called automatically when the host program selects and enables
* this propagator. It currently has no function except printing a debug message but
% it can be used for initialization steps that do not require any input data.

* @return OPI::SUCCESS or an error messdage.

*

OPI:: ErrorCode runEnable ();

//! Callback for deinitialization.

/x!

* Similar to runEnable(), this function is called automatically when the host
* program disables this propagator. It is used to clean up allocated memory.
* @return OPI::SUCCESS or an error message.

*/

OPI:: ErrorCode runDisable ();

private:
//! Variable to store the OPI Property "jTermLevel" for zonal harmonics terms.
/! Can be set to 2, 4 or 6 (default). If "useGravity" is disabled , this setting
* will have no effect.
*/

int grav_jTermLevel;

//! Variable to store the OPI Property "useAtmosphere”.

/x!

It states whether atmospherical perturbations should be taken into account
* during propagation. Can be set to o (disabled) or 1 (enabled, default).

*/

int opt_useAtmosphere;

C. IKEBANA CrASS HEADERS 179

//! Variable to store the OPI Property "useThirdBody".

/x !

« It states whether third body perturbations should be taken into account during
* propagation. Can be set to o (disabled) or 1 (enabled, default).

*/

int opt_useThirdBody;

//! Variable to store the OPI Property "useGravity".

/x!

x It states whether gravitational perturbations should be taken into account
* during propagation. Can be set to o (disabled) or 1 (enabled, default).
*/

int opt_useGravity;

//! Variable to store the OPI Property "useSolarRadiation ".

/x!

% It states whether solar radiation pressure perturbations should be taken into
* account during propagation. Can be set to o (disabled) or 1 (enabled, default).
*/

int opt_useSolarRadiation;

//! Variable to store the OPI Property "cartesianPosition ".

/x!

* It states whether Ikebana should calculate the objects’ Cartesian positions and
+* make them available through OPI. Can be set to o (disabled, default) or 1

* (enabled).

*/

// Not to be confused with cardassianPosition which is somewhere near the Bajoran
// sector.

int opt_cartesianPosition;

//! Variable to store the OPI Property "verboseLevel ".

/x!

x It states how much output should be generated during program execution. Valid
* settings range from o (default output) to 5 (lots of output); a negative value
* will suppress all messages.

*/

int opt_verboseLevel;

//! An instance of the OPI:: PerturbationModule handling unperturbed motion.
PMMeanMotion pMotion;

//! An instance of the OPI:: PerturbationModule handling gravitational perturbations.
PMZonalHarmonics pGravity;

//! An instance of the OPI:: PerturbationModule handling the third—body perturbations.
PMLuniSolar pThird;

//! An instance of the OPI::PerturbationModule handling atmospherical perturbations.
PMAtmosphere pAtmo;

//! An instance of the OPI::PerturbationModule handling solar radiation perturbations.
PMSolarRadiation pSolar;

//! An array of orbits storing the accumulated perturbations from each time step.
OPI:: Orbitx deltaOrbit;

//! An array of orbits storing the orbital data given to Ikebana upon initialization.
OPI:: Orbit* originalOrbit;

//! States the number of objects in the current Population.

int objectCount;

//! Checks the output of CUDA for errors.
!

/i.In case of an error, program execution is terminated.

v:;i/d checkCUDAError ();

//! Translates the given CUDA error code into a human—readable debug message.
!

/i'In case of an error, program execution is terminated.

*/

180

void checkCUDAError(cudaError_t err);

}s

C.1. IKEBANA:IKEBANA

// CUDA functions currently have to be declared outside of classes.

// Calculates Cartesian position and velocity for a given orbit.
__device__ void calculateCartesianPosition (

OPI:: Orbit& orbit,

OPI:: Vector3& position,

OPI:: Vector3& velocity

);

// Resets the delta orbit and checks input values.
__device__ void preprocess(

OPI:: Orbit& orbit,

OPI:: Orbit& deltaOrbit,

OPI:: Orbit& originalOrbit,

OPI:: ObjectProperties& props

);

// Adds delta and original orbit to form new resulting orbit.
__device__ void postprocess(

OPI:: Orbit& orbit,

OPI:: Orbit& deltaOrbit,

OPI:: Orbit& originalOrbit,

double julian_day

)i

// Wrapper functions for the above kernels that set grid and block sizes.

__global__ void cartesianGPU(
OPI:: Orbit* orbit,
OPI:: Vector3x position,
OPI:: Vector3* velocity,
int size

);

__global__ void preprocessGPU(
OPI:: Orbit* orbit,
OPI:: Orbitx deltaOrbit,
OPI:: Orbitx originalOrbit,
OPI:: ObjectProperties* props,
int size

);

__global__ void postprocessGPU(
OPI:: Orbit* orbit,
OPI:: Orbitx deltaOrbit,
OPI:: Orbitx originalOrbit,
double julian_day,
int size

);

#define OPL_IMPLEMENT_CPP_PROPAGATOR Ikebana
#include "OPI/opi_implement_plugin.h"

#endif

C. IKEBANA CLASS HEADERS 181

C.2. lkebana::PMMeanMotion

#ifndef _ PERTURBATION_MEAN_MOTION_H
#define __ PERTURBATION_MEAN_MOTION_H

#include "OPI/opi_cpp.h"

//! OPI::PerturbationModule that calculates the unperturbed motion of a satellite.

/! This is the simplest perturbation module possible and can be used as a reference

x to implement your own. Look into other modules for advanced stuff like configuration
* via properties and multiple CUDA kernels.

*/

class PMMeanMotion: public OPI:: PerturbationModule

public:
OPI:: ErrorCode setTimeStep(double julian_date);

protected:
//! OPI interface function that calculates the unperturbed motion.
/¥ ! It simply calls the respective CUDA kernel that contains the
% actual equation. The resulting mean anomaly is stored in the
x delta orbit.
*/
OPIL:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);

b
// CUDA functions currently have to be declared outside of classes.

// Kernel function that performs the actual calculation.
__global__ void calculateMotion (

OPI:: Orbit*x orbit,

OPI:: Orbit* deltaOrbit,

int size,

float dt

);

#endif

182 C.3. IKEBANA::PMZONALHARMONICS

C.3. lkebana::PMZonalHarmonics

#ifndef __PERTURBATION_GRAVITY_H__
#define __ PERTURBATION_GRAVITY_H__

#define OPI_CUDA_PREFIX __host__ __device__

#include "OPI/opi_cpp.h"
#include "OPI/opi_perturbation_module.h"

//! OPI::PerturbationModule containing zonal harmonics perturbations.
/! These are analytical calculations based on Vallado (2007),

* equations 9—38, 9—40 and 9—42.

*/

class PMZonalHarmonics: public OPI:: PerturbationModule

public:
//! Class constructor.
/! Currently does nothing except setting the default jTerm level to six.
*/
PMZonalHarmonics ();

//! Class destructor. Does nothing.
~PMZonalHarmonics ();

//! OPI interface function to set the current propagation time step.

/x! Since zonal harmonics are independent of time, this function serves no
* purpose here.

*/

OPIL:: ErrorCode setTimeStep(double julian_date);

protected:

//! OPI interface function that calculates zonal harmonics perturbations.
/x! In Ikebana, it calls the respective CUDA kernel which performs the actual
* calculations.

@param data The OPI:: Population containing the objects.

@param delta An array of OPI:: Orbits to which the changes caused by this

perturbation module are added.

@param dt The propagation step size.

* @return OPI::SUCCESS or an error message.

*/

OPI:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);

* % ¥ X

private:
//! Local variable for jTerm property. It can be set via the setProperty function.
int jTermAccuracy;

b
// CUDA functions currently have to be declared outside of classes.

// Kernel that calculate zonal harmonics perturbations.
__device__ void gravity(

OPI:: Orbit& orbit,

OPI:: Orbit& deltaOrbit,

float dt, int jTermAccuracy

);

// Wrapper function for the above kernel that sets block and grid size.
__global__ void gravityGPU(

OPI:: Orbit* orbit,

OPI:: Orbitx deltaOrbit,

float dt, int jTermAccuracy, int size

)1
#endif

C. IKEBANA CLASS HEADERS 183

C.4. lkebana::PMLuniSolar

#ifndef __PERTURBATION_LUNI_SOLAR_H__
#define _ PERTURBATION_LUNI_SOLAR_H__
#define OPI_CUDA_PREFIX

_host device__

#include "OPI/opi_cpp.h"

/]! Struct to store relevant parameters of perturbing third bodies relative to the Earth.
/! These are equatorial inclination , right ascension of ascending node, argument

* of mean longitude (called "u_3" in Vallado), gravitational constant, and distance

* to Earth in km.

*

/

struct tThirdBody {
float inclination; //i_3, required to calculate direction
float raan; //Omega_3, required to calculate direction
float arg_of_mean_longitude; //u_3, required to calculate direction
float gravitational_parameter; //mue_3, required to calculate deltaOrbit
float radius_to_earth; //r_3, required to calculate deltaOrbit

b

//! OPI::PerturbationModule responsible for the calculation of Sun and Moon perturbations.
/*! Based on Cook’s model and implemented as described in Vallado, chapter 9.6.3.
*/

class PMLuniSolar: public OPI:: PerturbationModule

public:
//! Class constructor. Does nothing.
PMLuniSolar ();
//! Class destructor. Does nothing.
~PMLuniSolar ();

//! OPI interface function to set the current Julian date prior to propagation.
/x! In this module, this function is also used to calculate the parameters of

* Sun and Moon based on the given date. Since these parameters are depent only
* on the date and not on the properties of individual objects, they are

* calculated once per time step on the CPU and then passed on to the GPU via the
* kernel call.

* param julian_date The date of the current time step.

*/

OPI:: ErrorCode setTimeStep(double julian_date);

protected:
//! OPI interface function to start calculating the perturbation.
OPIL:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);

private:
//! Calculates relevant sun parameters based on the current date.
tThirdBody getSunParameters(float julianDate);
//! Calculates relevant moon parameters based on the current date.
tThirdBody getMoonParameters(float julianDate);
//! Stores results from getSunParameters
tThirdBody sun;
//! Stores results from getMoonParameters
tThirdBody moon;

I

// CUDA functions currently have to be declared outside of classes.

// Calls calculateThirdBody for Sun and Moon and adds the results to the delta orbit.
__device__ void thirdbody(

OPI:: Orbit& orbit,

OPI:: Orbit& deltaOrbit,

184 C.4. IKEBANA:PMLUNISOLAR

float dt,
tThirdBody sun,
tThirdBody moon

);

// Calculates the perturbations for the given third body.
__device__ OPI:: Orbit calculateThirdBody(tThirdBody third, OPI:: Orbit orbit);

// Wrapper function for the above kernel that sets block and grid size.
__global__ void thirdbodyGPU(

OPI:: Orbit* orbit,

OPI:: Orbit* deltaOrbit,

float dt,

int size,

tThirdBody sun,

tThirdBody moon

);
#endif

C. IKEBANA CLASS HEADERS 185

C.5. lkebana::PMSolarRadiation

#ifndef __PERTURBATION_SOLAR_RADIATION_H__
#define __PERTURBATION_SOLAR_RADIATION_H__
#define OPI_CUDA_PREFIX __host device__

#include "OPI/opi_cpp.h"

// ! Struct that stores two angles for Escobal’s shadow function.
struct tPerifocal {

float beta;

float xi;

b

//! Struct that defines the necessary properties of the Earth’s shadow.
struct tShadow {

float trueAnomalyEntry; // true anomaly of shadow entry point
float trueAnomalyExit; // true anomaly of shadow exit point
float eccentricAnomalyEntry; // ecc. anomaly of shadow entry point
float eccentricAnomalyExit; // ecc. anomaly of shadow exit point
float radiusEntry; // radius vector to entry point

float radiusExit; // radius vector to exit point

bool crossed; // true if the shadow was crossed

|5

//! Struct that defines the acceleration vector of the solar radiation pressure.
struct tAcceleration {

float r;

float s;

float wsin;

float wcos;

|5

//! OPI::PerturbationModule responsible for the calculation of SRP perturbations.
/*! This module calculates solar radiation pressure perturbations based on an
* analytical model by Escobal (1965).

*/
class PMSolarRadiation: public OPI:: PerturbationModule
{
public:
//! OPI interface function to set the current Julian date prior to propagation.
/*! Calculates the Sun’s position at the given time. This vector, as well as
* two intermediate results , obliquity and ecliptic longitude, are stored
* as class attributes for later upload to the GPU.
* param julian_date The date of the current time step.
*/
OPI:: ErrorCode setTimeStep(double julian_date);
protected:
//! OPI interface function to start calculating the perturbation.
OPIL:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);
private:

//! Calculates the ecliptic longitude of the Sun at the given date.
float getSunEclipticLongitude (double julianDate);

//! Axial tilt of the Earth at the current time
float obliquity;

//! Ecliptic longitude of the Sun at the current time
float sunEclipticLongitude;

//! Position of the Sun at the current time

OPI:: Vector3 sunPosition;

186 C.5. IKEBANA::PMSOLARRADIATION

// CUDA functions currently have to be declared outside of classes.

// Calculates the shadow properties for the given orbit and Sun position.
__device__ tShadow calculateShadow (OPI:: Orbit orbit, OPI::Vector3 sunPosition);

// Calculates the angles beta and xi required for the shadow function.
—_device__ tPerifocal calculatePerifocal (OPI:: Orbit orbit, OPI::Vector3 sunPosition);

// Calculates Escobal’s shadow function.
__device__ float shadowFunction(OPI:: Orbit orbit, tPerifocal p, float trueAnomaly);

// Calculates shadow entry and exit points with the help of a quartic equation.
__device__ tShadow shadowEntryExit(

double roots[4],

int nroots,

tPerifocal p,

OPI:: Orbit orbit

);

// Calculates the perturbance of the given shadow on the given orbit.
__device__ void calculateShadowInfluence
(

OPI:: Orbit orbit,

tShadow shadow,

tAcceleration SRPAcceleration,

OPI:: Orbit& deltaOrbit,

float dt

);

// Calculates the acceleration vector of the solar radiation pressure.
__device__ tAcceleration getSRPAcceleration (

OPI:: Orbit orbit,

OPI:: ObjectProperties props,

float obliquity,

float sunEclipticLongitude

);

// Main kernel function that calculates the SRP perturbance.
__device__ void solar(

OPI:: Orbit& orbit,

OPI:: ObjectProperties& props,

OPI:: Orbit& deltaOrbit,

float obliquity,

OPI:: Vector3 sunPosition,

float sunEclipticLongitude

float dt

);

// Wrapper function for the above kernel that sets block and grid size.
__global__ void solarGPU(

OPI:: Orbit* orbit,

OPI:: ObjectProperties* props,

OPI:: Orbitx deltaOrbit,

int size,

float obliquity,

OPI:: Vector3 sunPosition,

float sunEclipticLongitude,

float dt

);
#endif

C. IKEBANA CrASS HEADERS

C.6. lkebana::AtmosphericData

#ifndef _ PERTURBATION_ATMOSPHERE_DATA H__
#define __PERTURBATION_ATMOSPHERE_DATA_H__

#include
#include

#include
#include
#include

"fileManager.h"
"AtmosphericDataTypes.h"

<map>
<iostream >
<string >

using namespace std;

//! Data provider for Ikebana’s atmospheric model
class AtmosphericData

public
/!

Class constructor. Does nothing.

AtmosphericData ();

/1!

Class destructor. Does nothing.

~AtmosphericData ();

v
/x!

*

* X ¥ ¥

*/
bool

/!
/x!
*/

bool

/1!

/x!
*

*
*
*/

void

/]!

Initialization function that is called by PMAtmosphere.

This function loads the files atmosphere.tab, solaractivity.txt and
bessel_interpolated .dat which usually reside inside the archive ikebana.dat.
Actual file loading is handled by the FileManager.

Content is stored in RAM (solar activity) or CUDA unified memory
(atmosphere , bessel).

return true if initialization was completed without errors, false otherwise.

init ();
Called upon disabling the atmospheric module. Cleans up allocated memory.
return true if cleanup was completed successfully , false otherwise.

cleanup ();

Calculates the indices for the given day’s Ap, mean and daily Fio.7.

Called by the setTimeStep function of PMAtmosphere.

The results are stored as unified memory pointers so the CUDA threads can
look them up. These pointers are returned by the getOffsetPointer function.
param julianDay The current date

calculateOffsets (float julianDay);

Returns a pointer to the atmospheric data table in device memory.

tAtmoDatax getDataPointer ();

/]!

intx

/]!

Returns a pointer to an int[3] containing ap, mean and daily Fio.7 indices.
getOffsetPointer ();

Returns a pointer to the Bessel function lookup table in unified memory.

doublex getBesselPointer ();

privat

i
Tkeb

e:
Instance of FileManager used to load data.
anaFileManager fim;

//! Map to store data solar activity data.

/x!
*/

The index is the Julian Date, rounded to days.

map<int, tSolarActivity> solar;

187

188 C.6. IKEBANA:ATMOSPHERICDATA

//! Atmospherical data stored in device memory.
/*! getDataPointer () returns a pointer to it.
*/

tAtmoDatax atmo;

//! Indices for ap and fio.7 values into atmosphere.tab.
/*! getOffsetPointer () returns a pointer to it.

«/

intx currentOffsets;

//! Array to store the lookup table for the Bessel function.
/x! getBesselPointer () returns a pointer to it.
*/

doublex besselLookup;

//! Loads atmosphere.tab and stores it in device memory.
void loadAtmosphere ();

//! Loads solaractivity.txt and stores it in unified memory.
void loadSolarActivity ();

//! Loads Bessel function lookup table and stores it in unified memory.
void loadBesselLookup ();

//! Finds the next index for a value within a given range and step size.
/*! This function is used to find the correct indices for the atmospheric table.
* For example, (14, o, 6o, 15) would return 15 because it’s the next value in

% the sequence "o 15 30 45 6o".

* param value The original value for which a match is sought. If this value is
* outside the range, min or max are returned depending on which is closest.
* param min The minimum value of the sequence.

* param max The maximum value of the sequence.

* param stepSize The step size of the sequence.

* return Next higher match.

*/

int findNext(int value, int min, int max, int stepSize);

#if __cplusplus <= 201103L
// replacements for string conversion functions that are only available in C++11
inline double stod(string s) { return strtod(s.c_str(),NULL); };
inline float stof(string s) { return atof(s.c_str()); };
inline int stoi(string s) { return atoi(s.c_str()); };
#endif

}s

// CUDA functions currently have to be declared outside of classes.

// Called by PMAtmosphere to get interpolated lookup table data at the given location
// with the given input values.
__device__ tAtmoData getDataAt(int km, tAtmoDatax atmoPointer, intx offsetPointer);
// generate atmospheric data by interpolating the values around the given indices
__device__ tAtmoData trilinearInterpolation (

int dailyfioy,

int ap,

int meanfioy,

int km,

tAtmoData* atmoPointer

);

// CUDA equivalent of the above findNext() function.
__device__ int findNextGPU(int value, int minValue, int maxValue, int stepSize);

C. IKEBANA CLASS HEADERS 189

// Fetches a point from the atmospheric data table. Called during interpolation.
__device__ tAtmoData getPointAt(

int dailyfioy,

int ap,

int meanfioy,

int km,

tAtmoDatax atmoPointer

);

// Fetches an interpolated value from the Bessel function lookup table.
__device__ double getBesselValue(int order, int value, doublex besselPointer);

#endif

190 C.7. IKEBANA:PMATMOSPHERE

C.7. lkebana::PMAtmosphere

#ifndef __PERTURBATION_ATMOSPHERE_H__
#define _ PERTURBATION_ATMOSPHERE_H__
#define OPI_CUDA_PREFIX

_host device__

#include "OPI/opi_cpp.h"
#include "AtmosphericData.h"
#include "AstroMathCUDA.h"

//! OPI::PerturbationModule responsible for the calculation of atmospheric drag.
/%! Receives NRLMSISE—oo data from AtmosphericData and uses analytical models

* published by King—Hele (1987).

«/

class PMAtmosphere: public OPI:: PerturbationModule

public:
//! Class constructor. Used to initialize some variables.
PMAtmosphere ();
//! Class destructor. Does nothing.
~PMAtmosphere ();

//! Calls the init function of AtmosphericData which loads the lookup tables.
void init ();

//! Calls the cleanup function of AtmosphericData which frees memory.

void cleanup ();

//! Returns true if the module has been initialized via the init function.
bool isInitialized ();

//! OPI interface function to set the current Julian date prior to propagation.
/*! In this module, the function calls the calculateOffsets function of

x AtmosphericData to determine the time—dependent offsets into the atmospheric
« data table and upload them to the GPU.

* param julian_date The date of the current time step.

*

/

OPI:: ErrorCode setTimeStep(double julian_day);

protected:
//! OPI interface function to start calculating the perturbation.
OPI:: ErrorCode runCalculation(OPI:: Population& data, OPI:: Orbitx delta, float dt);

private:
/]! Attribute to store the initialization status. Set to false in the constructor.
bool initialized;
//! Instance of AtmosphericData that provides access to the lookup tables.
AtmosphericData dataProvider;
//! The current Julian date is stored as an attribute for later GPU upload.
float julianDay;

};

// CUDA functions currently have to be declared outside of classes.

// Auxiliary function for King—Hele’s equations in high—eccentricity cases.
__device__ double hele(double eccentricity);

// Auxiliary function for King—Hele’s equations in high—eccentricity cases.
__device__ double findroot(double ¢, float eccentricity);

// Correction function to compensate the simplifications of the density lookup table.
__device__ tAtmoData getDensityFactorsAt(float altitude, float julianDay, float raop);

// Solves the Bessel function based on a lookup table in AtmosphericData.
__device__ double bessel(int order, float coeff, doublex besselPointer);

C. IKEBANA CLASS HEADERS 191

// Calculates the atmospheric perturbation.
__device__ void atmosphere(

OPI:: Orbit& orbit,

OPI:: ObjectProperties& props,

OPI:: Orbit& deltaOrbit,

tAtmoDatax dataPointer,

int*x offsetPointer,

doublex besselPointer,

float julianDay,

float dt

);

// Wrapper function for the above kernel that sets block and grid size.
__global__ void atmosphereGPU(
OPI:: Orbit* orbit,
OPI:: ObjectProperties* props,
OPI:: Orbitx deltaOrbit,
int size,
tAtmoDatax dataPointer,
intx offsetPointer ,
doublex besselPointer,
float julianDay,
float dt

)s
#endif

192 C.7. IKEBANA:PMATMOSPHERE

Bibliography

[Ahn, 2012] Ahn, M. (August 2012). GPU Accelerated Satellite Orbit Propagation. https:
//github.com/ahnm/cis565-project. Accessed 2015-04-10.

[Akenine-Moller and Johnsson, 2012] Akenine-Moéller, T. and Johnsson, B. (2012). Perfor-
mance per what? Journal of Computer Graphics Techniques (JCGT), 1(1):37—41.

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, AFIPS '67 (Spring), pages 483—485. ACM.

[Blachford, 2006] Blachford, N. (2006). Lets Get Physical: Inside The PhysX Physics Proces-
sor. http://www.blachford.info/computer/articles/PhysX1.html. Accessed 2015-

07-14.

[Bowman, 2002] Bowman, B. R. (2002). True Satellite Ballistic Coefficient Determination for
HASDM. AIAA/AAS Astrodynamics Specialist Conference and Exhibit.

[Bruinsma et al., 2012] Bruinsma, S. L., Sanchez-Ortiz, N., Olmedo, E., and Guijarro, N. (2012).
Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. Journal of
Space Weather and Space Climate.

[Bundeskunsthalle, 2014] Bundeskunsthalle (2014). OUTER SPACE. Faszination Weltraum.
nicolai Verlag.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996). Pattern-Oriented Software Architecture. Volume 1. Wiley.

[CCSDS, 2009] CCSDS (2009). Consultive Committee for Space Data System - Orbit Data
Messages - Recommended Standard.

[CCSDS, 2010] CCSDS (2010). Consultive Committee for Space Data System - Navigation
Data - Definitions and Conventions.

[Cook, 1962] Cook, G. E. (1962). Luni-Solar Perturbations of the Orbit of an Earth Satellite.
Geophysical Journal of the Royal Astronomical Society.

[d’Eon et al.,, 2007] d’Eon, E., Luebke, D., and Enderton, E. (2007). Efficient Rendering of
Human Skin. Eurographics Symposium on Rendering.

[Escobal, 1965] Escobal, P. (1965). Methods of Orbit Determination. Krieger Publishing, Inc.

[Flegel, 2007] Flegel, S. (2007). Simulation der zukiinftigen Population von Raumfahrtriick-
stinden unter Beriicksichtigung von Vermeidungsmaffnahmen. Master’s thesis, Technis-
che Universitit Carolo-Wilhelmina zu Braunschweig.

194 BIBLIOGRAPHY

[Flegel, 2013] Flegel, S. (2013). Multi-Layer Insulation as Contribution to Orbital Debris. PhD
thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig.

[Flegel et al., 2011] Flegel, S., Gelhaus, J., Mockel, M., Wiedemann, C., Kempf, D., and Krag,
H. (2011). Maintenance of the ESA MASTER Model - Final Report, Revision 1.1. Technical
report, ESA/ESOC.

[Flegel et al., 2010] Flegel, S., Mockel, M., Gelhaus, J., Wiedemann, C., and Vors-
mann, P. (2010). Analyse zur Deutschen Position zur Wirtschafilichkeit von Space Debris-
Vermeidungsmafinahmen.

[Fraire et al., 2013] Fraire, J., Ferreyra, P., and Marques, C. (2013). OpenCL-Accelerated Sim-
plified General Perturbations 4 Algorithm. Proceedings of the 14th Argentine Symposium of
Technology.

[Gessler et al., 2014] Gessler, A., Schulze, T., Kulling, K., and Nadlinger, D. (2014). Open Asset
Import Library. http://assimp.sourceforge.net. Accessed 2015-08-09.

[Gordon, 2010] Gordon, R. C. (2010). PhysicsFS API Documentation. https://icculus.
org/physfs/docs/html. Accessed 2014-05-08.

[Harrison and Waldron, 2007] Harrison, O. and Waldron, J. (2007). AES Encryption Imple-
mentation and Analysis on Commodity Graphics Processing Units. Cryptographic Hardware
and Embedded Systems - CHES 2007.

[Hobson and Clarkson, 2012] Hobson, T. A. and Clarkson, V. L. (2012). GPU-based Space Sit-
uational Awareness Simulation utilising parallelism for enhanced multi-sensor manage-
ment.

[Terusalimschy et al., 2006] Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. (2000). Lua
5.1 Reference Manual. Lua.org.

[Kebschull, 2011] Kebschull, C. (2011). Parallelisierung eines numerischen Propagators mit
OpenCL. Master’s thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig.

[Kelso, 2000] Kelso, T. S. (2000). Space Weather Data. http://celestrak.com/SpaceData/
Spacelix- format.asp. Accessed 2015-07-14.

[Kent, 2004] Kent, S. L. (2004). The Making of Doom III. McGraw-Hill/Osborne.

[Kessler and Cour-Palais, 1978] Kessler, D. J. and Cour-Palais, B. G. (1978). Collision fre-
quency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research,
Volume 83, Issue AG, p. 2637-26406, pages 2637—-2646.

[Khronos OpenCL Working Group, 2015] Khronos OpenCL Working Group (2015). The
OpenCL Specification Version 2.1, Revision 8.

[King-Hele, 1987] King-Hele, D. (1987). Satellite Orbits in an Atmosphere. Blackie and Son Ltd.

[Kirk and Hwu, 2010] Kirk, D. B. and Hwu, W. W. (2010). Programming Massively Parallel Pro-
cessors - A Hands-on Approach. Elsevier.

BIBLIOGRAPHY 195

[Klinkrad, 2006] Klinkrad, H. (2006). Space Debris - Models and Risk Analysis. Springer.

[K6hncke, 2014] Kéhncke, M. (2014). Automatisierter Vergleich von Bahnpropagatoren. Mas-
ter’s thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig.

[Latinga, 2014] Latinga, S.(2014). Simple DirectMedia Layer. https://www.1libsdl.org. Ac-
cessed 2015-08-02.

[Liou, 2006] Liou, J.-C. (2006). Collision activities in the future orbital debris environment.
Advances in Space Research, Vol. 38.

[Lorefice, 2010] Lorefice, D. (2010). Scientific Parallel Animation and Computing Environ-
ment - Simulation. Master’s thesis, Technische Universitit Carolo-Wilhelmina zu Braun-
schweig.

[Margolin, 2001] Margolin, J. (2001). The Secret Life of Vector Generators. http://www.
jmargolin.com/vgens/vgens.htm. Accessed 2015-04-15.

[Marquardt, 1999] Marquardt, K. (1999). Patterns for Plug-Ins. Proceedings of EuroPLoP 199g.

[MIT Technology Review, 2002] MIT Technology Review (2002). Innovators under 35. http:
//www2 .technologyreview.com/tr35/profile.aspx?trid=243. Accessed 2015-04-10.

[Mockel et al., 2013] Mockel, M., Flegel, S., Kebschull, C., Braun, V., Miller, A., Gelhaus, J.,
Wiedemann, C., Vérsmann, P., and Kreisel, J. (2013). SD-LEO - Wirtschafilichkeit der Stabil-
isierung der Space Debris-Population auf niedrigen Erdumlaufbahnen.

[Mockel et al., 2012] Mdockel, M., Kebschull, C., Flegel, S., Gelhaus, J., Braun, V., Wiedemann,
C., and Vérsmann, P. (2012). Flexible Implementation of Orbital Propagators in Heteroge-
nous Computing Environments. DGLR-]Jahrestagung 2012, Berlin.

[Mockel et al., 2015] Mockel, M., Radtke, J., Wiedemann, C., and Stoll, E. (2015). ELA - Er-
weiterte Langzeitanalyse der zukiinftigen Weltraummiillpopulation unter Beriicksichtigung aktiver
Entfernungsmafinahmen.

[Mockel et al., 2011] Mockel, M., Wiedemann, C., Flegel, S., Gelhaus, J., Klinkrad, H., Krag,
H., and Vérsmann, P. (2011). Using Parallel Computing for the Display and Simulation of
the Space Debris Environment. Advances in Space Research 48, pp. 173-183.

[Najjar, 2014] Najjar, M. (2014). outer space. DISTANZ Verlag.

[NVIDIA Corporation, 2009] NVIDIA Corporation (2009). NVIDIA’s Next Generation CUDA
Compute Architecture.

[NVIDIA Corporation, 2013] NVIDIA Corporation (2013). NVIDIA Tesla - Kepler Family
Datasheet.

[NVIDIA Corporation, 2015] NVIDIA Corporation (2015). CUDA C Programming Guide, Version
7.0.

[OpenACC Group, 2013] OpenACC Group (2013). The OpenACC Application Programming In-
terface, Version 2.o.

196 BIBLIOGRAPHY

[OpenMP Architecture Review Board, 2013] OpenMP Architecture Review Board (2013).
OpenMP Application Program Interface, Version 4.o.

[Owens et al.,, 2008] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips,
J. C. (2008). GPU Computing. Proceedings of the IEEE, Vol. 96, No. 5.

[Peus, 2013] Peus, C. (May 2013). Weltansichten / World Views. art.

[Picone et al., 2002] Picone, J., Hedin, A., Drob, D., and Aikin, A. (2002). NRL-MSISE-0o Em-
pirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues. J. Geophys.
Res., d0i:10.1029/2002]JA009430.

[Radtke, 2011] Radtke, J. (2011). Modellieren der Erdatmosphire zur Bahnlebensdauer-
berechnung erdgebundener Objekte. Master’s thesis, Technische Universitit Carolo-
Wilhelmina zu Braunschweig.

[Reglitz, 2012] Reglitz, S. (2012). Architektur eines Tools zur Vorhersage von Objektbahnen.
Master’s thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig.

[Rodermund, 2010] Rodermund, T.(2010). Scientific Parallel Animation and Computing En-
vironment - Visualization. Master’s thesis, Technische Universitit Carolo-Wilhelmina zu
Braunschweig.

[Rohrbeck, 2011] Rohrbeck, M. (2011). Validierung der West Ford Needles - Simulation. Mas-
ter’s thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig,

[Space-Track.org, 2015] Space-Track.org (2015). TLE Full Catalog. https://www.
space-track.org/basicspacedata/query/class/tle_latest/ORDINAL/1/EPOCH/
>now-30/orderby/NORAD_CAT_ID/format/tle. Login required. Accessed 2015-05-11, last
NORAD ID: 4064o0.

[Sutter and Larus, 2005] Sutter, H. and Larus, J. (2005). Software and the Concurrency Revo-
lution. ACM Queue.

[Szirmay-Kalos et al., 2010] Szirmay-Kalos, L., Umenhoffer, T., T6th, B., Szécsi, L., , and Sbert,
M. (2010). Volumetric Ambient Occlusion. Technical report, Technical University of Bu-
dapest.

[Tapping and Charrois, 1993] Tapping, K. and Charrois, D. (1993). Limits to the Accuracy of
the 10.7cm Flux. Solar Physics.

[Thomsen, 2013] Thomsen, P. (2013). GPU-Basierte Analyse von Kollisionen im Weltraum.
Master’s thesis, Technische Universitit Carolo-Wilhelmina zu Braunschweig,

[Thomsen and Mdckel, 2013] Thomsen, P. and Mdockel, M. (2013). OPI Source Code on
GitHub. https://github.com/ILR/OPI. Accessed 2015-08-19.

[Truelsen, 2007] Truelsen, R. (2007). Real-time Shallow Water Simulation and Environment
Mapping and Clouds. Technical report, University of Copenhagen.

[Turner, 2014] Turner, P. D. (2014). CEGUI Developer Documentation. http://static.
cegui.org.uk/docs/current. Accessed 2015-08-02.

BIBLIOGRAPHY 197

[Vallado et al., 2006] Vallado, D., Crawford, P., Hujsak, R., and Kelso, T. (20006). Revisiting
Spacetrack Report #3. ATAA 2006-6753.

[Vallado, 2007] Vallado, D. A. (2007). Fundamentals of Astrodynamics and Applications. Micro-
cosm Press, 3rd edition.

[van Waveren, 2013] van Waveren, J. P.(2013). DOOM 3 BFG Technical Note. Technical report,
id Software.

[Wiedemann, 2014] Wiedemann, C. (2014). Raumfahrttechnische Grundlagen.

[Zuschlag, 1985] Zuschlag, J. (1985). Programmierung der direkten numerischen Integration
der gestorten Bewegungsgleichung eines Satelliten. Master’s thesis, Technische Univer-
sitit Carolo-Wilhelmina zu Braunschweig.

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Abstract
	Zusammenfassung [German Abstract]
	1 Introduction
	1.1. Space Debris
	1.2. Scope of Work
	1.3. Outline
	2 State of the Art
	2.1. Orbital Physics and Propagation
	2.2. GPU Computing
	2.3. Software Architecture and Development
	3 A Software Framework for Orbital Propagators
	3.1. Properties of Orbital Propagators
	3.2. Orbital Propagation Interface
	3.3. Propagator Implementation Guidelines
	4 High-Performance Analytical Propagation
	4.1. FLORA
	4.2. Ikebana - A Parallel CUDA Propagator
	5 Performance Analysis
	5.1. Reference Population
	5.2. Accuracy
	5.3. Speed
	5.4. Double Precision Comparison
	5.5. Summary
	6 Use Case Study: Space Debris Visualization
	6.1. Overview
	6.2. Classes
	6.3. Propagation
	6.4. Performance
	7 Conclusions and Further Research
	7.1. OPI
	7.2. Ikebana
	8 Outlook
	8.1. GPU Computing
	8.2. Numerical Propagation
	A CUDA Profiler Report for the AtmosphericalModel
	A.1. GeForce GTX 860m
	A.2. GeForce GTX 960
	A.3. Tesla K20c
	B Individual Error Rate Plots
	C Ikebana Class Headers
	C.1. Ikebana::Ikebana
	C.2. Ikebana::PMMeanMotion
	C.3. Ikebana::PMZonalHarmonics
	C.4. Ikebana::PMLuniSolar
	C.5. Ikebana::PMSolarRadiation
	C.6. Ikebana::AtmosphericData
	C.7. Ikebana::PMAtmosphere
	Bibliography

